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U21.1 Introduction 

Modules U19 and U20 have addressed reliability analysis of the 

generation system assuming that the transmission system is 

perfectly reliable. Ultimately, we would like to be able to address 

the reliability of the generation and the transmission system 

together. An incremental step taken in that direction is the so-

called multiarea reliability problem, addressed in this module.  

In the multiarea reliability problem, we view the electric power 

system as comprised of multiple areas of generation, with the 

transmission within each area being perfectly reliable. However, 

the transmission interconnecting the various areas has non-zero 

failure probability. Figure U21.1 illustrates the situation. 
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Fig. U21.1: Illustration of multiarea model 
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This problem has applicability whenever one or more generation 

units may be grouped together physically and contractually, and 

each group has the obligation of providing assistance to 

neighboring groups when needed, if capacity to do so exists. 

There are four main issues embedded in the last statement, as 

described in what follows: 

• Physical grouping: Transmission within each group must be 

assumed perfectly reliable so that supply of load may be 

performed by any generator within the group with equal 

reliability, given the generator is in service. 

• Contractual grouping: The generators within each group operate 

under the same contract or set of contracts, i.e., they are 

dispatched together to meet load obligations. 

• Neighboring groups: Group B is a neighboring group to group 

A if there is available transmission capacity for power delivery 

from group B to group A. 

• Assistance: Each group is obligated to provide assistance to 

neighboring groups, if reserves exist, in the event the group is 

not able to serve its load from its own generation resources. 

There were several publications on specialized studies in the past 

to perform multi-area reliability analysis for the region of the Mid-

continent Independent System Operator (MISO), including [1, 2, 

3]. For example, in [3], the following excerpts are worth 

reviewing, which includes Fig. U21-1a: 

“The computing tool used for the calculation of the reliability 

indices in this study is the MARS program developed by 

General Electric International Inc. MARS uses a sequential 

Monte Carlo simulation technique to calculate the reliability 

indices of a generation system that is made up of a number of 

interconnected areas. Generating units and an hourly load 

profile are assigned to each area. MARS performs a 
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chronological hourly simulation of the interconnected 

system, comparing the hourly load in each area to the total 

available generation in the area taking into account the 

random outages of thermal generating units, availability of 

interconnection tie lines and the energy limited nature of 

hydro and wind resources. If an area’s available generation, 

including assistance from other areas, is less than its load, 

the area is in a loss of load state for that hour and statistics 

required to compute the reliability indices will be collected. 

This process is continued for all of the hours in a sample 

year.” 

… 

In MARS, a generation system can be modeled as a number 

of interconnected areas. Each area is composed of one or 

several individual generating systems which can be 

represented as a single bus system as shown in Figure 1. The 

areas are defined by the limiting interfaces that may exist 

throughout the transmission system. The program assumes 

that there are no transmission limits within an area. Any 

generating units assigned to an area can, therefore, serve 

any load associated with that area. For this study, the MAPP 

interconnected system is modeled as five areas consisting of 

Manitoba Hydro (MHEB), North Dakota, Western 

Minnesota, and Northern South Dakota (NDAK), Central-

Northern Minnesota and Western Wisconsin (MINN), 

Western South Dakota and Western Nebraska (WNB), and 

Eastern Nebraska, Southeastern South Dakota, Iowa, and 

Southern Minnesota (ENB/IA). A simplified diagram of the 

MAPP system for resource adequacy evaluation in MARS for 

this study is shown…” 
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Fig. U21.1-a 

The above mentioned studies were specialized ones performed 

once every several years. In addition, MISO includes multi-area 

reliability analysis in its annual Midwest Transmission Expansion 

Planning (MTEP) studies. For example, Figure U21.1-b below, 

taken from the MTEP-2015 report [4], illustrates how the MISO 

system is divided into “local resource zones,” which is a multi-area 

characterization of the MISO power grid. 
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Fig. U21.1-b 

From the MISO 2015 Loss of Load Expectation study [5] we read 

the following: 

“MISO utilizes a program developed by General Electric called 

Multi-Area Reliability Simulation (MARS) to calculate the LOLE for 

the applicable planning year. GE MARS uses a sequential Monte 

Carlo simulation to model a generation system and assess the 

system’s reliability based on any number of interconnected areas. GE 

MARS calculates the annual LOLE for the MISO system and each 

Local Resource Zone (LRZ) by stepping through the year 

chronologically and taking into account generation, load, load 

modifying and energy efficiency resources, equipment forced outages, 

planned and maintenance outages, load forecast uncertainty and 

external support.” 

We observe two things here: 

• MISO uses a multiarea reliability analysis in their annual 

planning processes. We will study this problem in these 

notes. 
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• The model they use is a “sequential Monte Carlo simulation.” 

The term “sequential” means that the operating conditions 

are treated sequentially through time, i.e., the simulation is 

chronological. The term “Monte Carlo” means that 

uncertainty is represented by re-running the sequential 

simulation many times, selecting values for uncertainty 

variables based on a “random draw” of possible values for 

each variable, where the draw is from a probability 

distribution appropriate for the particular variable 

corresponding to the uncertainty. We will not address this 

particular approach to multiarea reliability evaluation in these 

notes but instead will address a method that builds on our 

convolution approach.  

We should not assume that the GE MARS tool (originally 

introduced in [6]) is the only multiarea reliability analysis tool 

available. Table U21.1 below summarizes some other tools. 

Reference [7] provides an excellent summary of such tools. 

There was a good comparison of GE-MARS and PJM’s PRISM 

performed by PJM [8]; we provide the executive summary of this 

report in Fig. U21.1c (spread out over the three pages). Reference 

[8] is an excellent resource on generation adequacy evaluation; it is 

strongly recommended that you get a copy and review it. I have 

posted it on the EE 552 course website. 
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Table U21.1: Available G&T Reliability Evaluation Products 

Developer  Multiarea 

reliability 

G&T 

Adequacy 

Distribution Sub-

stations 

Operations 

BC Hydro MCGSR MECORE  RISK_A  

General 

Reliablty 

GENREL TRANSREL DISREL SUBREL  

EPRI  TRELLS 

CREAM 

DRIVE   

PTI MAREL TPLAN, 

LARA 

 SRA  

ABB  NETREL RELINET   

ABB   Performance 

Advantage 

  

GE MARS     

Astrape SERVM     

Powertech  CRUSE    

Milsoft   Windmil   

CYME   CYMDIST   

OTI   ETAP   

PG&E   DREAM   
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Fig. U21.1c: Executive Summary from [8] 

 

U21.2 Multiarea reliability failure states 
The simplest situation to consider is a 2-area case; we begin from 

there. Denote the areas as A and B. Consider initially that there is 

no tie between the two areas such that they operate in an isolated 

fashion. Then we generate the capacity outage table for each area, 

and given the load level in each area, easily identify the capacity 

outage states for which no load is lost and for which load is lost.  

Denote the success and fail states for the two areas as AS, AF, and 

BS, BF, respectively. Figure U21.2 illustrates the different states, 

where we assume that areas A and B are comprised of 11 and 13 

units, respectively, with each unit having 1 MW capacity.  
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Fig. U21.2: Classification of 2-area capacity states without tie line 

Areas A and B loads are 6 and 8, respectively. Failure states are 

identified as those for which C>CT-d (implying that the capacity 

outage C is greater than the reserve CT-d, or, from d>CT-C, that 

available generation CT-C is less than the load d). 

• For Area A, this would be states for which C>11-6=5, i.e., 

states with capacity outage of 6, 7, 8, 9, 10, and 11. 

• For Area B, this would be states for which C>13-8=5, i.e., 

states with capacity outage of 6, 7, 8, 9, 10, 11, 12, and 13. 

Note that we assume a state for which the capacity outage equals 

the reserve is a success state. An example is, for Area A, C=5, 

then available generation is 11-5=6 MW, which equals the load. It 

may be prudent in some cases to define this state as a failure state. 

Consider adding a transmission circuit having infinite capacity, and 

assume that each area will provide additional power to the other area 

only insofar as it does not cause loss of load for itself. This increases 

success states by the areas between dashed lines & staircases. 

(d=8) 

(d=6) 

“Origin” 
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Fig. U21.3: Classification of 2-area capacity states with infinite 

interarea transmission capacity 

We observe in Fig. U21.3 the hatched state corresponding to Area 

A capacity outage of 3 and Area B capacity outage of 6, which, 

for the case of no transmission, is a failure state, since the Area B 

available generation is 13-6=7 MW, not enough to supply Area 

B’s 8 MW of load.  

However, with transmission, the hatched state is a success state. 

Let’s see why. 

Since Area B has capacity outage of 6 MW, it has only 13-6=7 

MW of generation available to supply a load of 8 MW. But since 

Area A has capacity outage of 3 MW, it has 11-3=8 MW to supply 

its load of 6 MW and therefore has 2 MW of reserve. If Area A 

supplies Area B with 1 MW, then area B has 7+1=8 MW of 

generation and is therefore no longer a failed state according to 

our criteria. In this case, Area A generation will be 6+1=7 MW, 

and with capacity outage of 3 MW, leaves 11-7-3=1 MW reserve. 
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A similar argument applies for the state just right of the hatched 

state (with the single dot in it), but in this case, Area B has 

capacity outage of 7 MW and therefore only 13-7=6 MW of 

generation to supply a load of 8 MW. Therefore, Area A must 

supply 2 MW to Area B, leaving Area A with no reserve. States 

having any more capacity outage in either Area A or Area B result 

in a failed state. 

The dotted state above and right of the single dot state has Area B 

with an increased capacity outage of 8 MW and therefore only 13-

8=5 MW of generation to supply a load of 8 MW. In this case, the 

capacity outage of Area A is only 2 MW, leaving Area A with 11-

2=9 MW of generation to supply 6 MW of load. Therefore, Area 

A has 3 MW of reserve, which it can supply to Area B to prevent 

loss of load, making this a success state. 

Comparison of Fig. U21.3 with Fig. U21.2 indicates the effect of 

increasing the number of success states that interarea transmission 

can have. One notes that infinite capacity transmission is only able 

to increase the number of success states insofar as available 

generation will allow. 

Note in Fig. U21.3 that the “boundary” between success and failed 

states is a climbing staircase to the right. The significance of this 

is that, with infinite transmission capacity,  

• above the “origin,” every decrease in Area A capacity 

outage (a step up) results in an additional MW being 

available to supply Area B (a step to the right); 

• below the “origin,” every decrease in Area B capacity 

outage (a step to the left) results in an additional MW being 

available to supply Area A (a step down). 

Finally, consider that the transmission interconnecting the two 

areas has finite capacity of 2 MW, and that capacity is only used 

when one area is in need of assistance from the other area (i.e., 

transmission is not used simply for economic purposes, so that the 



Module PE.PAS.U21.5 Multiarea reliability analysis 14 

full transmission capacity is always available to provide reliability 

backup). Fig. U20.4 illustrates the resulting capacity states. 
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Fig. U21.4: Classification of 2-area capacity states with 2 MW 

interarea transmission capacity 

Consider the hatched and single-dot states in Fig. U21.4. As 

before, we see that the effect of transmission is to turn both of 

these states into success states. However, notice that the dotted 

state, which was a success for the case of infinite transmission, is 

now a failure state. The reason is that, although Area A does have 

available generation to supply the additional 3 MW needed by 

Area B, the transmission capacity limits that supply to 2 MW, and 

Area B experiences loss of load. 

Notice from Fig. U21.4 that the “boundary” between success and 

failure states is the same as in Fig. U21.3 in the middle of the 

diagram (i.e., for 3<CA<7 and 4<CB<7). The difference between 

the two boundaries, towards the edges of the diagram, is due to the 

limiting effect that transmission has on the ability to provide 

assistance from one area to another. 
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U21.3 Evaluation approaches for 2 area system 

Section U21.2 only addresses the effect of transmission on the 

number of states that are failures vs. the number that are successes. 

However, we said nothing about the actual probability of these 

states. Once we get the probability of the states and their 

classification (success or failure), then we can compute the desired 

failure probability (loss of load probability in this case) simply as 

the summation of the probabilities of all failure states. There are 

two approaches: the all-failure states approach and the equivalent 

assisting unit approach. In both approaches, we assume that the 

transmission is limited, but perfectly reliable. 

U21.3.1 All-failure states approach 

One simple approach, at least conceptually, that is applicable to 

operating reserve evaluation when there is little uncertainty in the 

load, is the all-failure states approach, as follows:  

1. Compute the capacity outage table for each area, lumping 

identical capacity outage states together. This provides the 

probabilities of each state for each area. 

2. Identify the failure states F. Then  

=
Fjk

kj
pLOLP

,

    (U21.1) 

where pkj=pkpj, kA, jB, i.e., the probability of state kj is the 

product of the probability of state k in Area A and the 

probability of state j in Area A. We are assuming here that the 

Areas A and B states are independent.  

If we want to account for the possibility of transmission failure, 

then we need to repeat the above algorithm for every distinct value 

of transmission line capacity. In this case, (U21.1) becomes  

=
 iFjk

kji
pLOLP

,

   (U21.2) 
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where we see that the failure states, denoted by Fi, are a function of 

the transmission line capacity i, as they should be.  Then, the total 

LOLP is computed as 

=
i

iTi
LOLPpLOLP    (U21.3) 

where each transmission line capacity has a probability of pTi. In 

the simplest case, consisting of a single transmission line 

interconnecting the two areas, the interconnecting transmission line 

would have capacity possibilities of “full” (corresponding to “up”) 

and “zero” (corresponding to “down”).  

This approach can be quite computationally intense, however, due 

to the need to compute the probabilities of all failure states of both 

areas (which has an upper bound of NANB, where NA and NB are 

the number of capacity outage states in Areas A and B, 

respectively).  

U21.3.2 Equivalent assisting unit approach 

An alternative approach, called the equivalent assisting unit (EAU) 

approach, is described in this section. We draw heavily from 

reference [9] in describing this approach using some background 

from [10]. 

In the EAU approach, the benefits of the interconnection between 

the two systems are represented by an equivalent multi-state unit 

which describes the potential ability of one area to accommodate 

capacity deficiencies in the other area.  

Here, we denote area A as the assisted area and area B as the 

assisting area. Some specifics of this method follow: 

• The capacity assistance level for a particular outage state in 

Area B is given by the minimum of the transmission capacity 

and the available area reserve at that outage state. 

• All capacity assistance levels greater than or equal to the 

transmission capacity are replaced by one assistance level 

which is equal to the tie capacity. 
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The resulting capacity assistance table can be converted into a 

capacity model of an equivalent multi-state unit which is added to 

the existing capacity model of Area A. Reliability indices may 

then be computed using the methods of Module U19 (for capacity 

evaluation) or the methods of Module U20 (for operating reserve 

evaluation).  

Example 1: An example adapted from [9] will clarify. Consider the 

system data for a 2-area system as given in Table U21.2.  

Table U21.2: System data for example [1] 

Area Number 

of units 

Unit 

capacity 

(MW) 

FOR  

per unit 

Installed 

capacity 

(MW) 

Load 

(MW) 

 

A 

5 10 0.02  

75 

 

50 1 25 0.02 

 

B 

4 10 0.02  

60 

 

40 1 20 0.02 

There is one transmission line interconnecting the two areas; it has 

capacity of 10 MW and is perfectly reliable (FOR=0). 

The capacity outage table for both areas is given in Table U21.2. 

Probabilities less than 10-8 can be neglected in this table. 
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Table U21.2: Capacity outage tables for example [9] 

Area A Area B 

State 

j 

Cap 

out 

State 

prob  

Cum 

prob 

State 

j 

Cap 

out 

State 

prob 

Cum 

prob 

1 0 .8858424 1.0 1 0 .9039208 1.0 

2 10 .0903921 .1141576 2 10 .0737894 .096079 

3 20 .0036895 .0237656 3 20 .0207062 .0222898 

4 25 .0180784 .0200761 4 30 .0015366 .0015835 

5 30 .0000753 .0019977 5 40 .0000463 .0000469 

6 35 .0018447 .0019224 6 50 .0000006 .0000006 

7 40 .0000008 .0000776 7 60 .0000000 .0000000 

8 45 .0000753 .0000769     

9 50 .0000000 .0000016     

10 55 .0000015 .0000016     

11 65 .0000000 .0000000     

12 75 .0000000 .0000000     

 

Note that “Cum prob” gives probability that capacity outage is 

greater than or equal to the corresponding value. (This differs from 

what we called FY(y) in module 20, where there it was probability 

that capacity outage is greater than the corresponding value.) 

 

 

These states 

look the 

same to 

Area A; they 

all provide 0 

MW of 

assistance, 

so merge 

them. 
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Area B has a reserve of 20 MW; this is the maximum assistance it 

can provide at this load level (assuming infinite transmission 

capacity). Therefore, any capacity outage of 20 MW or greater will 

have the same influence on the available capacity, as far as area A 

is concerned, limiting the assistance to zero. As a result, we merge 

all Area B capacity outage states greater than or equal to 20 MW 

into one state, accumulating the probabilities. Table U21.3 shows 

the Area B EAU capacity outage table.  

 

Table U21.3: EAU capacity outage table for Area B [9] 

Cap out (MW) State prob 

0 .9039208 

10 .0737894 

20 .0222898 

In Table U21.3, the first 2 capacity outage states (0, 10 MW) have 

state probabilities corresponding to the Area B state probabilities 

of Table U21. 2. 

The last state probability in Table U21.3 (20 MW) has a state 

probability corresponding to the Area B cumulative probability of 

Table U21.2. This is because, as previously stated, all Area B 

states having capacity outage of 20 MW or greater have the same 

effect on Area A, since the Area B reserve is 20 MW and therefore 

will not be able to assist Area A if capacity outage is 20 or greater. 

Now recall that the transmission has capacity of 10 MW; we see 

that the assistance available from Area B to Area A is 10 MW 

regardless of whether the Area B capacity outage is 0 MW 

constrained by transmission, or 10 MW constrained by 

transmission as well as generation. 

These states look the same 

to Area A; they both 

provide 10 MW of 

assistance, so merge them. 
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As a result, we merge the 0 MW capacity outage state with the 10 

MW capacity outage state. The result of this merging is effectively 

a 2- state unit, as indicated in Table U21.4. 

Table U21.4: Transmission-constrained EAU capacity outage table 

Cap out (MW) State prob 

0 .9777102 

20 .0222898 

One problem with Table U21.4 is, however, that it suggests an 

equivalent unit of 20 MW capacity. This is inconsistent with the 

fact that maximum assistance from Area B is 10 MW due to 

transmission limitation. Therefore we change the bottom capacity 

outage value in Table U21.4 from 20 MW to 10 MW. Table U21.5 

shows this change. 

Table U21.5: Transmission-constrained EAU capacity outage table 

with adjustment for transmission capacity 

 

The transmission-constrained EAU capacity outage table of Table 

U21.5 is now convolved into the Area A capacity outage table of 

Table U21.2, giving an equivalent Area A installed capacity of 

75+10=85 MW. The result is given in Table U21.6 (probabilities 

smaller than 10-8 have been truncated). 

The load of Area A is 50 MW and therefore loss of load occurs 

when the capacity outage in Area A is greater than the reserve of 

85-50=35 MW. The cumulative probability for a capacity outage 

of 35 MW is read from Table U21.6 as LOLP=.0023270. 

 

Cap out (MW) State prob 

0 .9777102 

10 .0222898 

This table implies capacity outage 

state of 0 MW makes 20 MW of 

capacity available to Area A, but 

transmission limits it to 10 MW. 
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Table U21.6: Area A modified capacity outage probability table 

State Cap out (MW) State prob Cum prob 

1 0 .8660972 1.0 

2 10 .1081225 .1339028 

3 20 .0056221 .0257804 

4 25 .0176755 .0201583 

5 30 .0001559 .0024829 

6 35 .0022066 .0023270 

7 40 .0000024 .0001204 

8 45 .0001147 .0001180 

9 50 .0000000 .0000033 

10 55 .0000032 .0000032 

11 60 .0000000 .00000005 

12 65 .00000005 .00000005 

13 75 .00000000 .0000000 

 

Example 2: One can repeat this analysis for a transmission line 

having capacity of 15 MW (instead of 10 MW). One would expect, 

with increased transmission capacity, the influence of assistance to 

be greater and thus LOLP to be smaller.  

The new EAU capacity outage table is identical to that of Table 

U21.3, with the exception of the last capacity outage value, as 

given in Table U21.7.   
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Table U21.7: EAU capacity outage table for Area B with 15 MW 

transmission capacity 

Cap out (MW) State prob 

0 .9039208 

10 .0737894 

15 .0222898 

In comparing Table U21.7 to Tables U21.3 and U21.4, we observe:  

• The 0 and 10 MW capacity outage states of Table U21.7 remain 

distinct since they have different effects on Area A. With 0 MW 

capacity outage, Area A receives 15 MW of assistance (limited 

by transmission). With 10 MW capacity outage, Area A 

receives 10 MW of assistance (limited by generation reserve). 

• The largest capacity outage state is now 15, instead of 10 (as in 

Table U21.4), since the transmission capacity is 15. 

Convolution of the Area B capacity outage data of Table U21.7 

with the capacity outage data of Area A given in Table U21.2 

results in Table U21.8, where installed capacity is 75+15=90. The 

load of Area A is 50; therefore loss of load occurs when the 

capacity outage in Area A equals or exceeds a reserve=90-50=40. 

The cumulative probability for a capacity outage of 40 is read from 

Table U21.8 as LOLP=.00066504, lower than the LOLP=.0023270 

obtained for the case of transmission capacity=10.  

It is interesting to compare the state probability for a capacity 

outage of 35 MW in the two cases. The 10 MW transmission 

capacity case yields .0022066 (Table U21.6) whereas the 15 MW 

transmission capacity case yields .0030837. It may be surprising to 

find the 35 MW outage capacity state probability is higher for the 

15 MW transmission case whereas the LOLP is lower. In fact, 

individual state probabilities may go up or go down as we change 

unit capacities in a problem of this sort.  
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We can be sure, however, that (for a given load level), whenever 

we increase the installed capacity of a unit, the number of states 

identified as failure (loss of load states) will decrease. In this case, 

we increased the installed capacity of the equivalent unit from 10 

to 15 MW and therefore provided that we need not include the 35 

MW capacity outage state in our LOLP calculation. 

Table U21.8: Area A modified capacity outage probability table 

State Cap out (MW) State prob Cum prob 

1 0 .8007300 1.0 

2 10 .1470700 .1992700 

3 15 .0197450 .0521960 

3 20 .0100050 .0324500 

4 25 .0183560 .0224450 

5 30 .0000340 .0004089 

6 35 .0030837 .0037487 

7 40 .0004092 .00066504 

8 45 .0002059 .00025579 

9 50 .0000418 .00004993 

10 55 .0000069 .00000875 

11 60 .0000017 .00000182 

12 65 .0000001 .00000014 

13 75 .00000003 .00000003 
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The below summarizes the steps taken in the above examples: 

1. Develop the capacity outage table for both areas. 

2. Develop the EAU capacity outage table by merging all capacity 

assisting area outage states for which the available assistance 

provided to the assisted area is the same. This can be done in the 

following 2-step process. 

a. Effect of assisting area reserve: Merge all assisting area 

capacity outage states having 0 MW assistance capability. 

These states are those for which the assisting area capacity 

outage equals or exceeds the assisting area reserve. The new 

state has state probability equal to the sum of all merged 

states, which is the cumulative probability of the capacity 

outage state equal to or just greater than the assisting area 

reserve. 

b. Effect of transmission capacity: Merge all capacity outage 

states having assistance capability equal to the transmission 

capacity. These states include those for which the assisting 

area reserve exceeds the capacity outage by the transmission 

capacity (or, one can say, the capacity outage is less than or 

equal to the reserve less transmission capacity). The new 

state has state probability equal to sum of all merged states. 

3. Denoting reserve by PR and transmission capacity as CTr, 

decrease all non-zero capacity outage values by an amount 

equal to PR-CTr. This will force the maximum capacity outage to 

be equal to the transmission line capacity. 

4. Convolve in the EAU capacity outage table with the assisted 

area capacity outage table. 

5. Compute the LOLP for the assisted area as the cumulative 

probability corresponding to the capacity outage state equal to 

or just greater than the reserve. 

Figure U21.5 illustrates the various assisting area states to be 

merged in step 2, where the numbers simply enumerate the states 
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in order of increasing capacity outage but do not correspond to any 

particular capacity outage values. Note that there may be no states 

in the “not merged” category, as in the 10 MW transmission 

capacity example, there may be 1 state, as in the 15 MW 

transmission capacity example, or there may be several states.  

 

States for which capacity 

outage falls between 

reserve and reserve less 

transmission capacity  

PR-CTr<y<PR 

NOT MERGED 

2b. States for which 

capacity outage is less 

than or equals the 

reserve less 

transmission capacity, 

y<PR-CTr 

MERGED 

2a. States for which 

capacity outage equals or 

exceeds reserve 

y>PR 

These give 0 assistance. 

MERGED 

 1     2      3     4       5     6      7       8      9     10    11    12    13    14    15    16    17    18  19                    

 

Fig. U21.5: Illustration of merged and not merged states 

U21.4 Accounting for transmission reliability 

In Section U21.3.2, we assumed that the transmission was 

perfectly reliable and developed a capacity outage table for a 

fictitious unit that, as far as the assisted area was concerned, was 

probabilistically equivalent to the assisting area. However, we 

assumed that the transmission interconnecting the two areas was 

perfectly reliable. This of course is not the case, so in this section, 

we show how to account for transmission unreliability.  

The approach is tedious, but conceptually straightforward. The 

idea is to just compute the LOLP for each transmission capacity 

state as if there exists transmission of that capacity that is perfectly 

reliable. Then the composite LOLP is the weighted sum of these 

individual LOLP’s where the weights are the transmission capacity 

state probabilities. Two examples will illustrate. 
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Example 3: Consider the example with a 10 MW capacity 

transmission line, except now assume it has an outage probability 

of .00815217 so that its availability is 1−.00815217=.99184783.  

There are 2 transmission capacity states: 0 and 10 MW with 

probabilities of .00815217 and .99184783, respectively.  

The LOLP for the 0 MW case is obtained based on single 

(unassisted) analysis of area A, which comes from Table U21.2. 

Here, we see that the cumulative probability of the 75-50=25 MW 

capacity outage state is .0200761. 

The LOLP for the 10 MW case is obtained based on Example 1 

where we found the LOLP to be .0023270. Therefore, 

LOLP=.00815217.0200761+.99184783.0023270=.0024716937 

The LOLP is a little larger than the case with perfect transmission 

and a great deal smaller than the case with no transmission at all. 

Example 4: Consider now the case of the two areas connected by 2 

tie lines on different right-of-ways, one of which is 10 MW 

capacity and the other is 5 MW capacity. The outage probabilities 

of each line are identical to the outage probability used in the 

previous example, i.e., .00815217 and .99184783.  

Because the lines are on different right-of-ways, they may not fail 

in a dependent or common mode fashion, so the line capacities and 

corresponding probabilities are given by as in Table U21.9. 

Table U21.9: Transmission line capacity probabilities 

Capacity Probability 

0 .00006646 

5 .00808571 

10 .00808571 

15 .98376212 
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We have already found the LOLP for the 0, 10, and 15 MW 

capacity cases, and they were .0200761, .0023270, and .00066563, 

respectively. Therefore we need only find the LOLP for the 5 MW 

case.  

Following step 2-a, we require the Area B capacity outage table 

with all states having Area B capacity outage equal to or exceeding 

the reserve, as given in Table U21.3, repeated below for 

convenience.  

Cap out (MW) State prob 

0 .9039208 

10 .0737894 

20 .0222898 

Following step 2-b, we need to merge the states for which the Area 

B capacity outage is less than or equal to the Area B reserve less 

the transmission capacity, which in this case, is 20-5=15. So we 

merge the two top states in the above table, resulting in the 

following capacity outage table, identical to Table U21.4. 

Cap out (MW) State prob 

0 .9777102 

20 .0222898 

Now, however, we need to adjust the maximum capacity outage 

value from 20 to 5 MW, to reflect that we have a probability of 

.9777102 of having 5 MW assistance and .0222898 of having 0 

MW assistance, resulting in the EAU capacity outage data of Table 

U21.10.  
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Table U21.10: EAU capacity outage data for example 

Cap out (MW) State prob 

0 .9777102 

5 .0222898 

This capacity outage table is convolved into that of Area A (given 

by Table U21.2), resulting in Table U21.11. 

Table U21.11: Area A modified capacity outage probability table 

State Cap out (MW) State prob Cum prob 

1 0 .8661000 1.0 

2 5 .0197450 .1339000 

3 10 .0883770 .1141600 

4 15 .0020148 .0257800 

5 20 .0036073 .0237650 

6 25 .0177580 .0201580 

7 30 .0004766 .0024006 

8 35 .0018053 .0019240 

9 40 .0000419 .0001187 

10 45 .0000736 .0000768 

11 50 .0000017 .0000032 

12 55 .0000015 .0000015 

13 60 .00000003 .00000003 
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The installed capacity following convolution of the 5 MW EAU 

75+5=80. The load of Area A is 50; therefore loss of load occurs 

when the capacity outage in Area A equals or exceeds a 

reserve=80-50=30. The cumulative probability for a capacity 

outage of 30 is read from Table U21.11 as LOLP=.0024006.  

The composite LOLP is then given by: 

LOLP=.0200761.00006646+.0024006.00808571 

          +.0023270.00808571+.00066563.98376212=.00069438 

U21.5 Effect of contractual agreements 

The section is adapted from [9].  

Consider the situation where Areas A and B agree that Area B will 

provide firm capacity to Area A of z MW (of course, at a price). 

This means that Area B is guaranteeing that Area A receive z MW 

of capacity. The guarantee may come with or without conditions 

on transmission. 

U21.5.1 Without conditions on transmission 

If the guarantee is made without conditions on transmission, then it 

means that the capacity is perfectly reliable. From Area A’s point 

of view, this simply appears as an increase in its installed capacity 

by an amount equal to z. 

Example 5: Consider Example 1, where we had a perfectly reliable 

transmission line of capacity 10 MW. We found that the Area B 

EAU had a probability of delivering at 0 MW capacity outage of 

.9777102, and that there is 1-.9777103=.0222898 probability of 

delivering at 10 MW capacity outage (see Table U21.5), implying 

that there is about a 2.2% chance that Area B cannot deliver the 

assistance (disregarding transmission unreliability). 

When the Area B EAU capacity outage table was convolved into 

the capacity outage table of Area A, Table U21.6 resulted. Then, 

with an Area A load of 50 MW, loss of load occurs when the 
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capacity outage in Area A is greater than the reserve of 85-50=35 

MW, and the cumulative probability for a capacity outage of 35 

MW is read from Table U21.6 as LOLP=.0023270. 

However, in the case that Area B is willing to take all of the risk 

and guarantee the 10 MW of capacity, then Area A uses the 

original capacity outage table of Table U21.2 (without the Area B 

EAU capacity outage table convolved in), and simply increases the 

installed capacity from 75 MW to 85 MW. Again, loss of load 

occurs when the capacity outage in Area A is greater than the 

reserve of 85-50=35 MW, and the cumulative probability for a 

capacity outage of 35 MW is read from Table U21.2 as 

LOLP=.0019224. Note the improvement from the 

LOLP=.0023270 when we account for Area B unreliability. Of 

course, the contract does not change the unreliability of Area B; it 

simply requires that Area B take the risk by, for example, cutting 

its own load or paying penalties to Area A in the event it not be 

able to deliver the 10 MW. Whether Area B wants to sign such a 

contract depends on how much Area A is willing to pay for the 

additional capacity. Note that, without any assistance capacity, 

Area A’s LOLP, evaluated at the capacity outage of 25 MW is 

.0200761, so the assistance capacity provides an order of 

magnitude improvement in LOLP. 

U21.5.2 With conditions on transmission 

If the guarantee is made contingent upon there being sufficient 

transmission, then it means that Area B is only guaranteeing that it 

will always have reserve equal to at least the contracted capacity. 

The Area B EAU can then be formed as a two-state capacity 

outage table having probability 1.0 capacity outage of 0 and 

probability 0 of capacity outage of the contracted capacity. Then 

we account for the transmission unreliability as in Section U21.4, 

where we  
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1. compute the LOLP for each transmission capacity state as if 

there exists transmission of that capacity that is perfectly 

reliable, and 

2. Compute the composite LOLP as the weighted sum of the 

individual LOLP’s where the weights are the transmission 

capacity state probabilities. 

An example will illustrate. 

Example 6: Now consider the case where Area B guarantees only 

the reserve of 10 MW but not the transmission capacity. It will 

have to cut its own load or pay a penalty if it does not have the 

capacity, but Area A accepts the risk brought on by unreliability in 

transmission capacity. The question is, in this case, what reliability 

level does Area A see?  

Consider Example 3, with a 10 MW capacity transmission line, 

and an outage probability of .00815217 so that its availability is 

1−.00815217=.99184783.  

Therefore there are 2 transmission capacity states: 0 and 10 MW 

with probabilities of .00815217 and .99184783, respectively.  

The LOLP for the 0 MW case is obtained based on single 

(unassisted) analysis of area A, which comes from Table U21.2. 

Here, we see that the cumulative probability of the 75-50=25 MW 

capacity outage state is .0200761. 

The LOLP for the 10 MW case is obtained similarly to Example 1 

where we used Table U21.5 as the Area B EAU capacity outage 

table for repeated below for convenience. 

 

 

 

 

Cap out (MW) State prob 

0 .9777102 

10 .0222898 
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Now, however, Area B is guaranteeing the reserve, therefore we 

will use the following capacity outage table: 

 

 

 

 

So now we convolve in this Area B EAU capacity outage table to 

the Area A capacity outage data of Table U21.2. This is equivalent 

to increasing the installed capacity of Area A by 10 MW. The 

resulting LOLP is read from Table U21.2 as .0019224 

(corresponding to capacity outage of 35 MW). Therefore 

LOLP=.00815217.0200761+.99184783.0019224=.002070392. 

U21.6 Evaluation approach for three-area system 

We have so far described and illustrated reliability analysis for 

two-area systems, the most basic of the multi-area situations, and 

one with wide applicability. However, one would be interested in 

knowing whether the concepts have more general applicability. In 

this section, we extend our approaches to the three-area situation.  

U21.6.1 Radial interconnected three area systems 

Figure U21.6 illustrates three areas interconnected radially.  

 

Area A Area B Area C 

 

Fig. U21.6: Three areas interconnected radially 

There are 2 situations of interest, described in what follows. In 

both cases, we assume perfectly reliable but capacitated 

transmission. 

• Assistance to Area B: Here, we apply the two-area case twice. 

The steps are as follows: 

Cap out (MW) State prob 

0 1.0 

10 0.0 
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1. Obtain the EAU capacity outage tables for the assisting areas 

A and C.  

2. Convolve the Area B EAU capacity outage table with the 

Area A capacity outage table. Denote the new capacity 

outage table as A’.  

3. Convolve the Area C EAU capacity outage table with the 

Area A’ capacity outage table. Denote the new capacity 

outage table as A’’. 

4. The LOLP is obtained by reading from the capacity outage 

table A’’ the cumulative probability corresponding to the 

capacity outage of installed capacity less the load. 

Note that the order in which one convolves in the EAU capacity 

outage table does not matter in this case, i.e., one could either 

convolve in the Area B EAU and then the Area C EAU or one 

could convolve in the Area C EAU and then the Area B EAU. 

The answer would be the same in either case. 

• Assistance to Area A: We again apply the two-area case twice. 

1. Obtain the EAU capacity outage table for the assisting area 

C.  

2. Convolve the Area C EAU capacity outage table with the 

Area B capacity outage table. Denote the new capacity 

outage table as B’.  

3. Obtain the EAU capacity outage table for the assisting area B 

from the capacity outage table B’. 

4. Convolve the EAU capacity outage table for Area B with the 

Area A capacity outage table. Denote the new capacity 

outage table as A’. 

5. The LOLP is obtained by reading from the capacity outage 

table A’ the cumulative probability corresponding to the 

capacity outage of installed capacity less the load. 
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We do not address the situation of assistance to Area C since this is 

just like the case of assistance to Area A. 

In either of the above cases, if transmission is not perfectly 

reliable, then all possible transmission states must be identified and 

the method repeated for each state. The composite LOLP is then 

the weighted average of LOLPs for all transmission states where 

the weights are the transmission state probabilities.  

The difficulty of this approach for the case of unreliable 

transmission is that there could be several transmission states. 

Reference to Fig. U21.6 reveals that, minimally, there would be 4 

states (assuming 2-state models for both the A-B and the B-C 

transmission, implying AB and BC have only 1 transmission 

circuit each). These 4 states would be (AB up, BC up), (AB up, BC 

down), (AB down, BC up), (AB down, BC down). LOLP would 

therefore need to be computed 4 times, one for each of these states. 

There could be more states depending on how many transmission 

circuits comprise the AB and BC connections.  

U21.6.2 Networked interconnected three area systems 

Figure U21.7 illustrates three networked interconnected areas. 

 

T3 T2 

T1 Area A Area B 

Area C 

 

Fig. U21.6: Three networked interconnected areas 

This situation is quite difficult to handle using our present 

techniques because of the following reasons: 

1. Two transmission paths: Each area can assist another area over 

2 possible paths, the direct connection to the assisted area and 

the connection through the third area to the assisted area. This 

presents two basic problems. 
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a. Controlled flows: Here, we assume that each area may 

specify the amount of assistance flowing over a particular 

path. Although this is the simplest case, we see that it is 

probabilistically complex, as the amount of assistance over 

a transmission path depends not only on the reserve in the 

assisting area and the path’s transmission capacity but also 

the extent to which the other area is using that path. 

b. Uncontrolled flows: Here, we must recognize that, unless 

special flow-control devices (FACTS devices) are 

available, it is not possible to assign a particular amount of 

assistance to a specific transmission path since Kirchoff’s 

laws dictate that any assistance from one area to another 

will actually divide and flow along both paths. This is 

called loop flow. As a result, any assistance will utilize 

transmission capacity in all three paths. 

2. Contractual agreements: 

a. On reserve: There are numerous possible agreements that 

bear on the problem. If only one area is deficit, then that 

deficit area gets as much assistance as it needs, (up to what 

is available of course) from the other two areas. However, 

the issue is not so clear if there are two deficit areas. For 

example, if Area A and Area C are both supply-deficit, 

how do they share the Area B assistance? Area A may 

have priority over Area C such that Area C only receives 

assistance when Area A’s needs are met. Or Areas A and 

C may share Area B’s assistance according to some 

specified proportion. 

b. On transmission: Transmission agreements need to be 

consistent with reserve agreements so that transmission 

contracts do not constrain assistance levels beyond that of 

the reserve agreements. This is generally possible if the 

transmission and generation are owned by the same 

organization, but if not, it can be quite complicated. 
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We will study a new method in the next section which addresses 

some of these issues. 

U21.7 Multiarea analysis by network flows 

The material in this section is adapted from [11] and [12]. Some 

publications illustrating the approach are in [13, 14, 15]. 

An area of systems engineering has grown from the numerous 

systems that can be thought of in terms of physical movement 

within a network. Such systems include 

• Transportation systems, e.g., bus, rail, airlines, shipping. 

• Communication systems, e.g., telephone and internet. 

• Energy systems, e.g., electricity, gas, coal, and water. 

One approach for analysis of such systems is generally referred to 

as “network flows.” We will find network flow theory to be useful 

in multiarea reliability analysis.  

U21.7.1 Preliminaries: some graph-theoretic definitions and concepts 

The essential notion on which a network flow problem is based is 

the graph. We define some related notation below. 

Graph: G(V,) consists of a set of elements called nodes, denoted 

V, and a set of pairs of elements called arc (or branches), denoted 

. G can be a directed graph, where flow on each arc may only 

occur in one direction, or G can be an undirected graph. G may 

also have both directed and undirected arcs. A particular node is 

denoted Vi. Each arc is denoted (i,j) if it is directed or [i,j] if it is 

undirected. A graph is another name for a network. 

Flow: With each arc (i,j) or [i,j], we associate a weight f(i,j) or 

f[i,j] which is called the flow of arc (i,j) or [i,j]. 

Capacity: With each arc we associate another weight c(i,j) or c[i,j] 

which is called the capacity of branch (i,j) or [i,j]. It represents the 

maximum flow that the branch can carry. 
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Source node: Each graph has a source node, denoted s, which 

produces all the flow that is flowing through the network. 

Sink node: Each graph has a sink node, denoted t, which consumes 

all the flow that is flowing through the network. 

Flow pattern: The flow pattern is a set of flows associated with the 

branches in a graph and is denoted F. 

Feasible flow pattern: Define fs,t as the total flow between s and t. 

Then a flow pattern F is said to be feasible if it satisfies: 

Directed graph: 
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Undirected graph: 
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In the above, V represents all nodes in the graph. Therefore, the 

above represents the conservation of flow at each node. For 

example, in the below figure, we may have 

    f[5,V]-f[V,5]= 

    [ f(5,6)+f(5,7)+f(5,8) ] - [ f(2,5)+f(3,5)+f(4,5) ]  

=  [   1     +   1    +   4    ] - [  2      +  3    +  1       ]  = 0 
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Sets of branches: Let A and B be sets of nodes contained in V, i.e., 

AV and BV. Denote the set of all branches which are incident 

out of (connected from) a node in A and incident into (connected 

to) a node in B. That is, 

 BVAVjiBA ji =   ,|),(),(   (U21.6) 

Set theoretic complement: Denoting a subset V1 of nodes of 

G(V,), the set theoretic complement of V1 in V is denoted by 
1

V  

and defined by VVV =
11

. 

Cut: Combining the last two definitions, we define that for any 

V1V, the set of branches identified by ),(
11

VV  is a cut. In this 

definition, remember that 
1

V  and 
1

V  represent sets of nodes, not sets 

of branches, and that ),(
11

VV  therefore represents a certain group of 

branches that connects a node in the node-set 
1

V  with a node in the 

complementary node-set 
1

V . Figure U21.7a illustrates a cut, where 

1
V ={1,2,3,4} and 

1
V ={5,6}, such that ),(

11
VV ={[4,5], [3,5], [4,6]}. 

i=s i=t 

i=5 
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8 
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Fig. U21.7a: Illustration of a cut 

s-t cut1: An s-t cut is a cut ),(
11

VV  where sV1 and t
1

V . We will 

denote the Kth s-t cut as 
K

ts
A

,
. 

Capacity of a cut: The capacity of a cut, denoted by ),(
11

VVc  or 

],[
11

VVc , is the maximum total flow that may cross the cut when 

connected in the graph. It is given by: 

 Directed graph: 

=
 )1,1(),(

11
),(),(

VVji
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Undirected graph: 

=
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11
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VVji
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Minimal cut: The minimal cut is the cut with the smallest capacity. 

MaxFlow-MinCut theorem:  This theorem, developed by Ford and 

Fulkerson [16], is the basis for determining the maximal flow from 

source to sink within a network. In words, the theorem says that 

the maximal flow from source to sink in any network is equal to the 

capacity of the minimal s-t cut. Mathematically, the theorem is: 

 

1 This definition of an s-t cut is similar to the definition (given in Module U15) of a cutset, which was, “A cutset K is a 

set of components whose failure results in system failure. The removal of the corresponding set of blocks in the logic 

diagram interrupts the continuity between the input and output of the diagram [1]. Removal of all components in any 

cutset ‘disconnects’ the ‘input’ from the ‘output’ in the logical diagram.” 
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This theorem enables a max-flow calculation.  

We use an analogy to gain physical intuition related to this 

theorem. Imagine a sequence of piping stages from an originating 

pool of water, identified as “s”, to a destination pool of water, 

identified as “t”. The stages are in series, but each stage has several 

pipes in parallel; each pipe has its own unique capacity. An s-t cut 

is an interruption of all pipes in a given stage. The minimal s-t cut 

is the s-t cut which interrupts the least capacity. The maximum 

flow through the system is the capacity of the minimal s-t cut. Fig. 

U21.7b illustrates where we observe that stage 2 is the minimal s-t 

cut, and it is the “bottleneck” that determines the maximum flow 

through the system.  

 

Fig. U21.7b: Illustration of minimal s-t cut 

We now provide a preview of how we will use our ability to 

compute a max-flow calculation: 

Problem set-up: All of the arcs connected to node s represent 

generation, all of the arcs connected to node t represent load, and 

what is flowing from s to t is power. A “state” is a capacity 

designation for all arcs. There are two observations at this point: 

• We normally associate generation and load with nodes; in this 

case, we are associating them with arcs (or branches). 

• The “s” and “t” nodes do not correspond to any physical node; 

they are simply endpoints of the generation and load arcs, 

respectively. 

s t 

stage 1 

Water Flow➔ 

stage 2 stage 3 stage 4 

Min s-t cut 
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Objective: Identify all “success” and “failure” states (and their 

probabilities).  

Fact 1: We will see that it is easy to compute the max flow. 

Fact 2: The max flow is a “success” state if the flows in the load 

arcs are at their capacities. 

A part of the idea: Pick the highest capacity state and compute a 

max flow (note the max flow will not necessarily use all capacity 

of all arcs). If this is a success state, then the capacity state 

corresponding to the max flow is a “success” state, and all states 

between this capacity state and the highest capacity state are 

“success” states.  

Between…? What does this mean? 

A (capacity) state S is between two states SL and SH if  

• S is not SL and S is not SH. 

• Each arc in S has capacity greater than or equal to its 

corresponding arc in SL 

• Each arc in S has capacity less than or equal to its 

corresponding arc in SH 

Let’s now go back to learning how to compute a max flow. We 

first see an example that illustrates the MaxFlow-MinCut theorem. 

Example 7: Determine the maximal flow of the network in Fig. 

U21.8. 

 

Cs2=3 C2t=4 

C3t=5 

C13=2 

Cs1=1 

5 

s 

1 

2 

3 

t 

 

Fig. U21.8: Example to illustrate maximal flow calculation 
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The s-t cuts for the network of Fig. U21.8, their node sets, their 

complementary node-sets, and their capacities, are listed in Table 

U21.12. 

Table U21.12: Summary of s-t cuts for example 

s-t cut
K

ts
A

,
 Node-set 

1
V  Node-set 

1
V  s-t cut-capacity 

),()(
11,

VVcAc K

ts
=  

1

,ts
A  (s) (1,2,3,t) 4 

2

,ts
A  (s,1) (2,3,t) 5 

3

,ts
A  (s,1,3) (2,t) 8 

4

,ts
A  (s,1,2) (3,t) 6 

5

,ts
A  (s,1,2,3) (t) 9 

6

,ts
A  (s,2) (1,3,t) 5 

From Table U21.12, we see that the minimal cut, and therefore the 

maximal flow, is 4. 

One observation is that this approach adheres to Kirchhoff’s first 

law (sum of flows into a node must be zero), otherwise known as 

flow conservation, but not Kirchhoff’s second law (KVL - sum of 

voltages around a closed loop must be zero). One must be aware of 

this approximation when applying network flow theory to power 

grids. Solutions obtained this way satisfy necessary, but not 

sufficient conditions that the load will be supplied. Sufficient 

conditions would need to compute flows using a power flow to 

impose KVL. The issue is our modeling of lines.  
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• Whereas our network flow formulation models lines as 

“pipes” so that, except for nodal power balance, flows on 

lines are independent of each other, 

• the power flow accounts for the effects of impedances. 

We need to be able to articulate an algorithm for identifying the 

maximal flow. We present such an algorithm in what follows. But 

first, we need three more definitions. 

Path: A sequence of branches starting at the source node and 

ending at the sink node such that no node is visited more than 

once. 

Forward and backwards arcs: A directed arc (i,j) in a path is a 

forward arc if in traversing from s to t, i comes before j; otherwise 

it is a backwards arc in the path.  

Flow augmentation path: For a given flow pattern F, a flow 

augmentation path is a path (i.e., from source to sink) for which 

there exists unused capacity. 

The max-flow (also called Ford-Fulkerson) algorithm follows: 

1. Initialization: Initialize the graph with a feasible flow (capacity 

restrictions and flow conservation must be satisfied). One flow 

that is always feasible is 0 flow on all branches. 

2. Labeling: Use the labeling routine to find a flow augmentation 

path (i.e., a path (from s to t) for which flow may be increased). 

The labeling routine is: 

a. Starting with s, node j can be labeled if a positive flow can 

be sent from s to j. If no node can be labeled, proceed to 

step 5. 

b. Find a node to label. From node j, any node i can be 

labeled if: 

• the j to i arc is a forward arc and flow in this arc is less 

than its capacity. 
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• the j to i arc is a backward arc and flow in this arc is 

greater than zero. 

c. Three things may happen at this point. 

• A node i is found such that it. Repeat step b. 

• No node i can be labeled. This means that no 

augmentation path can be found through node j. 

Proceed to step 4. 

• Node i is found such that i=t. We have found an 

augmentation path and should proceed to step 3. 

3. Augmentation:  

a. Identify the maximal flow increase  that can be sent 

along the augmentation path identified in step 2. 

b. Augment flow on all arcs in the augmentation path by . 

Forward arc flows are increased. Backward arc flows are 

decreased. Undirected arc flows are increased if the flow 

augmentation is in the same direction as the original flow. 

Undirected arc flows are decreased if the flow 

augmentation is in the opposite direction as the original 

flow. 

4. Repeat: Go to step 2. 

5. Stop: The maximal flow is the flow out of the source node (or 

into the sink node) resulting from the last augmentation path 

found. 

We repeat Example 7 but this time we use the algorithm. 

Example 8: Figure U21.9 shows the initialized graph of Fig. 

U21.8. Numbers in parentheses indicate (capacity, flow). All arcs 

are undirected. 
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Fig. U21.9: Example to illustrate maximal flow calculation 

Application of step 2 (labeling) to the network of Fig. U21.9 

results in the augmentation path illustrated in Fig. U21.10. 
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Fig. U21.10: Results of first step 2 iteration 

Application of step 3 (augmentation) to the network of Fig. U21.10 

results in the network of Fig. U21.11. 

 

f=3 

(3,3) (4,3) 

(5,0) 

(2,0) 

(1,0) s 

1 

2 

3 

t 

f=3 

 

Fig. U21.11: Results of first step 3 iteration 
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We now apply step 2 again (labeling), this time to the network of 

Fig. U21.11, resulting in the augmentation path of Fig. U21.12. 
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Fig. U21.12: Results of second step 2 iteration 

We now apply step 3 (augmentation) again, this time to the 

network of Fig. U21.12, resulting in the network of Fig. U21.13. 
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Fig. U21.13: Results of second step 3 iteration 

When we try to apply step 2 again, we find that, beginning with the 

source node s, we are unable to label any other node since all arcs 

leaving s are at capacity. So we go to step 5, where we terminate 

the algorithm, with the maximal flow recognized as 4. 

Example 9: Figure U21.14 shows another example. Use the 

algorithm to determine the maximal flow for this network for the 

case of: 

a. All arcs are undirected. The correct answer is 16. Try it! 
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b. All arcs are undirected except for [1,2] which may have 

flow only in the direction 1 to 2. The correct answer is 15. 
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Fig. U21.14: Example to illustrate maximal flow algorithm 

 

Below is the answer to part (b). This is taken from [12]. Notice that 

the nomenclature on the diagrams is (flow, capacity) instead of 

(capacity, flow) as we have used in previous examples. 

The two problems, (a) and (b), have different answers because of 

the last step below (called “Fig. 14”) where, with a directed arc in 

the center, we may reduce the flow on (1,2) to only 0, and thus 

take only capacity of the (1,n) arc to 7. With undirected arc in the 

center, we can push the flow on (1,2) to -1 (thus flowing +1 from 

node 2 to node 1) and thus take advantage of one more unit of 

capacity in (1,n) where it goes to 8. 
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(0,7) 
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Observe in the “Fig. 14” above that the capacity of the minimal cut 

is 7+0+8=15 and not 7+3+8=18. The implication is that the 

capacity of a directed arc contributes non-zero capacity only if it 

has flow.  

We think about this in 2 other ways:  

• A directed arc has two different capacities: 0 and c, so if the 

flow on a directed arc is zero, then its capacity is considered to 

be zero. 

• If we repeat the problem without the arc (1,2), the result of Fig. 

14 above is the same. 
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 U21.7.2 Representation of multiarea system as a network flow problem 

KEY IDEAS FOR THIS SECTION: 

• A power system with components (area generation, 

transmission between areas, and area load) can be 

represented as a network flow problem like we 

have studied above. Area generation, inter-area 

transmission, and areas loads are represented with 

arcs having capacity and flow. 

• We will utilize nomenclature where xj represents 

the capacity designation of component j, xj=1,…,N, 

e.g.,  xj=1 designates zero capacity, and  xj=N 

designates the maximum capacity. 

• Recall a “state” is a capacity designation for all 

arcs. A system state is represented by a vector  

x=(x1 x2 …xN) 

• We may identify whether a system state is a failure 

or success state by running a max flow on it. 

• We may obtain probabilities of a component’s 

capacity, and (under an independence assumption), 

we may obtain probabilities of a system state. 

 

The material in this subsection is adapted from [12]. 

Consider again the networked three area interconnected system 

illustrated in Fig. U21.6, repeated here for convenience, where we 

have changed the area designation from A, B, C to 1, 2, 3. 
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T3 T2 

T1 Area 1 Area 2 

Area 3 

 

Fig. U21.15: Three networked interconnected areas 

Assume the following data for this multiarea system: 

Area 1: installed capacity = 500 MW, Load=400 MW. 

Area 2 installed capacity=600 MW, Load=500 MW. 

Area 3 installed capacity=500 MW, Load=400 MW. 

Transmission capacity T1=T2=T3=100 MW. 

Problem: Determine whether the system with all components up is 

a loss of load state or not. This means that we want to determine 

whether a particular system state is a failure state or not. 

How can we represent this as a network flow problem? 

Represent all possible generation as originating from the source 

node and all possible load at the sink node. The other elements are 

represented as follows: 

• Generation arc: A directed arc from source node s to node i, 

with capacity c(s,i) represents a particular discrete capacity state 

for area i (these capacity states can be obtained from the 

capacity outage table for area i). Of course, these capacity states 

have their corresponding probabilities. 

• Transmission arc: An undirected arc between nodes i and j 

having capacity c(i,j) represents a particular discrete capacity 

state of the transmission between areas i and j. The transmission 

states also have their corresponding probabilities. 

• Load arcs: A directed arc between node i and the sink node t 

represents the load in area i. We will assume these loads to be 

fixed. 
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Note that generation and load are represented using directed arcs 

and transmission is represented using undirected arcs. This is a 

result of the fact that generation and load flow is in one direction 

only, whereas transmission flow can be in either direction. 

The particular state of interest for the three area system in Fig. 

U21.15 and the data provided (in terms of the generation capacity 

in each area, the transmission capacity in each area, and the load in 

each area) are represented using the network flow problem in Fig. 

U21.16, where values beside each arc represent (capacity, 

flow)/100. 

 

(1,0) 

(1,0) 

(5,0) 

(1,0) 

(6,0) 
f f 

(4,0) 

(5,0) 
(4,0) 

(5,0) 

t 

3 

2 

1 

s t 

 

Fig. U21.16: Example to illustrate maximal flow algorithm 

We can detect whether the state is failure or not by performing 

max-flow and then checking whether the max flow equals the sum 

of the load arc capacities. In this case, that would be 4+5+4=13.  

Fig. U21.17 provides a sequence of max-flow algorithm steps for 

the network flow problem of Fig. U21.16. The dark lines indicate 

the augmentation path at each step. 
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Fig. U21.17: Example to illustrate maximal flow algorithm 

Notice that our first three augmentation paths were intentionally 

chosen to force the load of each area to be served by generation in 

that area, if possible.  

However, the flow pattern for a particular max-flow problem is not 

unique (the max flow value itself is unique). This can be observed 

by repeating the above max-flow problem but choosing a different 

sequence of augmentation paths. Fig. U21.18 illustrates.  
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Fig. U21.18: Example to illustrate maximal flow algorithm 
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Fig. U21.18: (Continued from previous page) 

In the case of Fig. U21.18, the max-flow is still 13 but the final 

flow pattern has Area 2 assisting Area 3. 

In any case, we have determined that the system state 

corresponding to all components in service is not a failure state. 

If each area has only a single 2-state unit (up or down) and if each 

transmission circuit between areas is represented as a 2-state 

component (up or down), then we have a total of 6 components, 

each with 2 possible states. Therefore the total number of (system) 

states to evaluate is 26=64 states.  

To obtain the system LOLP, then, we must determine whether each 

state is a failure state or not. A straightforward enumeration 

approach would be to perform a max-flow calculation for each and 

every state and then add the probabilities corresponding to the 

states where the max-flow did not reach the total load. This is 

probably do-able for a 64 state system.  
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But let’s consider a slightly more realistic situation where the 

installed capacity of each area is actually comprised of multiple 

units. We would then need to use our convolution technique to 

identify each capacity (or capacity outage) level for each area. In 

this case, the total number of system states can be very large, even 

for a three area system.   

For example, consider characterizing our 3-area system using the 

data of Table U21.13. This data was generated using 100 MW 

generator units, each with availabilities of 0.8 (FOR=0.2). Note 

that it is a capacity table (rather than a capacity outage table). The 

data for each area in this table was generated by convolving the 

vector (0.8, 0.2) a number of times equal to the number of units in 

each area. 

Table U21.13: Generation data for 3-area system 

Area 1 Area 2 Area 3 

Cap Prob Cap Prob Cap Prob 

  600 .262140   

500 .32768 500 .393220 500 .32768 

400 .40960 400 .245760 400 .40960 

300 .20480 300 .081920 300 .20480 

200 .05120 200 .015360 200 .05120 

100 .00640 100 .001536 100 .00640 

0 .00032 0 .000064 0 .00032 

Each of the three transmission lines have availabilities of 0.99 

(FOR=0.01).  
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Possible capacities for the various arcs in our network are given in 

Table U21.14. We have also identified each arc capacity with a 

number.  

Table U21.14: Possible capacities of each arc & capacity 

designations 

capacity 

designations, 

xj 

Possible capacities for each arc j 

j=1 j=2 j=3 j=4 j=5 j=6 

7  600     

6 500 500 500    

5 400 400 400    

4 300 300 300    

3 200 200 200    

2 100 100 100 100 100 100 

1 0 0 0 0 0 0 

So we can see from Table U21.14 that (read “➔” as “indicates that”): 

x2=7➔C2=600. 

x1=6➔C1=500; x2=6➔C2=500; x3=6➔C3=500;  

x1=5➔C1=400; x2=5➔C2=400; x3=5➔C3=400; 

x1=4➔C1=300; x2=4➔C2=300; x3=4➔C3=300; 

x1=3➔C1=200; x2=3➔C2=200; x3=3➔C3=200; 

x1=2➔C1=100; x2=2➔C2=100; x3=2➔C3=100; x4=2➔C4=100;  

  x5=2➔C5=100; x6=2➔C6=100; 

x1=1➔C1=0; x2=1➔C2=0; x3=1➔C3=0; x4=1➔C4=0;  

  x5=1➔C5=0; x6=1➔C6=0; 
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We may also tabulate the cumulative probabilities, which are 

Pr[Xj<xj] for each arc j and each value it may take. For example,  

2627.000032.00064.005120.02048.0]4Pr[]5Pr[ 11 =+++== XX

which come from Table U21.13 above. 

These cumulative probabilities are given in Table U21.15 and will 

prove helpful (in our treatment of decomposition) in computing 

state probabilities. 

Table U21.15: Cumulative probabilities for each capacity 

designation of each arc 

capacity 

designations, 

xj 

Cumulative probabilities for each arc j 

j=1 j=2 j=3 j=4 j=5 j=6 

7  1.0     

6 1.0 .737860 1.0    

5 .67232 .344640 .67232    

4 .26272 .098880 .26272    

3 .05792 .016960 .05792    

2 .00672 .001600 .00672 1.0 1.0 1.0 

1 .00032 .000064 .00032 .01 .01 .01 

 

The capacity designations of Table U21.14 allow us to define the 

system state, x as  

]     [ 654321 xxxxxxx =  

For example, the system state corresponding to maximum capacity 

of all elements would be 
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]2   2   2   6   7   6[=x  

which also happens to indicate the number of possible values for 

each arc, from which we can identify that there are 

676222=2016 system states.  

How do we obtain the probability of a particular system state? 

Assuming that the capacity of the set i of elements is independent 

of the capacity of the set j of elements, the probability of a 

particular state is given by: 

=
=

n

j
j

xx
1

)Pr()Pr(   (U21.9) 

For example, the probability of the state corresponding to 

maximum capacity x=[6  7  6  2  2  2] is given by: 

02731149.0          

99.099.099.03277.02621.03277.0          

99.099.099.08.08.08.0          

)Pr()Pr()Pr()Pr()Pr()Pr()Pr(

565

654321

=

=

=

= xxxxxxx

This indicates it is not very likely that at any given moment, we 

will find all of the components up in this system! Systems with a 

large number of not-very reliable components are always like this 

(the 16 generators have availabilities of only 80%).  

On the other hand, the probability of the state corresponding to 

minimum capacity x=[1  1  1  1  1  1] is given by: 

18

565

654321

105536.6          

01.001.001.000032.0000064.000032.0          

01.001.001.02.02.02.0          

)Pr()Pr()Pr()Pr()Pr()Pr()Pr(

−=

=

=

= xxxxxxx
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and so we see that it is extremely unlikely that at any given 

moment, we will find all of the components down in this system. 

Notice that the above calculations are according to the binomial 

distribution, as given in Module U10, according to: 

)()1(
)!(!

!
],,Pr[ rnr

rX pp
rnr

n
pnrXP −

= −
−

===
  (U21.10) 

for r failures out of n components where each component has 

failure probability of p. 

Just to illustrate, we use the binomial distribution to compute the 

probability of a general state, say, x=[2  4  6  1  2  2], according to: 

6

5334

654321

106838.1          

99.099.001.03277.00819.00064.0          

99.099.001.08.0)8)(.2(.20)8)(.2(.5          

)Pr()Pr()Pr()Pr()Pr()Pr()Pr(

−=

=

=

= xxxxxxx

 

Note that the convolution technique used to generate Table U21.13 

is a more general way to get the individual probabilities Pr[xj] used 

in the above calculations (the binomial distribution only works 

when all components have the same failure probability). 

We define the states corresponding to the maximum and minimum 

capacities as M and m, respectively, i.e.,  

M=[6  7  6  2  2  2] and m=[1  1  1  1  1  1] 

We may then enumerate all 2016 states from the minimum state to 

the maximum state as follows: 

State 1:  m= [1  1  1  1  1  1]   

State 2:   [2  1  1  1  1  1]   

State 3:  [2  2  1  1  1  1]    

  … 

State n: M= [6  7  6  2  2  2] 
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It is clear that we can obtain the probability for any particular 

system state that we like. This fact motivates the following 

algorithm for computing loss of load probability. 

LOLP=0 

For i=1,n, 

Perform max flow for state i 

If failed state, LOLP=LOLP+Pr(state i) 

End 

However, it is obviously extremely computationally intensive, 

since we must perform a max-flow computation for every single 

state. We refer to this approach as “enumeration.” Clearly, we need 

a better way! 

There are 3 alternatives to enumeration, as follows: 

1. Decomposition: This method treats groups of states rather than 

individual states by decomposing the states into sets. 

2. Monte-Carlo Simulation: Here, states are sampled from the 

state-space and indices are computed by statistical inference. 

3. Hybrid: Here, a combination of decomposition and simulation 

methods are employed, leading to the so-called decomposition-

simulation approach. 

We will discuss only the decomposition approach. 
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U21.7.3 The decomposition approach 

KEY IDEAS FOR THIS SECTION: 

• A-sets: A set of acceptable states can be identified 

as all states between  

o the state where all arc capacities are set to the 

max flow level of a success state, and 

o the maximum state. 

This set may be identified with one max flow 

calculation. 

• Probability of an identified set of states can be 

efficiently computed using cumulative probabilities 

for each component. 

• L-sets: A set of failure states may be identified as 

all states between 

o the minimum state and 

o the state where all components are at 

maximum capacity except one, and the 

capacity of that one is just below the capacity 

that is required for success. 

This set may be identified with one max flow 

calculation. 

• U-sets: Sets not identified as acceptable or failure 

sets are unidentified sets. We can further 

decompose unidentified sets in A-sets and L-sets. 
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The material in this subsection is adapted from [12], which was 

motivated by [17].  

The decomposition approach proceeds by dividing all of the states 

into sets of three different types, described as follows: 

• Sets of acceptable states, Ak: These sets consist of states that 

have the load satisfied in every area. 

• Sets of system loss of load states, Lk: These sets consist of states 

that have at least one area experiencing loss of load (also called 

unacceptable states). 

• Sets of unclassified states, Uk: The states in these sets have not 

been classified into acceptable or unacceptable states. 

Initially, of course, all states are unclassified and therefore are 

contained in Set U. The approach is to decompose this initial set 

into A, L, and U subsets, and then repeat the procedure on the 

remaining U subset until a desired level of decomposition is 

achieved. 

Consider an unclassified set S consisting of states {x1, x2,…} [note 

that x1 denotes “state 1” whereas x1 (without underline) denotes 

“the capacity designation of arc 1”] defined by a maximum state M 

and a minimum state m such that 

S={xi : m  xi  M}    (U21.11) 

The notion of what it means for one set to be less than or equal to 

another is similar to the notion of “between,” but we will provide 

some more clarification. The above means that, for all j,  

• the jth element of m must be less than or equal to the jth element 

of xi, and  

• the jth element of xi must be less than or equal to the jth element 

of M. 

Mathematically, we say that: 

m  xi  M➔ mj  xij  Mj   j  (U21.12) 
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So if m=[1  1  1  1  1  1] and M=[6  7  6  2  2  2], then the set 

defined by S={xi : m  xi  M} 

• would include, for example,  

[1  1  1  1  1  1], 

[1  1  1  1  1  2],  

…, 

[6  7  6  2  2  1], 

[6  7  6  2  2  2] 

• but would not include, for example,  

[1  1  1  1  1  0] and 

[6  7  5  2  2  3] 

Using a simpler example, let’s assume the three transmission lines 

are assumed to be un-failable. Then their states are fixed to “2”. So 

if m=[1  1  1  2  2  2] and M=[2  2  2  2  2  2], then the set defined 

by S={xi : m  xi  M} 

• would include  

[1  1  1  2  2  2], 

[1  1  2  2  2  2],  

[1  2  1  2  2  2],  

[1  2  2  2  2  2],  

[2  1  1  2  2  2],  

[2  1  2  2  2  2],  

[2  2  1  2  2  2],  

[2  2  2  2  2  2],  

• but would not include, for example,  

[2  2  3  2  2  2] 
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We observe that in specifying S={xi : m  xi  M}, the ordering of 

the set is unimportant; rather, what is important is the satisfaction 

of the inequality: 

m  xi  M➔ mi  xij  Mi   j  (U21.12) 

i.e., that each element of m be less than or equal to each 

corresponding element of M. 

 

With this definition, we can describe the first step of the 

decomposition approach where we identify the A-set. 

Identification of the A-set 

Suppose we set all the arc capacities of the network model equal to 

the capacities in the max state and make a max flow calculation 

such that the max flow is equal to the sum of the area loads and is 

therefore an acceptable state (if the max state is unacceptable, then 

LOLP=1.0, i.e., there are no success states). Then the max state is 

obviously a success state, i.e., no area suffers loss of load. 

This information can be even more useful, however, if, in this max 

flow solution, we have arcs for which the flows are not at 

maximum capacity, because, for such arcs,  

• another acceptable state can be identified immediately as the 

one with each arc capacity reduced to the flow level of the max 

state max flow 

• and all states between this state and the max state are also 

acceptable. 

Let’s give some notation to this idea. Let fj(M) denote the flow 

through arc j for this max flow condition. Then a vector u can be 

so defined that its jth element is given by: 

uj=capacity designation of arc j that has capacity equal   

      to the flow through arc j, fj(M). 
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To illustrate, recall that Figure U21.17 gives the capacities and 

flows corresponding to the max state and max flow for our 

example system, repeated below for convenience: 
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Fig. U21.19: Max flows for max state 

Here, we observe that no generation or transmission arc flow is at 

maximum capacity, but rather f1[M]=4<5, f2[M]=5<6, f3[M]=4<5, 

f4[M]=0<1, f5[M]=0<1, and f6[M]=0<1. The capacity designations 

for these arcs corresponding to capacities equal to the flows are 

u1=5, u2=6, u3=5, u4=1, u5=1, u6=1, so that the vector u is: 

u=[5  6  5  1  1  1] 

If a state is such that capacities of all the arcs are equal or higher 

than the corresponding arcs in u, then that state will also be 

acceptable. Therefore all states between u and the max state 

constitute an A-set, that is,  

A={xi : u  xi  M}    (U21.13) 

More explicitly,  

A={xi : [5  6  5  1  1  1]  xi  [6  7  6  2  2  2]} 

There are, for each arc, two possible capacities. Therefore, the 

number of acceptable states in this A-set is 222222=64. 

Thus, we can see that by making one max-flow calculation, we 

have been able to classify 64 states as acceptable. In the 

straightforward enumeration scheme, this would have required 64 

max-flow calculations. So we made a considerable computational 
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savings. This is good progress, addressing 64/2016=3.2% of states, 

but we still have 2016-64=1952 states to evaluate. 

What about the total probability corresponding to this A-set. 

Clearly the brute-force approach is to simply compute the 

probability of each and every state in the set and then sum these 

state probabilities.  

However, a simpler approach results from observing that we want 

to obtain the joint probability of all six events designated by 

ujxijMj for j=1,…,6. If we assume these are independent events 

(which is reasonable for components that fail independently), then 

we have: 

Pr[A]=Pr[(u1xi1M1)(u2xi2M2)(u3xi3M3) 

     (u4xi4M4) (u5xi5M5)(u6xi6M6)] 

=Pr[u1xi1M1]Pr[u2xi2M2]Pr[u3xi3M3]Pr[u4xi4M4]            

Pr[u5xi5M5]Pr[u6xi6M6]=

6

1

Pr[ ]j ij j

j

u x M
=

    

(U21.14) 

Now what is Pr[ujxijMj]? This is nothing more than 

Pr[ujxijMj]=Pr[(xij=uj)… (xij=Mj)]=Pr[xij=uj]+…+Pr[xij=Mj] 

(U21.15) 

Substitution of (U21.15) into (U21.14) yields: 

 

6

1

6

1

Pr[ ] Pr[ ]

         Pr[ ] ... Pr[ ]

j ij j

j

ij j ij j

j

A u x M

x u x M

=

=

=  

= = + + =




 (U21.16) 

Thus, we see that to compute the probability of the A-set (or any 

specified range of sets), we first calculate the sum of probabilities 
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of all states between the max and min state for a given arc. Then 

we multiply these cumulated arc probabilities to find the set 

probability. In practice, the sum can be found more readily by 

taking the difference in the cumulative probabilities, i.e.,  

 
6

1

Pr[ ] Pr[ ] Pr[ ( 1)]ij j ij j

j

A x M x u
=

=  −  −   (U21.17) 

For our example problem, we have 6 arcs, so we must compute 6 

cumulated probabilities. Recalling that the A-set is specified by 

A={xj : [5  6  5  1  1  1]  xj  [6  7  6  2  2  2]} 

we see that: 

• The arc 1 cumulated probability is given by: 

Pr[xi1=5]+Pr[xi1=6] 

which are the probabilities of having 1 or 0 Area 1 gen-units out 

of service, respectively. Recall Table U21.15, repeated here for 

convenience.  

capacity 

designations, 

xj 

Cumulative probabilities for each arc j 

j=1 j=2 j=3 j=4 j=5 j=6 

7  1.0     

6 1.0 .737860 1.0    

5 .67232 .344640 .67232    

4 .26272 .098880 .26272    

3 .05792 .016960 .05792    

2 .00672 .001600 .00672 1.0 1.0 1.0 

1 .00032 .000064 .00032 .01 .01 .01 
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Using cumulative probabilities results in (from Table U21.15) 

Pr[xi1<6]-Pr[xi1<4]=1.0-.26272=.73728 

(Notice Pr[xi1<6]-Pr[xi1<4]=Pr[xi1=6,5,4,3,2,1]-Pr[xi1=4,3,2,1] 

=Pr[xi1=6,5]). 

Once again, recalling that the A-set is specified by 

A={xj : [5  6  5  1  1  1]  xj  [6  7  6  2  2  2]} 

then… 

• The arc 2 probabilities are: 

Pr[xi2=6]+Pr[xi2=7]=Pr[xi2<7]-Pr[xi2<5]=1.0-.34464=.65536 

• The arc 3 probabilities are: 

Pr[xi3=5]+Pr[xi3=6]=Pr[xi3<6]-Pr[xi3<4]=1.0-.26272=.73728 

• The arc 4 probabilities are: 

Pr[xi4=1]+Pr[xi4=2]=Pr[xi4<2]-Pr[xi4<0]=1.0-0=1.0 

• The arc 5 probabilities are: 

Pr[xi5=1]+Pr[xi5=2]=Pr[xi5<2]-Pr[xi5<0]=1.0-0=1.0 

• The arc 6 probabilities are: 

Pr[xi6=1]+Pr[xi6=2]=Pr[xi6<2]-Pr[xi6<0]=1.0-0=1.0 

The probability of the A-set then becomes: 

.73728.65536.737281.01.01.0=.356242 

With 1 max-flow calculation, although we only addressed 3.2% of 

states, we obtained knowledge of 35.6% of the probability space! 

Identification of the L-set 

Recall that an L-set is a set of failure states.  

The essential idea for identifying L-sets is as follows. For any 

particular component j, it may be possible to identify a capacity vj 

for which any lower capacity xij<vj necessarily results in loss of 

Attempt to tell you how we will proceed from here…we will 

approach the identification of the L-set in the following way: 

1. Essential idea 

2. What to do with it once you have it: probability calculation 

3. What to do with it once you have it: overlapping sets. 

1. Essential 

idea 

4. How to find an L-set? Concept 

5. How to find an L-set? Algorithm 

6. How to find an L-set? Picture. 

7. How to find an L-set? Underlying rationale. 

8. Example. 
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load, independent of the capacities of other arcs. If this is the case, 

then all states with xij<vj are members of the L-set. 

Therefore, if m and M are the minimum and maximum states, and 

if we can find v1 for component 1, then 





=


 −

=
1

1

321

321

1

1

V

V

mmmm

MMMv
L

n

n




  (U21.18) 

where the L1 set is comprised of all states between the lower state, 

denoted 1V , and the upper state, denoted 1V , i.e., 

L1={xi : 1V  xi  1V  }    (U21.19) 

The significance of this L1 set is, if arc 1 is between m1 and v1-1 

(inclusive), we have loss of load irrespective of other arc values.  

The probability of this L-set, Pr[L1], is computed in the same way 

that we computed the probability of the A-set from (U21.17), i.e., 

 1 11

1

Pr[ ] Pr[ ] Pr[ ( 1)]
n

j jij ij

j

L x V x V
=

=  −  −    (U21.20) 

Expanded, (U21.20) becomes, 

 

 

 

 

1 1 1 1 1

2 2 2 2

3 3 3 3

Pr[ ] Pr[ ( 1)] Pr[ ( 1)]

              Pr[ ] Pr[ ( 1)]

              Pr[ ] Pr[ ( 1)]

               

              Pr[ ] Pr[ ( 1)]

i i

i i

i i

in n in n

L x v x m

x M x m

x M x m

x M x m

=  − −  −

  −  −

  −  −

  −  −

 (U21.21) 

The 2nd probability in each term is 0 since no state may be <mj. 

A similar idea holds for the other arcs as well. For example, we 

need to find v2 such that there is no failure but if the system goes to 

the next lower state v2-1, there will be failure (loss of load). This 

also identifies an L-set. 

2. What to do 

with it once 

you have it: 

probability 

calculation. 
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

 −
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n

n
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Now this is a legitimate L-set, i.e., all states are loss of load states. 

However, there is overlap between L1 and L’2 that include the 

following states: 


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 −−

=
n

n

mmmm

MMvv
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

321

321

22

11
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It is easier to compute probabilities that we can use in the final 

LOLP calculation if we maintain disjoint (nonintersecting or 

nonoverlapping) L-sets. Therefore, we define the second L-set as: 



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=
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  (U21.24) 

where it is clear that component j=1 is constrained to take on only 

values that are outside of the L1 set. Therefore, this set is 

comprised of failed states that are not included in L1. 

The probability of this set is given similar to (U21.20): 

  −−=
=

n

j
jjjj

VxVxL
1

222
)]1(Pr[]Pr[]Pr[   (U21.25) 

Similarly, the third L-set is given by: 
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and its probability given by 

  −−=
=

n

j
jjjj

VxVxL
1

333
)]1(Pr[]Pr[]Pr[   (U21.27) 

3. What to do 

with it once 

you have it: 

overlapping 

sets. 
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In general, if there are n arcs, there will be n L-sets generated, and 

the kth set is given by: 


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An important question is, at this point: 

How to find vk, the capacity of the kth component such that 

there is no failure (loss of load) but if the system goes to the 

next lower state vk-1, there will be failure (loss of load)? 

The obvious approach is, beginning with the maximum state M, 

decrease the kth component capacity by 1, and run the max flow to 

see if the tested state is a failure state. If we repeat this over and 

over, we are guaranteed to identify vk, or, alternatively, to identify 

that changes to the kth component’s capacity cannot cause system 

failure. However, the computational cost of doing so is significant, 

since it requires that we run a max flow for every tested capacity of 

the kth component’s arc. 

Another method that would decrease this computational cost would 

be the so-called bisection approach where our first capacity tested 

is halfway between Mk and mk. If it is a failed state, then we test 

the one halfway between it and Mk. If it is not a failed state, then 

we test the one halfway between it and mk, continuing in this 

manner until we identify vk or until we identify that changes to the 

kth component’s capacity cannot cause system failure. 

Yet, there is a better method that only requires a single max flow. 

It is based on the following premise.  

Let arc k be connected from node i to node j.  

• If, in the max flow calculation of the maximum state, arc k 

carries flow fk to its terminating node j, and  

• if, without arc k, the network has ek residual capacity to carry 

flow from the source to that terminating node j,  

4. How to find 

an L-set? 

➔Concept. 
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• then the state with greatest capacity of arc k (and all other arcs 

at maximum capacity) that is a failure state is when arc k 

capacity is decreased by more than ek. 

The implication is that if the flow in arc k is reduced by ek, this 

much flow can be sent through the unused capacity of the 

remaining network without having system loss of load. Thus, vk 

(which indicates the capacity just higher than the capacity 

necessary for failure) corresponds to the state with capacity equal 

to or just greater than fk-ek. 

We summarize the steps for identifying vk as follows. Assume that 

arc k connects node i to node j. 

1. Set all states of the network to the maximum capacities of the U 

set being decomposed (initially, this would be M). 

2. Find the max flow using the max flow algorithm. 

3. If the max flow found is less than the total demand, then there is 

loss of load in at least one area; thus the entire set U is an L set. 

4. Identify vk as follows: 

a. Remove the kth arc. Retain(preserve) flows found in step 2 

on all other arcs by letting new capacities of all remaining 

arcs equal to their original capacities less their flows. In 

other words, let new arc capacities be the capacity 

remaining of each arc in the step 2 max flow. 

b. Find the maximum additional flow from node s to node j, 

or, equivalently, find the maximum flow from node s to 

node j with all arcs at their new capacities. This is done by 

simply identifying node j as the sink node and running the 

max-flow algorithm. Denote the maximum additional flow 

from node s to node j as ek. 

c. Identify the desired component k capacity designation 

such that the corresponding capacity is equal to or just 

greater than fk-ek. This is vk. Failure occurs for any 

component k capacity designation less than vk. 

This algorithm 

begins from the 

U set being 

decomposed. At 

the beginning, 

this “U-set” is 

the full set, and 

the “maximum 

capacities of the 

U set being 

decomposed” is 

M. 

As we have seen, the max 

flow solution is not 

unique. This means there 

is not a unique 

decomposition process, 

i.e., each max-flow 

solution can generate its 

own series of A, L, and U 

sets. I believe the final 

result will always be a 

unique set of A, L, and U 

sets. However, I have not 

proved this, nor have I 

been able to find a proof 

for this in the literature, 

though I have not 

tried/looked too hard. 

5. How to find 

an L-set? 

Algorithm. 
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The picture below illustrates (arc k is really internal to the bubble). 

 

j 

s 

i Arc k, fk j=t 

s 

i 

Max Flow on Orig NW Residual Flow on Modified NW 

t 
All arc capacities 

set to cj-fj 

ek 

Original NW 

 

The reason this works is as follows:  

• If, with arc k in the network, the max flow from s to t is F, with 

fk on arc k, and this is a success (all load arcs to t at capacity),  

• and if the max additional flow the network is capable of 

providing from s to j is ek (established by our max-flow s to j 

calculation with arc k out and other arc capacities adjusted),  

• then reducing arc k capacity below fk-ek must result in a max 

flow less than F (which is therefore a failed state), because the 

arc k capacity is below fk-ek, yet there is only ek capacity in the 

rest of the network. 

To illustrate using an example, recall that Figure U21.20 gives the 

capacities and flows corresponding to the max state for our 

example system, repeated below for convenience: 
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Fig. U21.20: Max flows for max state 

6. How to find 

an L-set? 

Picture. 

7. How to find 

an L-set? 

Underlying 

rationale. 

8. Example. 

Since a max flow 

is not unique, is it 

possible that 

reducing arc k 

capacity below  

fk-ek might still 

result in a max 

flow of F because 

the max flow 

algorithm 

discovers a 

different flow 

pattern? The 

answer is “no” but 

need to give 

explanation/proof. 
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Also, recall that m=[1  1  1  1  1  1] and M=[6  7  6  2  2  2]. Thus, 

by (U21.18), L1 is given by: 
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  (U21.29) 

Applying step 4 to find v1, we remove arc 1 (generation for Area 

1). Fig. U21.21 shows the network with arc 1 removed and other 

flows as in the solution to the max-state max-flow problem given 

in Fig. U21.20.  
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Fig. U21.21: Max flows for max state with arc 1 removed 

Fig. U21.22 shows the arc capacity values adjusted to the new 

values corresponding to the difference between the flows in the 

max-flow solution and the old capacities, i.e., the residual 

capacities. Note that all load arcs have zero capacity, and node 1 

(the terminating node for arc 1) is now modeled as the sink node. 
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Fig. U21.22: Network with arc 1 removed using residual capacities 

 

Applying the max-flow algorithm to the network of Fig. U21.22, 

we obtain the flows indicated in Fig. U21.23. 
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Fig. U21.23: Network with arc 1 removed using residual capacities 

Thus, we see that the residual capacity in the network is e1=2. Since 

from Fig. U21.20, the arc 1 flow in the max-state max flow condition 

was f1=4, we can conclude that with arc 1 capacity at    f1-e1=4-2=2, the 

state will be just acceptable (any additional capacity decrease in arc 1 

will result in a failure state). This means that v1 corresponds to the arc 1 

capacity of 2 (or 200 MW).  Reference to Table U21.14, repeated 

below for convenience, 

Table U21.14: Possible capacities of each arc & capacity designations 

capacity 

designations, xj 

Possible capacities for each arc j 

j=1 j=2 j=3 j=4 j=5 j=6 

7  600     

6 500 500 500    

5 400 400 400    

4 300 300 300    

3 200 200 200    

2 100 100 100 100 100 100 

1 0 0 0 0 0 0 
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indicates that the 200 MW capacity designation for arc 1 is 3, thus, 

v1=3. Therefore, (U21.18), repeated here for convenience, 
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is, in this case, 
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This is 2×7×6×2×2×2=672 states, which is 672/2016=33% of the 

states. 

Similarly, we may repeat the step 4 procedure for arcs 2 and 3, 

obtaining e2=2 and e3=2. It is unnecessary to repeat the procedure 

for arcs 4, 5, and 6 (the transmission arcs) since their flows in the 

max-state max flow are zero, implying that it is not possible to 

change their capacity in a way that will cause a failure state. 

Effectively, this means that the L-sets for these arcs, L4, L5, and L6, 

are empty. 

Since from Fig. U21.20, the arcs 2 and 3 flows in the max-state 

max flow condition were f2=5 and f3=4, we can conclude that with 

arcs 2 and 3 capacities at f2-e2=5-2=3 and f3-e3=4-2=2 in their 

respective states, these states will be just acceptable (any additional 

capacity decrease in arc 2 in its state or in arc 3 in its state will 

result in a failure state). This means that v2 corresponds to the arc 2 

capacity of 3 (or 300 MW) and v3 corresponds to the arc 3 capacity 

of 2 (or 200 MW).  

Reference to Table U21.14 indicates that the 300 MW capacity 

designation for arc 2 is 4, thus, v2=4. Therefore, (U21.21) is 
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This is 4×3×6×2×2×2=576 states or 576/2016=28.6% of the states. 

Note that the element corresponding to the component 1 in the 

lower state was set to v1 so as to maintain disjoint sets. 

Reference to Table U21.14 indicates that the 200 MW capacity 

designation for arc 3 is 3, thus v3=3. Therefore, (U21.26) is  
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This is 4×4×2×2×2×2=256 states or 256/2016=12.7% of the states. 

Now compute the probabilities. The probability of the L1 set is 

given by (U21.20) or (U21.21). Using the appropriate cumulative 

probabilities from Table U21.15, we find: 

  −−=
=

6

1
111

)]1(Pr[]Pr[]Pr[
j

jjjj
VxVxL  

 

 

 

 

 

 

           

00672.

0101010101000672.

  ]0Pr[]2Pr[              

]0Pr[]2Pr[              

]0Pr[]2Pr[              

]0Pr[]6Pr[              

]0Pr[]7Pr[              

]0Pr[]2Pr[             

66

55

44

33

22

11

=

−−−−−−=

−

−

−

−

−

−=

xx

xx

xx

xx

xx

xx

 

The probability of the L2 set is given by (U21.22). Using the 

appropriate cumulative probabilities from Table U21.15, we find: 
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The probability of the L3 set is given by (U21.27). Using the 

appropriate cumulative probabilities from Table U21.15, we find: 
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The total probability of the L-sets is given by  

Pr[L]=Pr[L1]+Pr[L2]+Pr[L3]=.00672+.016846+.00656164 

=.03012764 
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If we had no unclassified states, this would be the LOLP. 

However, the number of states identified so far for A, L1, L2, L3 is 

64, 672, 576, 256, respectively, for total of 1568 (1568/2016= 

77.8%), so there are 2016-1568=448 remaining; we need to check 

unclassified states. This is important because it provides us with an 

accuracy indication of using the total probability of the L-sets that 

have been identified so far as the LOLP.  

Recall the probabilities of the various sets A, L1, L2, and L3 are 

0.356242, 0.00672, 0.016846, and 0.00656164, respectively, for a 

total probability of 0.38636964, and so, although there are only 

448 states unclassified, those unclassified states comprise 1-

0.38636964=0.61363036 of the probability. 

Identification of the U-set 

We need to determine which states are unclassified. Recall that we 

have identified: 

• Acceptable (A) states as those between u and M. The basic 

criterion here, for an acceptable state, is to say that all arcs must 

be equal to or above their u-state capacity (the u-state is the one 

with each arc capacity reduced to the flow level of the max state 

max flow). 

• Loss of load (L) states as those between jV  and jV  for 

j=1,…,n. The basic criterion here, for a loss of load state, is to 

say that at least one arc must be below its v-state capacity (the 

v-state is the one with one arc k capacity equal to fj-ej, which is 

the amount just higher than the capacity necessary for failure). 

Thus, we can say that a state remains unclassified if: 

• At least one arc is below its u-state capacity and 

• All arcs are equal to or above their v-state capacity. 

With these criteria, we may immediately write down a set of 

unclassified states as: 
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Similarly, we may write down another one as 


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However, U’2 would not be disjoint with U1, i.e., the following 

states would be included in both sets: 
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As indicated in identifying L-states, this would create difficulties 

in computing the total probability of the unclassified states. 

Therefore, the second U-state should be: 
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The third U-state is: 
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In general, there will be n U-sets generated, with the kth U-set 

given by: 
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The probabilities are computed as usual. 

For our example, we have: 
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Total unclassified sets is  

U1: 2×4×4×2×2×2=256 states. U2: 2×2×4×2×2×2=128 states.  

U3: 2×2×2×2×2×2=64 states. Total is 448 states, which is the same 

the number of remaining states we obtained from adding up all the 

A-set states and the L-set states. 

 

ASIDE 

Here is a good question I once received: 

“I attempted a problem, however, I don't feel that I understand 

conceptually what I am being asked to compute.  Could you talk a little 

more about the analysis method that you went through on Monday today 

in class?  I think my question boils down to: 

if L1 = [2 7 6 2 2 2; 1 1 1 1 1 1] then  

why is U1 = [4 7 6 2 2 2; 3 4 3 1 1 1]?  

Shouldn't anything above  [2 7 6 2 2 2] be considered acceptable  

such as [3 7 6 2 2 2] and [4 7 6 2 2 2]?” 

SHORT ANSWER: L1 guarantees everything “between” [1 1 1 1 1 1] and [2 7 6 2 2 2] is 

failed, but it says nothing about something “above” [2 7 6 2 2 2] such as [3 7 6 2 2 2] and [4 7 6 2 2 2].  

The only guarantee on acceptable states comes from the A-set, which is 

A={xj : u  xj  M}={xj : [5  6  5  1  1  1]  xj  [6  7  6  2  2  2]} 

States “between” L-set upper bounds and A-set lower-bounds are unclassified. 
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LONG ANSWER:  

Remember that the criteria for an unclassified state includes: 

• At least one arc is below its u-state capacity 

A single vector gives the u-state capacities, from the A-set specification: 

A={xj : u  xj  M}={xj : [5  6  5  1  1  1]  xj  [6  7  6  2  2  2]} 

If just one element is below its u-state capacity, we cannot be certain the 

state is acceptable. The u-state capacity that the first unclassified set needs to 

be below is u1=5, i.e., u1-1=4. The remaining elements can be anything, 

because if element 1 is 4 or below, then it cannot be guaranteed to be within 

the acceptable set. Thus: 





=




=


 −

=
2226741

3211

1

321

321
1

nn

n

vvvvU

U

vvvv

MMMu
U




 

The criteria for an unclassified state also includes: 

• All arcs are equal to or above their v-state capacity. 

The v-state capacity for element j, vj, is found from Lj, which will have vj-1 

in column j. Thus, we inspect L1, L2, and L3 below (notice underlined 

numbers), and observe that  
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If all elements are above their v-state capacity, we cannot be certain that the 

state is failed. Since it is not possible to limit the transmission lines enough 

to definitely fail the system (independent of the other element states), we 

consider their v-states to be their minimum states 1. Therefore: 
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How did we 

find u-state? 

By setting 

capacities to 

the flows in 

the max flow 

solution! 

How did we 

find each 

component’s 

v-state 

capacity? By 

lowering 

each 

component’s 

capacity 

(with other 

components 

in max-state 

capacity) 

until we 

failed the 

system, then 

the v-state 

capacity is 

the next 

capacity up. 



Module PE.PAS.U21.5 Multiarea reliability analysis 84 

END ASIDE 

Note that U4, U5, and U6 would have all three arcs 1, 2, and 3 

above or equal to their u-capacities of u1, u2, and u3, respectively, 

according to (U21.34). Any states for which this is true have 

already been classified as acceptable, since the max-state max flow 

indicated 0 flow on arcs 4, 5, and 6. Therefore, U4, U5, and U6 are 

empty sets and we can obtain Pr[U] as the sum of probabilities of 

U1, U2, and U3. The appropriate calculations are given below: 

Pr(U1)=(.26272-.00672)(1-.01696)(1-.00672)111=.24997 

Pr(U2)=(1-.26272)(.34464-.01696)(1-.00672)111=.23997 

Pr(U3)=(1-.26272)(1-.34464)(.26272-.00672)111=.1237 

Pr(U)=Pr(U1)+Pr(U2)+Pr(U3)=.61337 

This completes the first stage of decomposition. At this stage, we 

know that LOLPP(L)=.03012764. 

It is of interest to note the sum of probabilities for the three 

identified sets, i.e., 

Pr(A)+Pr(L)+Pr(U)=.356242+.03012764+.61337=.99974 

This probability should be 1.0, as all states have been classified; 

the small difference can be attributed to round-off error. 

However, we see that Pr(U) is quite large. This indicates that we 

need to do some more work by decomposing the identified U-sets 

into their resulting A-sets, L-sets, and U-sets. This should continue 

until either no U set remains or the total probability of all U-sets is 

below a certain threshold. 

It is also possible to obtain area indices. This is done by 

decomposing the L-sets into sets having identical area load loss 

characteristics. Reference [12] addresses this issue together with 

several other issues, including: 

• Use of Monte-Carlo sampling for estimating contribution to 

reliability indices from remaining nondecomposed U-sets. 
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• Analysis including load uncertainty. 

• Composite system analysis 
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