In the below notes, text in this color will not be covered in class, though you may find it useful to review.
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uz2l1.1 Introduction

Modules U19 and U20 have addressed reliability analysis of the
generation system assuming that the transmission system is
perfectly reliable. Ultimately, we would like to be able to address
the reliability of the generation and the transmission system
together. An incremental step taken in that direction is the so-
called multiarea reliability problem, addressed in this module.

In the multiarea reliability problem, we view the electric power
system as comprised of multiple areas of generation, with the
transmission within each area being perfectly reliable. However,
the transmission interconnecting the various areas has non-zero
failure probability. Figure U21.1 illustrates the situation.
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Fig. U21.1: Hllustration of multiarea model
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This problem has applicability whenever one or more generation
units may be grouped together physically and contractually, and
each group has the obligation of providing assistance to
neighboring groups when needed, if capacity to do so exists.

There are four main issues embedded in the last statement, as
described in what follows:

Physical grouping: Transmission within each group must be
assumed perfectly reliable so that supply of load may be
performed by any generator within the group with equal
reliability, given the generator is in service.

Contractual grouping: The generators within each group operate
under the same contract or set of contracts, i.e., they are
dispatched together to meet load obligations.

Neighboring groups: Group B is a neighboring group to group
A if there is available transmission capacity for power delivery
from group B to group A.

Assistance: Each group is obligated to provide assistance to
neighboring groups, if reserves exist, in the event the group is
not able to serve its load from its own generation resources.

There were several publications on specialized studies in the past
to perform multi-area reliability analysis for the region of the Mid-
continent Independent System Operator (MISO), including [1, 2,
3]. For example, in [3], the following excerpts are worth
reviewing, which includes Fig. U21-1a:

“The computing tool used for the calculation of the reliability
indices in this study is the MARS program developed by
General Electric International Inc. MARS uses a sequential
Monte Carlo simulation technique to calculate the reliability
indices of a generation system that is made up of a number of
interconnected areas. Generating units and an hourly load
profile are assigned to each area. MARS performs a
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chronological hourly simulation of the interconnected
system, comparing the hourly load in each area to the total
available generation in the area taking into account the
random outages of thermal generating units, availability of
interconnection tie lines and the energy limited nature of
hydro and wind resources. If an area’s available generation,
including assistance from other areas, is less than its load,
the area is in a loss of load state for that hour and statistics
required to compute the reliability indices will be collected.
This process is continued for all of the hours in a sample

3

year.

In MARS, a generation system can be modeled as a number
of interconnected areas. Each area is composed of one or
several individual generating systems which can Dbe
represented as a single bus system as shown in Figure 1. The
areas are defined by the limiting interfaces that may exist
throughout the transmission system. The program assumes
that there are no transmission limits within an area. Any
generating units assigned to an area can, therefore, serve
any load associated with that area. For this study, the MAPP
interconnected system is modeled as five areas consisting of
Manitoba Hydro (MHEB), North Dakota, Western
Minnesota, and Northern South Dakota (NDAK), Central-
Northern Minnesota and Western Wisconsin (MINN),
Western South Dakota and Western Nebraska (WNB), and
Eastern Nebraska, Southeastern South Dakota, lowa, and
Southern Minnesota (ENB/IA). A simplified diagram of the
MAPP system for resource adequacy evaluation in MARS for
this study is shown...”
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Fig. U21.1-a

The above mentioned studies were specialized ones performed
once every several years. In addition, MISO includes multi-area
reliability analysis in its annual Midwest Transmission Expansion
Planning (MTEP) studies. For example, Figure U21.1-b below,
taken from the MTEP-2015 report [4], illustrates how the MISO
system is divided into “local resource zones,” which is a multi-area
characterization of the MISO power grid.
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Fig. U21.1-b

From the MISO 2015 Loss of Load Expectation study [5] we read
the following:

“MISO utilizes a program developed by General Electric called
Multi-Area Reliability Simulation (MARS) to calculate the LOLE for
the applicable planning year. GE MARS uses a sequential Monte
Carlo simulation to model a generation system and assess the
system’s reliability based on any number of interconnected areas. GE
MARS calculates the annual LOLE for the MISO system and each
Local Resource Zone (LRZ) by stepping through the year
chronologically and taking into account generation, load, load
modifying and energy efficiency resources, equipment forced outages,
planned and maintenance outages, load forecast uncertainty and
external support.”

We observe two things here:

e MISO uses a multiarea reliability analysis in their annual
planning processes. We will study this problem in these
notes.



Module PE.PAS.U21.5 Multiarea reliability analysis 6

e The model they use is a “sequential Monte Carlo simulation.”
The term “sequential” means that the operating conditions
are treated sequentially through time, i.e., the simulation is
chronological. The term ‘“Monte Carlo” means that
uncertainty is represented by re-running the sequential
simulation many times, selecting values for uncertainty
variables based on a “random draw” of possible values for
each variable, where the draw is from a probability
distribution appropriate for the particular variable
corresponding to the uncertainty. We will not address this
particular approach to multiarea reliability evaluation in these
notes but instead will address a method that builds on our
convolution approach.

We should not assume that the GE MARS tool (originally
introduced in [6]) is the only multiarea reliability analysis tool
available. Table U21.1 below summarizes some other tools.
Reference [7] provides an excellent summary of such tools.

There was a good comparison of GE-MARS and PJM’s PRISM
performed by PJM [8]; we provide the executive summary of this
report in Fig. U21.1c (spread out over the three pages). Reference
[8] is an excellent resource on generation adequacy evaluation; it is
strongly recommended that you get a copy and review it. | have
posted it on the EE 552 course website.
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Table U21.1: Available G&T Reliability Evaluation Products

Developer | Multiarea | G&T Distribution | Sub- Operations
reliability | Adequacy stations
BC Hydro |MCGSR | MECORE RISK_A
General | GENREL | TRANSREL | DISREL SUBREL
Reliablty
EPRI TRELLS DRIVE
CREAM
PTI MAREL | TPLAN, SRA
LARA
ABB NETREL RELINET
ABB Performance
Advantage
GE MARS
Astrape SERVM
Powertech CRUSE
Milsoft Windmil
CYME CYMDIST
OTI ETAP
PG&E DREAM
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Executive Summary

For many yesrs, PJUM ras conducted ils anfiual redounce adeguacy modeling and Inalaled Reserns Mangin
(IR} studes uzing their in-houge, teo-area model the Prabeblistic Reiaiity Inded Modal [PELEM)
program. By comparisan, PIATE neighbcring control aress (most nolably the New Yok Independant
System Qparator (NY150), the Independent Sysiem Operater of New England (130-NE) and the Midwest
Indepandent System Operabor (MIS0Y) ikze 3 muRiple-ares program, the Mult-Area Rekablity Smuadion
(MARS] that was devaloped by Janersl Elssn: Intamaiienal, Inc. (GEN)

Resouice adequacy madals apply both detamministic and probabiiatic methods with varying degreed of dala
raguiraments and vanous inpul # oulpul. By nadune of itz mvheren! comglaxity, muli-area assesemants
involve more operational specific and rigorows deta requirements San doss 8 Bvc-area mode, Mult-ansa
gesessmeants alzo naqure more tma, computing kersspower and resounzes 1o evalusta and Intempret the
razuiis

The P Capaciy Market 5 a 50+ Dillion annual anerprse. A5 swoh, tha delarminaiion, characisrizalion
and quanrirication of resource adeguacy is imporiant io 3l PUM Stakeholdars. Over the past fowr decadas,
racource adequacy modabng has iypically mvokad tha modaing of mlerconnacted areas. Such progams
can =mplay either a ocne- or two-area modebng approach ar more expanswe mulbple-ansa modeling.

Several membess on the PJUM Recerse Adeguacy Anaksis Subcommities (EAAT) kave lend encouwraged
PJM iz adepd MARE inplace of PRIEM while other meambers Believe that PRESM aready filks the bil with
raEpec] 10 modalng rasouce alequacy

Dacpile the facl that both PRISI and MARS have baen knewn and proven n the alactric mdustry for
temades, there &= a lingering quesion: Whidh is the betier model for rezource assezsment=?

Evalualion af this quesion Jan years ago — at the RASS and il predesessol groups. By eary 2010, |
was agresd that & delailed Sempansan was in ender. The genasia of tha raport began with & smple
comparizon table (similar 1o that of Takde 7). Subseguerd fesdback Tiom the RAAS parllicipants therely
promgbed mone comprehensire evalustion and thie opponunity %o document the feshony and evolufion of
ragource adequacy mndakng

Pk nas usad aoth PRISM and M&aRS since 2005, taking advaniags of the complememary fesfuras offarad
by both. This “blended” approach using Balh programs is regarded by PJM StaiT a= more benefical fan
uging jusl cne of tha programs axclushsaly. Reallzing el there s somewhal mone iransive and dgoaous
dalabase requirements for MARS, PJM has relied more heavily on PRISK for B resource modeling needs.
Thiz decsion anzles PJIN 1o fally utlize thelr exising staff rescunces, stnectures and tools to achigve the
bt technial nesuis 8t 1he keast cost

This avalsation summanizes the medals, calculatons and culput with detalisd companson of ¥arows
atinbuias, strengths and weaknesses. Cosl esimales were also devaloped to provide a comparatne
framewark far neaded resouwces

The purpose of S repom i 10 deliver an chjscoive 1 nnical evalution — m i enlorse one
modeling method over amother {per unanimows R&AS directive). In some cages PRISM and M&RS
provide compkamantary Infommiation that anniancas the ovarall relasiity shudy. This mporn & dasigned bo
slimuisia lachnical dscussion and i3y the groundwork for passibls furinar shady and &riure aciion ilems.

The mland of this avaleatian is lo provide an obpactiva analysis and iechnical comparson of both PRISK and
MARS. Thiz comparative analyses asttempts fo ewaluate the consislency ot A) the modei=, B) the data and
calculations and C) e 3iandand oubput. Keasy I'I"II]lﬂgE ane summarized a5 follows
A Coumparing the Mogehs:

PFEISM

#  FRISM 15 & two-area smulafion model

«  PRISN usas 8 probabiiel deiabuton o maded 1esd
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MARS

PRISM usas probabiistic disirbutions for capacity modsding (as doss MARS)

FRISM uzes delemminictic detibutiona for franamiesdion sysiem modaing (a5 does
MARS).

FPRISM uzes stansical mped data raguinements. This 15 & distinct advantags a5 PRISM
nas ralatwaly taw s1abistical paramelsrs thal incorporals the Tull mode

PRISM uses & probabiistic forecast lead miodel

PRISM 1egiures 3 comparatively fiazt selution ima ; this advantaga theraby alkows mons
time for pdditionad sensinaly cases to mona fply assacs spsiom Impacts

Running PRISK reguires no addilicnal Pk slaf io compisle a resouce adequacy
aszessment

Unlike MARS,. FRISM cannot pafom Homdy sssessmenis of delermine melrics regarding
affer Loss-0f-Load Hours (LOLH] or Expeched Unsenved Enargy {(ELEL

WMARS I8 & muliphe-anea modal 0 s @ fremendeus advenisgs.
MARS wEas @ datarministic Kan disiroution.
MARS uges probabilistic distikalions for capacily modaling (as does PRIEM)

MART usas detarminisic dstridumons tor ransmission system modeling {35 Joes
PRISM]

MARS can perform hourly caloulabons and indude more direct Operational parameders

Compared o PRISN, data ooliection and mamesance of nputs tor MARS i relatusly
time-iniensha.

Baing a Monke Carlo cimutaior, MARS roguines longar solution times

MARS is ably supports and continwously reflined amnd wpdaled by OE lechnical slaff.
WARS |'||'-:|E gainad imdusiry-wida aooepance and usaga thraugnoad Harn America. )
WMARS will therefons, be used o comply with any ferhcoming North American Relabiily

E-:rpE-:lmliziun [MERC] Flanning Committes (NERC-PC] reporing far nev matngs, LOLH
and EL

£ Comparing the Dara & Calculanons:

The signficance of the manira 8 &= ailf abowt the dafal” cannal e owerlooked in Los= of Load
Expactation (LOLE) assessment work: Having high-cuality dala alioes enebiss gresiern confidendos,
comact imenpretation of reporied resufs, appropriabe decision making and high accuracy o final
reporied veluss. FJUNM's databese mansgement conforms o stendards and processes govemed by
#ird-party audiz and assurance that Best Practices ane uged In the underying data sysieme

& PJM uses the same man graphical user infarface {GUI) and wnderlying dakabasa for both
PRISM and Ma&RS. Both programs are included n tha Applications for Raliaailty Calculkhons
[ARC) process wsed by the PJM siadl. Many data relali oniships are esiabished bo assisi
aufomating a consisi=nt model bebween both topls. (See Tabl= 3 for further details. |

=  MARSE contains more dats imput categories than does PRISM (se2 Sppendi Fl. This alkos
MARS mone flexibfty and the polendial io perorm asegsements et PRISM cannot perform.



Module PE.PAS.U21.5 Multiarea reliability analysis 10

But it also requires increased coordination among PJM Staff and more time to maintain and
update the data.

While PJM Staff is able to perform most Adequacy work in-house, increased MARS efforts
would likely increase member technical representatives’ responsibilities and efforts. This
dynamic can be witnessed by comparing MARS assessment work that is done by neighboring
RTOs, I1ISOs and EROs.

C. Comparing the Ourtput:

MARS contains several output summaries not found in PRISM, including: load level,
Emergency Operating Procedure level, and Interface flows.

PRISM uses a database schema both for its input and output results. This allows a mapping of
the relationships between these data and is defined in an OLAP metadata process that allows
assessment and reporting of several complex summaries.

Both PRISM and MARS offer many detailed outputs to perform LOLE assessments.

Fig. U21.1c: Executive Summary from [8]
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Fig. U21.2: Classification of 2-area capacity states without tie line

Areas A and B loads are 6 and 8, respectively. Failure states are
identified as those for which C>C+-d (implying that the capacity
outage C is greater than the reserve Cr-d, or, from d>C+-C, that
available generation C+1-C is less than the load d).

e For Area A, this would be states for which C>11-6=5, i.e.,
states with capacity outage of 6, 7, 8, 9, 10, and 11.

e For Area B, this would be states for which C>13-8=5, i.e.,
states with capacity outage of 6, 7, 8, 9, 10, 11, 12, and 13.

Note that we assume a state for which the capacity outage equals
the reserve is a success state. An example is, for Area A, C=5,
then available generation is 11-5=6 MW, which equals the load. It
may be prudent in some cases to define this state as a failure state.

Consider adding a transmission circuit having infinite capacity, and
assume that each area will provide additional power to the other area
only insofar as it does not cause loss of load for itself. This increases
success states by the areas between dashed lines & staircases.
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Area B capacity outage states (d=8)
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Fig. U21.3: Classification of 2-area capacity states with infinite
Interarea transmission capacity

We observe in Fig. U21.3 the hatched state corresponding to Area
A capacity outage of 3 and Area B capacity outage of 6, which,
for the case of no transmission, is a failure state, since the Area B
available generation is 13-6=7 MW, not enough to supply Area
B’s 8 MW of load.

However, with transmission, the hatched state is a success state.
Let’s see why.

Since Area B has capacity outage of 6 MW, it has only 13-6=7
MW of generation available to supply a load of 8 MW. But since
Area A has capacity outage of 3 MW, it has 11-3=8 MW to supply
its load of 6 MW and therefore has 2 MW of reserve. If Area A
supplies Area B with 1 MW, then area B has 7+1=8 MW of
generation and is therefore no longer a failed state according to
our criteria. In this case, Area A generation will be 6+1=7 MW,
and with capacity outage of 3 MW, leaves 11-7-3=1 MW reserve.
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A similar argument applies for the state just right of the hatched
state (with the single dot in it), but in this case, Area B has
capacity outage of 7 MW and therefore only 13-7=6 MW of
generation to supply a load of 8 MW. Therefore, Area A must
supply 2 MW to Area B, leaving Area A with no reserve. States
having any more capacity outage in either Area A or Area B result
in a failed state.

The dotted state above and right of the single dot state has Area B
with an increased capacity outage of 8 MW and therefore only 13-
8=5 MW of generation to supply a load of 8 MW. In this case, the
capacity outage of Area A is only 2 MW, leaving Area A with 11-
2=9 MW of generation to supply 6 MW of load. Therefore, Area
A has 3 MW of reserve, which it can supply to Area B to prevent
loss of load, making this a success state.

Comparison of Fig. U21.3 with Fig. U21.2 indicates the effect of
increasing the number of success states that interarea transmission
can have. One notes that infinite capacity transmission is only able
to increase the number of success states insofar as available
generation will allow.

Note in Fig. U21.3 that the “boundary” between success and failed
states is a climbing staircase to the right. The significance of this
is that, with infinite transmission capacity,

e above the “origin,” every decrease in Area A capacity
outage (a step up) results in an additional MW being
available to supply Area B (a step to the right);

e below the “origin,” every decrease in Area B capacity
outage (a step to the left) results in an additional MW being
available to supply Area A (a step down).

Finally, consider that the transmission interconnecting the two
areas has finite capacity of 2 MW, and that capacity is only used
when one area is in need of assistance from the other area (i.e.,
transmission is not used simply for economic purposes, so that the
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full transmission capacity is always available to provide reliability
backup). Fig. U20.4 illustrates the resulting capacity states.

Area B capacity outage states (d=8)
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Fig. U21.4: Classification of 2-area capacity states with 2 MW
interarea transmission capacity

Consider the hatched and single-dot states in Fig. U21.4. As
before, we see that the effect of transmission is to turn both of
these states into success states. However, notice that the dotted
state, which was a success for the case of infinite transmission, is
now a failure state. The reason is that, although Area A does have
available generation to supply the additional 3 MW needed by
Area B, the transmission capacity limits that supply to 2 MW, and
Area B experiences loss of load.

Notice from Fig. U21.4 that the “boundary” between success and
failure states is the same as in Fig. U21.3 in the middle of the
diagram (i.e., for 3<Ca<7 and 4<Cg<7). The difference between
the two boundaries, towards the edges of the diagram, is due to the
limiting effect that transmission has on the ability to provide
assistance from one area to another.
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U21.3  Evaluation approaches for 2 area system

Section U21.2 only addresses the effect of transmission on the
number of states that are failures vs. the number that are successes.
However, we said nothing about the actual probability of these
states. Once we get the probability of the states and their
classification (success or failure), then we can compute the desired
failure probability (loss of load probability in this case) simply as
the summation of the probabilities of all failure states. There are
two approaches: the all-failure states approach and the equivalent
assisting unit approach. In both approaches, we assume that the
transmission is limited, but perfectly reliable.

u21.3.1 All-failure states approach

One simple approach, at least conceptually, that is applicable to
operating reserve evaluation when there is little uncertainty in the
load, is the all-failure states approach, as follows:

1. Compute the capacity outage table for each area, lumping
identical capacity outage states together. This provides the
probabilities of each state for each area.

2. ldentify the failure states F. Then
LOLP = X p, (U21.1)

k,jeF

where pxi=pkpP;j, K€A, jeB, i.e., the probability of state kj is the
product of the probability of state k in Area A and the
probability of state j in Area A. We are assuming here that the
Areas A and B states are independent.

If we want to account for the possibility of transmission failure,
then we need to repeat the above algorithm for every distinct value
of transmission line capacity. In this case, (U21.1) becomes

LOLP. = ¥ p, (U21.2)

k,jeFi
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where we see that the failure states, denoted by F;, are a function of
the transmission line capacity i, as they should be. Then, the total
LOLP is computed as

LOLP =Y p, LOLP (U21.3)

where each transmission line capacity has a probability of pri. In
the simplest case, consisting of a single transmission line
interconnecting the two areas, the interconnecting transmission line
would have capacity possibilities of “full” (corresponding to “up”)
and “zero” (corresponding to “down”).

This approach can be quite computationally intense, however, due
to the need to compute the probabilities of all failure states of both
areas (which has an upper bound of NaxNg, where Na and Ng are
the number of capacity outage states in Areas A and B,
respectively).

U21.3.2 Equivalent assisting unit approach

An alternative approach, called the equivalent assisting unit (EAU)
approach, is described in this section. We draw heavily from
reference [9] in describing this approach using some background
from [10].

In the EAU approach, the benefits of the interconnection between
the two systems are represented by an equivalent multi-state unit
which describes the potential ability of one area to accommodate
capacity deficiencies in the other area.

Here, we denote area A as the assisted area and area B as the
assisting area. Some specifics of this method follow:

e The capacity assistance level for a particular outage state in
Area B is given by the minimum of the transmission capacity
and the available area reserve at that outage state.

e All capacity assistance levels greater than or equal to the
transmission capacity are replaced by one assistance level
which is equal to the tie capacity.
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The resulting capacity assistance table can be converted into a
capacity model of an equivalent multi-state unit which is added to
the existing capacity model of Area A. Reliability indices may
then be computed using the methods of Module U19 (for capacity
evaluation) or the methods of Module U20 (for operating reserve

evaluation).

Example 1: An example adapted from [9] will clarify. Consider the

system data for a 2-area system as given in Table U21.2.

Table U21.2: System data for example [1]

Area Number Unit FOR Installed Load
of units | capacity per unit capacity | (MW)
(MW) (MW)
5 10 0.02
A 1 25 0.02 & 50
4 10 0.02
B 1 20 0.02 60 40

There is one transmission line interconnecting the two areas; it has
capacity of 10 MW and is perfectly reliable (FOR=0).

The capacity outage table for both areas is given in Table U21.2.

Probabilities less than 108 can be neglected in this table.
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Table U21.2: Capacity outage tables for example [9]

These states
look the
same to
Area A, they
all provide O
MW of
assistance,
SO merge
them.

Area A Area B

State | Cap | State Cum |State | Cap 6 State Cum
J |out| prob prob J | out prob prob
1 0 |.8858424| 1.0 1 0 |.9039208| 1.0

2 10 |.0903921 | .1141576| 2 10 |.0737894 | .096079
3 20 |.0036895 |.0237656)| 3 20 |.0207062 | .0222898
4 | 25 |.0180784 |.0200761) 4 | 30 |.0015366  .0015835
5 | 30 |.0000753|.0019977}| 5 | 40  .0000463 | .0000469
6 | 35 [.0018447|.0019224]| 6 50 |.0000006 | .0000006
/7 | 40 |.0000008 | .0000776|| 7 60 |.0000000 | .0000000
8 | 45 |.0000753  .0000769

9 | 50 |.0000000 |.0000016

10 | 55 |.0000015 | .0000016

11 | 65 |.0000000 | .0000000

12 | 75 |.0000000 | .0000000

Note that “Cum prob” gives probability that capacity outage is
greater than or equal to the corresponding value. (This differs from
what we called Fv(y) in module 20, where there it was probability
that capacity outage is greater than the corresponding value.)
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Area B has a reserve of 20 MW; this is the maximum assistance it
can provide at this load level (assuming infinite transmission
capacity). Therefore, any capacity outage of 20 MW or greater will
have the same influence on the available capacity, as far as area A
Is concerned, limiting the assistance to zero. As a result, we merge
all Area B capacity outage states greater than or equal to 20 MW
Into one state, accumulating the probabilities. Table U21.3 shows
the Area B EAU capacity outage table.

Table U21.3: EAU capacity outage table for Area B [9]

Cap out (MW) State prob
These states look the same
0 9039208 to Area A; they both
provide 10 MW of
10 0737894 assistance, so merge them.
20 .0222898

In Table U21.3, the first 2 capacity outage states (0, 10 MW) have
state probabilities corresponding to the Area B state probabilities
of Table U21. 2.

The last state probability in Table U21.3 (20 MW) has a state
probability corresponding to the Area B cumulative probability of
Table U21.2. This is because, as previously stated, all Area B
states having capacity outage of 20 MW or greater have the same
effect on Area A, since the Area B reserve is 20 MW and therefore
will not be able to assist Area A if capacity outage is 20 or greater.

Now recall that the transmission has capacity of 10 MW; we see
that the assistance available from Area B to Area A is 10 MW
regardless of whether the Area B capacity outage is 0 MW
constrained by transmission, or 10 MW constrained by
transmission as well as generation.
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As a result, we merge the 0 MW capacity outage state with the 10
MW capacity outage state. The result of this merging is effectively
a 2- state unit, as indicated in Table U21.4.

Table U21.4: Transmission-constrained EAU capacity outage table

Cap out (MW) | State prob
0 9777102
20 0222898

This table implies capacity outage
state of 0 MW makes 20 MW of
capacity available to Area A, but
transmission limits it to 10 MW.

One problem with Table U21.4 is, however, that it suggests an
equivalent unit of 20 MW capacity. This is inconsistent with the
fact that maximum assistance from Area B is 10 MW due to
transmission limitation. Therefore we change the bottom capacity
outage value in Table U21.4 from 20 MW to 10 MW. Table U21.5
shows this change.

Table U21.5: Transmission-constrained EAU capacity outage table
with adjustment for transmission capacity

Cap out (MW) | State prob
0 9777102
10 0222898

The transmission-constrained EAU capacity outage table of Table
U21.5 is now convolved into the Area A capacity outage table of
Table U21.2, giving an equivalent Area A installed capacity of
75+10=85 MW. The result is given in Table U21.6 (probabilities
smaller than 108 have been truncated).

The load of Area A is 50 MW and therefore loss of load occurs
when the capacity outage in Area A is greater than the reserve of
85-50=35 MW. The cumulative probability for a capacity outage
of 35 MW is read from Table U21.6 as LOLP=.0023270.
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Table U21.6: Area A modified capacity outage probability table

State Cap out (MW) State prob Cum prob
1 0 .8660972 1.0
2 10 1081225 1339028
3 20 .0056221 0257804
4 25 0176755 0201583
5 30 .0001559 .0024829
6 35 0022066 0023270
7 40 .0000024 0001204
8 45 .0001147 .0001180
9 50 .0000000 .0000033
10 95 .0000032 .0000032
11 60 .0000000 .00000005
12 65 .00000005 .00000005
13 75 .00000000 .0000000

Example 2: One can repeat this analysis for a transmission line
having capacity of 15 MW (instead of 10 MW). One would expect,
with increased transmission capacity, the influence of assistance to
be greater and thus LOLP to be smaller.

The new EAU capacity outage table is identical to that of Table
U21.3, with the exception of the last capacity outage value, as
given in Table U21.7.
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Table U21.7: EAU capacity outage table for Area B with 15 MW
transmission capacity

Cap out (MW) State prob
0 9039208
10 0737894
15 0222898

In comparing Table U21.7 to Tables U21.3 and U21.4, we observe:

« The 0 and 10 MW capacity outage states of Table U21.7 remain
distinct since they have different effects on Area A. With 0 MW
capacity outage, Area A receives 15 MW of assistance (limited
by transmission). With 10 MW capacity outage, Area A
receives 10 MW of assistance (limited by generation reserve).

« The largest capacity outage state is now 15, instead of 10 (as in
Table U21.4), since the transmission capacity is 15.

Convolution of the Area B capacity outage data of Table U21.7
with the capacity outage data of Area A given in Table U21.2
results in Table U21.8, where installed capacity is 75+15=90. The
load of Area A is 50; therefore loss of load occurs when the
capacity outage in Area A equals or exceeds a reserve=90-50=40.
The cumulative probability for a capacity outage of 40 is read from
Table U21.8 as LOLP=.00066504, lower than the LOLP=.0023270
obtained for the case of transmission capacity=10.

It is interesting to compare the state probability for a capacity
outage of 35 MW in the two cases. The 10 MW transmission
capacity case yields .0022066 (Table U21.6) whereas the 15 MW
transmission capacity case yields .0030837. It may be surprising to
find the 35 MW outage capacity state probability is higher for the
15 MW transmission case whereas the LOLP is lower. In fact,
individual state probabilities may go up or go down as we change
unit capacities in a problem of this sort.
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We can be sure, however, that (for a given load level), whenever
we increase the installed capacity of a unit, the number of states
identified as failure (loss of load states) will decrease. In this case,
we increased the installed capacity of the equivalent unit from 10
to 15 MW and therefore provided that we need not include the 35
MW capacity outage state in our LOLP calculation.

Table U21.8: Area A modified capacity outage probability table

State Cap out (MW) State prob Cum prob
1 0 .8007300 1.0
2 10 1470700 1992700
3 15 0197450 0521960
3 20 .0100050 .0324500
4 25 .0183560 .0224450
5 30 .0000340 .0004089
6 35 .0030837 .0037487
7 40 .0004092 .00066504
8 45 0002059 00025579
9 50 .0000418 .00004993
10 55 .0000069 .00000875
11 60 .0000017 .00000182
12 65 .0000001 .00000014
13 75 .00000003 .00000003
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The below summarizes the steps taken in the above examples:
1. Develop the capacity outage table for both areas.

2. Develop the EAU capacity outage table by merging all capacity
assisting area outage states for which the available assistance
provided to the assisted area is the same. This can be done in the
following 2-step process.

a. Effect of assisting area reserve: Merge all assisting area
capacity outage states having 0 MW assistance capability.
These states are those for which the assisting area capacity
outage equals or exceeds the assisting area reserve. The new
state has state probability equal to the sum of all merged
states, which is the cumulative probability of the capacity
outage state equal to or just greater than the assisting area
reserve.

b. Effect of transmission capacity: Merge all capacity outage
states having assistance capability equal to the transmission
capacity. These states include those for which the assisting
area reserve exceeds the capacity outage by the transmission
capacity (or, one can say, the capacity outage is less than or
equal to the reserve less transmission capacity). The new
state has state probability equal to sum of all merged states.

3. Denoting reserve by Pr and transmission capacity as Crr,
decrease all non-zero capacity outage values by an amount
equal to Pr-Cr,. This will force the maximum capacity outage to
be equal to the transmission line capacity.

4. Convolve in the EAU capacity outage table with the assisted
area capacity outage table.

5. Compute the LOLP for the assisted area as the cumulative
probability corresponding to the capacity outage state equal to
or just greater than the reserve.

Figure U21.5 illustrates the various assisting area states to be
merged in step 2, where the numbers simply enumerate the states
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in order of increasing capacity outage but do not correspond to any
particular capacity outage values. Note that there may be no states
in the “not merged” category, as in the 10 MW transmission
capacity example, there may be 1 state, as in the 15 MW
transmission capacity example, or there may be several states.

States for which capacity
outage falls between
reserve and reserve less
transmission capacity
Pr-Cri<y<Pr
NOT MERGED

A
v

1121 3|4 |5|6 |7 (8910111213 14] 15| 16| 17| 18|19

& » P
<« » <«

v

2b. States for which 2a. States for which
capacity outage is less capacity outage equals or
than or equals the exceeds reserve
reserve less y>Pr
transmission capacity, These give 0 assistance.
y<Pr-Ctr MERGED
MERGED

Fig. U21.5: Hlustration of merged and not merged states

U21.4  Accounting for transmission reliability

In Section U21.3.2, we assumed that the transmission was
perfectly reliable and developed a capacity outage table for a
fictitious unit that, as far as the assisted area was concerned, was
probabilistically equivalent to the assisting area. However, we
assumed that the transmission interconnecting the two areas was
perfectly reliable. This of course is not the case, so in this section,
we show how to account for transmission unreliability.

The approach is tedious, but conceptually straightforward. The
idea is to just compute the LOLP for each transmission capacity
state as if there exists transmission of that capacity that is perfectly
reliable. Then the composite LOLP is the weighted sum of these
individual LOLP’s where the weights are the transmission capacity
state probabilities. Two examples will illustrate.
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Example 3: Consider the example with a 10 MW capacity
transmission line, except now assume it has an outage probability
of .00815217 so that its availability is 1-.00815217=.99184783.

There are 2 transmission capacity states: 0 and 10 MW with
probabilities of .00815217 and .99184783, respectively.

The LOLP for the 0 MW case is obtained based on single
(unassisted) analysis of area A, which comes from Table U21.2.
Here, we see that the cumulative probability of the 75-50=25 MW
capacity outage state is .0200761.

The LOLP for the 10 MW case is obtained based on Example 1
where we found the LOLP to be .0023270. Therefore,

LOLP=.00815217%.0200761+.99184783x.0023270=.0024716937

The LOLP is a little larger than the case with perfect transmission
and a great deal smaller than the case with no transmission at all.

Example 4: Consider now the case of the two areas connected by 2
tie lines on different right-of-ways, one of which is 10 MW
capacity and the other is 5 MW capacity. The outage probabilities
of each line are identical to the outage probability used in the
previous example, i.e., .00815217 and .99184783.

Because the lines are on different right-of-ways, they may not fail
in a dependent or common mode fashion, so the line capacities and
corresponding probabilities are given by as in Table U21.9.

Table U21.9: Transmission line capacity probabilities

Capacity Probability
0 00006646
5 00808571
10 .00808571
15 98376212
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We have already found the LOLP for the 0, 10, and 15 MW
capacity cases, and they were .0200761, .0023270, and .00066563,
respectively. Therefore we need only find the LOLP for the 5 MW
case.

Following step 2-a, we require the Area B capacity outage table
with all states having Area B capacity outage equal to or exceeding
the reserve, as given in Table U21.3, repeated below for
convenience.

Cap out (MW) State prob
0 9039208
10 0737894
20 0222898

Following step 2-b, we need to merge the states for which the Area
B capacity outage is less than or equal to the Area B reserve less
the transmission capacity, which in this case, is 20-5=15. So we
merge the two top states in the above table, resulting in the
following capacity outage table, identical to Table U21.4.

Cap out (MW) State prob
0 9777102
20 0222898

Now, however, we need to adjust the maximum capacity outage
value from 20 to 5 MW, to reflect that we have a probability of
9777102 of having 5 MW assistance and .0222898 of having 0
MW assistance, resulting in the EAU capacity outage data of Table
U21.10.
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Table U21.10: EAU capacity outage data for example

Cap out (MW) State prob
0 9777102
5 0222898

This capacity outage table is convolved into that of Area A (given
by Table U21.2), resulting in Table U21.11.

Table U21.11: Area A modified capacity outage probability table

State Cap out (MW) State prob Cum prob
1 0 .8661000 1.0
2 5 .0197450 .1339000
3 10 .0883770 1141600
4 15 0020148 0257800
5 20 .0036073 .0237650
6 25 .0177580 .0201580
7 30 0004766 0024006
8 35 .0018053 0019240
9 40 .0000419 .0001187
10 45 .0000736 .0000768
11 50 .0000017 .0000032
12 55 .0000015 .0000015
13 60 .00000003 .00000003
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The installed capacity following convolution of the 5 MW EAU
75+5=80. The load of Area A is 50; therefore loss of load occurs
when the capacity outage in Area A equals or exceeds a
reserve=80-50=30. The cumulative probability for a capacity
outage of 30 is read from Table U21.11 as LOLP=.0024006.

The composite LOLP is then given by:
LOLP=.0200761x.00006646+.0024006%.00808571
+.0023270x.00808571+.00066563%.98376212=.00069438

U21.5  Effect of contractual agreements

The section is adapted from [9].

Consider the situation where Areas A and B agree that Area B will
provide firm capacity to Area A of z MW (of course, at a price).
This means that Area B is guaranteeing that Area A receive z MW
of capacity. The guarantee may come with or without conditions
on transmission.

U21.5.1 Without conditions on transmission

If the guarantee is made without conditions on transmission, then it
means that the capacity is perfectly reliable. From Area A’s point
of view, this simply appears as an increase in its installed capacity
by an amount equal to z.

Example 5: Consider Example 1, where we had a perfectly reliable
transmission line of capacity 10 MW. We found that the Area B
EAU had a probability of delivering at 0 MW capacity outage of
9777102, and that there is 1-.9777103=.0222898 probability of
delivering at 10 MW capacity outage (see Table U21.5), implying
that there is about a 2.2% chance that Area B cannot deliver the
assistance (disregarding transmission unreliability).

When the Area B EAU capacity outage table was convolved into
the capacity outage table of Area A, Table U21.6 resulted. Then,
with an Area A load of 50 MW, loss of load occurs when the
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capacity outage in Area A is greater than the reserve of 85-50=35
MW, and the cumulative probability for a capacity outage of 35
MW is read from Table U21.6 as LOLP=.0023270.

However, in the case that Area B is willing to take all of the risk
and guarantee the 10 MW of capacity, then Area A uses the
original capacity outage table of Table U21.2 (without the Area B
EAU capacity outage table convolved in), and simply increases the
installed capacity from 75 MW to 85 MW. Again, loss of load
occurs when the capacity outage in Area A is greater than the
reserve of 85-50=35 MW, and the cumulative probability for a
capacity outage of 35 MW s read from Table U21.2 as
LOLP=.0019224. Note the improvement from the
LOLP=.0023270 when we account for Area B unreliability. Of
course, the contract does not change the unreliability of Area B; it
simply requires that Area B take the risk by, for example, cutting
its own load or paying penalties to Area A in the event it not be
able to deliver the 10 MW. Whether Area B wants to sign such a
contract depends on how much Area A is willing to pay for the
additional capacity. Note that, without any assistance capacity,
Area A’s LOLP, evaluated at the capacity outage of 25 MW is
0200761, so the assistance capacity provides an order of
magnitude improvement in LOLP.

U21.5.2 With conditions on transmission

If the guarantee is made contingent upon there being sufficient
transmission, then it means that Area B is only guaranteeing that it
will always have reserve equal to at least the contracted capacity.
The Area B EAU can then be formed as a two-state capacity
outage table having probability 1.0 capacity outage of 0 and
probability O of capacity outage of the contracted capacity. Then
we account for the transmission unreliability as in Section U21.4,
where we



Module PE.PAS.U21.5 Multiarea reliability analysis 31

1. compute the LOLP for each transmission capacity state as if
there exists transmission of that capacity that is perfectly
reliable, and

2. Compute the composite LOLP as the weighted sum of the
individual LOLP’s where the weights are the transmission
capacity state probabilities.

An example will illustrate.

Example 6: Now consider the case where Area B guarantees only
the reserve of 10 MW but not the transmission capacity. It will
have to cut its own load or pay a penalty if it does not have the
capacity, but Area A accepts the risk brought on by unreliability in
transmission capacity. The question is, in this case, what reliability
level does Area A see?

Consider Example 3, with a 10 MW capacity transmission line,
and an outage probability of .00815217 so that its availability is
1-.00815217=.99184783.

Therefore there are 2 transmission capacity states: 0 and 10 MW
with probabilities of .00815217 and .99184783, respectively.

The LOLP for the 0 MW case is obtained based on single
(unassisted) analysis of area A, which comes from Table U21.2.
Here, we see that the cumulative probability of the 75-50=25 MW
capacity outage state is .0200761.

The LOLP for the 10 MW case is obtained similarly to Example 1
where we used Table U21.5 as the Area B EAU capacity outage
table for repeated below for convenience.

Cap out (MW) State prob
0 9777102
10 0222898
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Now, however, Area B is guaranteeing the reserve, therefore we
will use the following capacity outage table:

Cap out (MW) | State prob

0 1.0
10 0.0

So now we convolve in this Area B EAU capacity outage table to
the Area A capacity outage data of Table U21.2. This is equivalent
to increasing the installed capacity of Area A by 10 MW. The
resulting LOLP is read from Table U21.2 as .0019224
(corresponding to capacity outage of 35 MW). Therefore

LOLP=.00815217x.0200761+.99184783x.0019224=.002070392.

U21.6  Evaluation approach for three-area system

We have so far described and illustrated reliability analysis for
two-area systems, the most basic of the multi-area situations, and
one with wide applicability. However, one would be interested in
knowing whether the concepts have more general applicability. In
this section, we extend our approaches to the three-area situation.

uz21.6.1 Radial interconnected three area systems
Figure U21.6 illustrates three areas interconnected radially.

Area A Area B Area C

Fig. U21.6: Three areas interconnected radially

There are 2 situations of interest, described in what follows. In
both cases, we assume perfectly reliable but capacitated
transmission.

» Assistance to Area B: Here, we apply the two-area case twice.
The steps are as follows:
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. Obtain the EAU capacity outage tables for the assisting areas

A and C.

Convolve the Area B EAU capacity outage table with the
Area A capacity outage table. Denote the new capacity
outage table as A’.

Convolve the Area C EAU capacity outage table with the
Area A’ capacity outage table. Denote the new capacity
outage table as A’’.

. The LOLP is obtained by reading from the capacity outage

table A’’ the cumulative probability corresponding to the
capacity outage of installed capacity less the load.

Note that the order in which one convolves in the EAU capacity
outage table does not matter in this case, i.e., one could either
convolve in the Area B EAU and then the Area C EAU or one
could convolve in the Area C EAU and then the Area B EAU.
The answer would be the same in either case.

 Assistance to Area A: We again apply the two-area case twice.

1.

Obtain the EAU capacity outage table for the assisting area
C.

. Convolve the Area C EAU capacity outage table with the

Area B capacity outage table. Denote the new capacity
outage table as B’.

. Obtain the EAU capacity outage table for the assisting area B

from the capacity outage table B’.

Convolve the EAU capacity outage table for Area B with the
Area A capacity outage table. Denote the new capacity
outage table as A’.

. The LOLP is obtained by reading from the capacity outage

table A’ the cumulative probability corresponding to the
capacity outage of installed capacity less the load.
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We do not address the situation of assistance to Area C since this is
just like the case of assistance to Area A.

In either of the above cases, if transmission is not perfectly
reliable, then all possible transmission states must be identified and
the method repeated for each state. The composite LOLP is then
the weighted average of LOLPs for all transmission states where
the weights are the transmission state probabilities.

The difficulty of this approach for the case of unreliable
transmission is that there could be several transmission states.
Reference to Fig. U21.6 reveals that, minimally, there would be 4
states (assuming 2-state models for both the A-B and the B-C
transmission, implying AB and BC have only 1 transmission
circuit each). These 4 states would be (AB up, BC up), (AB up, BC
down), (AB down, BC up), (AB down, BC down). LOLP would
therefore need to be computed 4 times, one for each of these states.

There could be more states depending on how many transmission
circuits comprise the AB and BC connections.

U21.6.2 Networked interconnected three area systems
Figure U21.7 illustrates three networked interconnected areas.

Area A T1 Area B

T2 T3
Area C

Fig. U21.6: Three networked interconnected areas

This situation is quite difficult to handle using our present
technigues because of the following reasons:

1. Two transmission paths: Each area can assist another area over
2 possible paths, the direct connection to the assisted area and
the connection through the third area to the assisted area. This
presents two basic problems.
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a. Controlled flows: Here, we assume that each area may
specify the amount of assistance flowing over a particular
path. Although this is the simplest case, we see that it is
probabilistically complex, as the amount of assistance over
a transmission path depends not only on the reserve in the
assisting area and the path’s transmission capacity but also
the extent to which the other area is using that path.

b. Uncontrolled flows: Here, we must recognize that, unless
special flow-control devices (FACTS devices) are
available, it is not possible to assign a particular amount of
assistance to a specific transmission path since Kirchoff’s
laws dictate that any assistance from one area to another
will actually divide and flow along both paths. This is
called loop flow. As a result, any assistance will utilize
transmission capacity in all three paths.

2. Contractual agreements:

a. On reserve: There are numerous possible agreements that
bear on the problem. If only one area is deficit, then that
deficit area gets as much assistance as it needs, (up to what
Is available of course) from the other two areas. However,
the issue is not so clear if there are two deficit areas. For
example, if Area A and Area C are both supply-deficit,
how do they share the Area B assistance? Area A may
have priority over Area C such that Area C only receives
assistance when Area A’s needs are met. Or Areas A and
C may share Area B’s assistance according to some
specified proportion.

b. On transmission: Transmission agreements need to be
consistent with reserve agreements so that transmission
contracts do not constrain assistance levels beyond that of
the reserve agreements. This is generally possible if the
transmission and generation are owned by the same
organization, but if not, it can be quite complicated.
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We will study a new method in the next section which addresses
some of these issues.

U21.7  Multiarea analysis by network flows

The material in this section is adapted from [11] and [12]. Some
publications illustrating the approach are in [13, 14, 15].

An area of systems engineering has grown from the numerous
systems that can be thought of in terms of physical movement
within a network. Such systems include

« Transportation systems, e.g., bus, rail, airlines, shipping.
« Communication systems, e.g., telephone and internet.
» Energy systems, e.g., electricity, gas, coal, and water.

One approach for analysis of such systems is generally referred to
as “network flows.” We will find network flow theory to be useful
in multiarea reliability analysis.

U21.7.1 Preliminaries: some graph-theoretic definitions and concepts

The essential notion on which a network flow problem is based is
the graph. We define some related notation below.

Graph: G(V,I') consists of a set of elements called nodes, denoted
V, and a set of pairs of elements called arc (or branches), denoted
I'. G can be a directed graph, where flow on each arc may only
occur in one direction, or G can be an undirected graph. G may
also have both directed and undirected arcs. A particular node is
denoted V. Each arc is denoted (i,j) if it is directed or [i,j] if it is
undirected. A graph is another name for a network.

Flow: With each arc (i,j) or [i,j], we associate a weight f(i,j) or
f[i,j] which is called the flow of arc (i,j) or [i,j].

Capacity: With each arc we associate another weight c(i,j) or c[i,j]
which is called the capacity of branch (i,j) or [i,j]. It represents the
maximum flow that the branch can carry.
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Source node: Each graph has a source node, denoted s, which
produces all the flow that is flowing through the network.

Sink node: Each graph has a sink node, denoted t, which consumes
all the flow that is flowing through the network.

Flow pattern: The flow pattern is a set of flows associated with the
branches in a graph and is denoted F.

Feasible flow pattern: Define fs; as the total flow between s and t.
Then a flow pattern F is said to be feasible if it satisfies:

Directed graph:

f,, ifi=s
F(i,V) — f(V,i) =40 ifi=st
flow out of node i  flow into node i _ fst fi=t (U214)
cli,j)>f@i,j)>0 Viand j
Undirected graph:
f,, ifi=s
fli,V] — f[V,i] =J0 ifi=st
flow out of node i  flow into node i — f ifi=t (U215)

st

c[i, j1> f[i, j1> —c[i, j] Vi and j

In the above, V represents all nodes in the graph. Therefore, the
above represents the conservation of flow at each node. For
example, in the below figure, we may have

f[5,V]-f[V,5]=
[ f(5,6)+f(5,7)+f(5,8) ] - [ f(2,5)+f(3,5)+f(4,5) ]
=[1 +1 +4 1-[2 +3 +1 ]1=0
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Sets of branches: Let A and B be sets of nodes contained in V, i.e.,
AcV and BcV. Denote the set of all branches which are incident
out of (connected from) a node in A and incident into (connected
to) a node in B. That is,

(AB)={i,j)eT|V; e AV, eBf (U21.6)

Set theoretic complement: Denoting a subset Vi of nodes of
G(V.I), the set theoretic complement of V; in V is denoted by V,

and defined by vV, UV, =V

Cut: Combining the last two definitions, we define that for any
VicV, the set of branches identified by (v,,V,) is a cut. In this

definition, remember that vV, and V, represent sets of nodes, not sets
of branches, and that (v,,V,) therefore represents a certain group of
branches that connects a node in the node-set V, with a node in the
complementary node-set V.. Figure U21.7a illustrates a cut, where
v,={1,2,3,4} and V,={5,6}, such that (v ,V,)={[4.5], [3,5], [4.6]}.
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Fig. U21.7a: lllustration of a cut

s-t cut!: An s-t cut is a cut (V,,V,) where seV: and teV,. We will
denote the K" s-t cutas A,

Capacity of a cut: The capacity of a cut, denoted by c(Vv,,V,) or
c[V,,V,], is the maximum total flow that may cross the cut when
connected in the graph. It is given by:

Directed graph:
c(V,, V)= >c(i ) (U21.7)

(i,))eM1V1)

Undirected graph:
[V, Vil= >, jl (U21.8)

[i,jlelVa Vi ]

Minimal cut: The minimal cut is the cut with the smallest capacity.

MaxFlow-MinCut theorem: This theorem, developed by Ford and
Fulkerson [16], is the basis for determining the maximal flow from
source to sink within a network. In words, the theorem says that
the maximal flow from source to sink in any network is equal to the
capacity of the minimal s-t cut. Mathematically, the theorem is:

! This definition of an s-t cut is similar to the definition (given in Module U15) of a cutset, which was, “A cutset K is a
set of components whose failure results in system failure. The removal of the corresponding set of blocks in the logic
diagram interrupts the continuity between the input and output of the diagram [1]. Removal of all components in any
cutset ‘disconnects’ the ‘input’ from the ‘output’ in the logical diagram.”
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max[ f,,]=min[c(A’)]
This theorem enables a max-flow calculation.

We use an analogy to gain physical intuition related to this
theorem. Imagine a sequence of piping stages from an originating
pool of water, identified as “s”, to a destination pool of water,
identified as “t”. The stages are in series, but each stage has several
pipes in parallel; each pipe has its own unique capacity. An s-t cut
Is an interruption of all pipes in a given stage. The minimal s-t cut
is the s-t cut which interrupts the least capacity. The maximum
flow through the system is the capacity of the minimal s-t cut. Fig.
U21.7b illustrates where we observe that stage 2 is the minimal s-t
cut, and it is the “bottleneck” that determines the maximum flow
through the system.

Min s-t cut

stage 1 stage 2 stage 3 stage 4
Water Flow=>»

Fig. U21.7b: lllustration of minimal s-t cut

We now provide a preview of how we will use our ability to
compute a max-flow calculation:

Problem set-up: All of the arcs connected to node s represent
generation, all of the arcs connected to node t represent load, and
what is flowing from s to t is power. A “state” is a capacity
designation for all arcs. There are two observations at this point:

e We normally associate generation and load with nodes; in this
case, we are associating them with arcs (or branches).

e The “s” and “t” nodes do not correspond to any physical node;
they are simply endpoints of the generation and load arcs,
respectively.



Module PE.PAS.U21.5 Multiarea reliability analysis 41

Objective: Identify all “success” and “failure” states (and their
probabilities).

Fact 1: We will see that it is easy to compute the max flow.

Fact 2: The max flow is a “success” state if the flows in the load
arcs are at their capacities.

A part of the idea: Pick the highest capacity state and compute a
max flow (note the max flow will not necessarily use all capacity
of all arcs). If this is a success state, then the capacity state
corresponding to the max flow is a “success” state, and all states
between this capacity state and the highest capacity state are
“success’ states.

Between...? What does this mean?
A (capacity) state S is between two states S; and Sy if

e SisnotS; and S is not Sy.

e Each arc in S has capacity greater than or equal to its
corresponding arc in Sp

e Each arc in S has capacity less than or equal to its
corresponding arc in Sy

Let’s now go back to learning how to compute a max flow. We
first see an example that illustrates the MaxFlow-MinCut theorem.

Example 7: Determine the maximal flow of the network in Fig.
U21.8.

Fig. U21.8: Example to illustrate maximal flow calculation
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The s-t cuts for the network of Fig. U21.8, their node sets, their
complementary node-sets, and their capacities, are listed in Table
u21.12.

Table U21.12: Summary of s-t cuts for example

stcut A, | Node-setV, | Node-setV, | s-tcut-capacity
c(A}) =c(V,,V,)
A, (s) (12,3,%) 4
A2 (s.1) (2.3,1) 5
A (5.1,3) (2.1) 8
Al (5.1,2) (3.1) 6
A’ (5.1,2,3) () 9
A’ (5.2) (13,0) 5

From Table U21.12, we see that the minimal cut, and therefore the
maximal flow, is 4.

One observation is that this approach adheres to Kirchhoff’s first
law (sum of flows into a node must be zero), otherwise known as
flow conservation, but not Kirchhoff’s second law (KVL - sum of
voltages around a closed loop must be zero). One must be aware of
this approximation when applying network flow theory to power
grids. Solutions obtained this way satisfy necessary, but not
sufficient conditions that the load will be supplied. Sufficient
conditions would need to compute flows using a power flow to
impose KVL. The issue is our modeling of lines.
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e Whereas our network flow formulation models lines as
“pipes” so that, except for nodal power balance, flows on
lines are independent of each other,

e the power flow accounts for the effects of impedances.

We need to be able to articulate an algorithm for identifying the
maximal flow. We present such an algorithm in what follows. But
first, we need three more definitions.

Path: A sequence of branches starting at the source node and
ending at the sink node such that no node is visited more than
once.

Forward and backwards arcs: A directed arc (i,j) in a path is a
forward arc if in traversing from s to t, i comes before j; otherwise
it is a backwards arc in the path.

Flow augmentation path: For a given flow pattern F, a flow
augmentation path is a path (i.e., from source to sink) for which
there exists unused capacity.

The max-flow (also called Ford-Fulkerson) algorithm follows:

1. Initialization: Initialize the graph with a feasible flow (capacity
restrictions and flow conservation must be satisfied). One flow
that is always feasible is O flow on all branches.

2. Labeling: Use the labeling routine to find a flow augmentation
path (i.e., a path (from s to t) for which flow may be increased).
The labeling routine is:

a. Starting with s, node j can be labeled if a positive flow can
be sent from s to j. If no node can be labeled, proceed to
step 5.

b. Find a node to label. From node j, any node i can be
labeled if:

« thejtoiarcisaforward arc and flow in this arc is less
than its capacity.
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« the j to i arc is a backward arc and flow in this arc is
greater than zero.

c. Three things may happen at this point.
« A node i is found such that i-t. Repeat step b.

« No node i1 can be labeled. This means that no
augmentation path can be found through node j.
Proceed to step 4.

 Node i is found such that i=t. We have found an
augmentation path and should proceed to step 3.

3. Augmentation:

a. ldentify the maximal flow increase & that can be sent
along the augmentation path identified in step 2.

b. Augment flow on all arcs in the augmentation path by 8.
Forward arc flows are increased. Backward arc flows are
decreased. Undirected arc flows are increased if the flow
augmentation is in the same direction as the original flow.
Undirected arc flows are decreased if the flow
augmentation is in the opposite direction as the original
flow.

4. Repeat: Go to step 2.

5. Stop: The maximal flow is the flow out of the source node (or
into the sink node) resulting from the last augmentation path
found.

We repeat Example 7 but this time we use the algorithm.

Example 8: Figure U21.9 shows the initialized graph of Fig.
U21.8. Numbers in parentheses indicate (capacity, flow). All arcs
are undirected.
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Fig. U21.9: Example to illustrate maximal flow calculation

Application of step 2 (labeling) to the network of Fig. U21.9
results in the augmentation path illustrated in Fig. U21.10.

Fig. U21.10: Results of first step 2 iteration

Application of step 3 (augmentation) to the network of Fig. U21.10
results in the network of Fig. U21.11.

Fig. U21.11: Results of first step 3 iteration
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We now apply step 2 again (labeling), this time to the network of
Fig. U21.11, resulting in the augmentation path of Fig. U21.12.

Fig. U21.12: Results of second step 2 iteration

We now apply step 3 (augmentation) again, this time to the
network of Fig. U21.12, resulting in the network of Fig. U21.13.

1

3

2

Fig. U21.13: Results of second step 3 iteration

When we try to apply step 2 again, we find that, beginning with the
source node s, we are unable to label any other node since all arcs
leaving s are at capacity. So we go to step 5, where we terminate
the algorithm, with the maximal flow recognized as 4.

Example 9: Figure U21.14 shows another example. Use the
algorithm to determine the maximal flow for this network for the
case of:

a. All arcs are undirected. The correct answer is 16. Try it!
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b. All arcs are undirected except for [1,2] which may have
flow only in the direction 1 to 2. The correct answer is 15.

1

2

Fig. U21.14: Example to illustrate maximal flow algorithm

Below is the answer to part (b). This is taken from [12]. Notice that
the nomenclature on the diagrams is (flow, capacity) instead of
(capacity, flow) as we have used in previous examples.

The two problems, (a) and (b), have different answers because of
the last step below (called “Fig. 14”) where, with a directed arc in
the center, we may reduce the flow on (1,2) to only 0, and thus
take only capacity of the (1,n) arc to 7. With undirected arc in the
center, we can push the flow on (1,2) to -1 (thus flowing +1 from
node 2 to node 1) and thus take advantage of one more unit of
capacity in (1,n) where it goes to 8.
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The flow network is shown below:

Initial flows

Fig. 6

Flows and augmentation paths:

Sink Mode
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A Minimal cut
o
pa]

Fig. 11
Fig. 14

Observe in the “Fig. 14” above that the capacity of the minimal cut
IS 7+0+8=15 and not 7+3+8=18. The implication is that the

capacity of a directed arc contributes non-zero capacity only if it
has flow.

We think about this in 2 other ways:

e A directed arc has two different capacities: 0 and c, so if the
flow on a directed arc is zero, then its capacity is considered to
be zero.

o If we repeat the problem without the arc (1,2), the result of Fig.
14 above is the same.
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U21.7.2  Representation of multiarea system as a network flow problem

KEY IDEAS FOR THIS SECTION:

e A power system with components (area generation,
transmission between areas, and area load) can be
represented as a network flow problem like we
have studied above. Area generation, inter-area
transmission, and areas loads are represented with
arcs having capacity and flow.

e We will utilize nomenclature where X; represents
the capacity designation of component j, x;=1,...,N,
e.g., X=1 designates zero capacity, and Xx;=N
designates the maximum capacity.

e Recall a “state” is a capacity designation for all
arcs. A system state is represented by a vector

X=(X1 X2 ...XN)

e \We may identify whether a system state is a failure
or success state by running a max flow onit.

e \WWe may obtain probabilities of a component’s
capacity, and (under an independence assumption),
we may obtain probabilities of a system state.

The material in this subsection is adapted from [12].

Consider again the networked three area interconnected system
illustrated in Fig. U21.6, repeated here for convenience, where we
have changed the area designation from A, B, Cto 1, 2, 3.
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Area 1l T1

Area 2

T2
Area 3

Fig. U21.15: Three networked interconnected areas
Assume the following data for this multiarea system:
Area 1: installed capacity = 500 MW, Load=400 MW.
Area 2 installed capacity=600 MW, Load=500 MW.
Area 3 installed capacity=500 MW, Load=400 MW.
Transmission capacity T1=T2=T3=100 MW.

T3

Problem: Determine whether the system with all components up is
a loss of load state or not. This means that we want to determine

whether a particular system state is a failure state or not.
How can we represent this as a network flow problem?

Represent all possible generation as originating from the source
node and all possible load at the sink node. The other elements are

represented as follows:

» Generation arc: A directed arc from source node s to node i,
with capacity c(s,i) represents a particular discrete capacity state
for area 1 (these capacity states can be obtained from the
capacity outage table for area i). Of course, these capacity states

have their corresponding probabilities.

« Transmission arc: An undirected arc between nodes i and |j
having capacity c(i,j) represents a particular discrete capacity
state of the transmission between areas i and j. The transmission

states also have their corresponding probabilities.

« Load arcs: A directed arc between node i and the sink node t
represents the load in area i. We will assume these loads to be

fixed.
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Note that generation and load are represented using directed arcs
and transmission is represented using undirected arcs. This is a
result of the fact that generation and load flow is in one direction
only, whereas transmission flow can be in either direction.

The particular state of interest for the three area system in Fig.
U21.15 and the data provided (in terms of the generation capacity
In each area, the transmission capacity in each area, and the load in
each area) are represented using the network flow problem in Fig.
U21.16, where values beside each arc represent (capacity,
flow)/100.

Fig. U21.16: Example to illustrate maximal flow algorithm

We can detect whether the state is failure or not by performing
max-flow and then checking whether the max flow equals the sum
of the load arc capacities. In this case, that would be 4+5+4=13.

Fig. U21.17 provides a sequence of max-flow algorithm steps for
the network flow problem of Fig. U21.16. The dark lines indicate
the augmentation path at each step.
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(4.4)

(1 0) t

-

(1,0\
@4)

Fig. U21.17: Example to illustrate maximal flow algorithm

Notice that our first three augmentation paths were intentionally
chosen to force the load of each area to be served by generation in
that area, if possible.

However, the flow pattern for a particular max-flow problem is not
unique (the max flow value itself is unique). This can be observed
by repeating the above max-flow problem but choosing a different
sequence of augmentation paths. Fig. U21.18 illustrates.

13
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Fig. U21.18: Example to illustrate maximal flow algorithm
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Fig. U21.18: (Continued from previous page)

In the case of Fig. U21.18, the max-flow is still 13 but the final
flow pattern has Area 2 assisting Area 3.

In any case, we have determined that the system state
corresponding to all components in service is not a failure state.

If each area has only a single 2-state unit (up or down) and if each
transmission circuit between areas is represented as a 2-state
component (up or down), then we have a total of 6 components,
each with 2 possible states. Therefore the total number of (system)
states to evaluate is 26=64 states.

To obtain the system LOLP, then, we must determine whether each
state is a failure state or not. A straightforward enumeration
approach would be to perform a max-flow calculation for each and
every state and then add the probabilities corresponding to the
states where the max-flow did not reach the total load. This is
probably do-able for a 64 state system.
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But let’s consider a slightly more realistic situation where the
installed capacity of each area is actually comprised of multiple
units. We would then need to use our convolution technique to
identify each capacity (or capacity outage) level for each area. In
this case, the total number of system states can be very large, even
for a three area system.

For example, consider characterizing our 3-area system using the
data of Table U21.13. This data was generated using 100 MW
generator units, each with availabilities of 0.8 (FOR=0.2). Note
that it is a capacity table (rather than a capacity outage table). The
data for each area in this table was generated by convolving the
vector (0.8, 0.2) a number of times equal to the number of units in
each area.

Table U21.13: Generation data for 3-area system

Area l Area 2 Area 3
Cap Prob Cap Prob Cap Prob
600 | .262140

500 .32768 500 | .393220 500 .32768
400| .40960 400 | .245760 400 .40960
300 .20480 300 | .081920 300 .20480
200| .05120 200| .015360 200| .05120
100| .00640 100| .001536 100| .00640

0 .00032 0| .000064 0 .00032

Each of the three transmission lines have availabilities of 0.99
(FOR=0.01).
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Possible capacities for the various arcs in our network are given in
Table U21.14. We have also identified each arc capacity with a
number.

Table U21.14: Possible capacities of each arc & capacity
designations

capacity Possible capacities for each arc j
designations, [ _ . . . .
Xi )71 )=2 J)=3 J=4 =5 )=
7 600
6 500 500 500
5 400 400 400
4 300 300 300
3 200 200 200
2 100 100 100 100 100 100
1 0 0 0 0 0 0

So we can see from Table U21.14 that (read “=>»” as “indicates that”):

X2:79C2:600.

X1=6=»C1=500; x2,=6=2C,=500; x3=6=2C3=500;
X1=5=»C1=400; X,=5=C,=400; x3=5=C3=400;
X1=4=>»C1=300; Xx,=4=>C,=300; x3=4=2C3=300;
X1=3=2C1=200; x2=3=>C,=200; x3=3=>C3=200;
X1=2=»C1=100; x,=2=C»=100; x3=2=C3=100; x4=2=>C4=100;
X5=2=9C5=100; xe=2=2Cs=100;
X1=1=»C1=0; Xo=1=2C,=0; X3=1=C3=0; x4=1=>C,=0;

X5:19 C5:0; X6:19 C6:0;
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We may also tabulate the cumulative probabilities, which are
Pr[X;<x;] for each arc j and each value it may take. For example,

Pr{X, <5] = Pr[X, < 4] =0.2048+0.05120+ 0.0064 + 0.00032 = 0.2627

which come from Table U21.13 above.

These cumulative probabilities are given in Table U21.15 and will
prove helpful (in our treatment of decomposition) in computing
state probabilities.

Table U21.15: Cumulative probabilities for each capacity
designation of each arc

capacity Cumulative probabilities for each arc j
designations, [ _ , . . .

X; J=1 J=2 J=3 =4 J=5 J=6
7 1.0

6 1.0|.737860 1.0

5 67232 | .344640 | .67232

4 26272 |.098880 | .26272

3 05792 |.016960 | .05792

2 .00672 | .001600 | .00672 1.0 1.0 1.0
1 .00032 | .000064 | .00032 01 01 01

The capacity designations of Table U21.14 allow us to define the
system state, x as

X =[Xy X3 X3 X4 X5 Xe]

For example, the system state corresponding to maximum capacity

of all elements would be
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x=[6 76 2 2 2]

which also happens to indicate the number of possible values for
each arc, from which we can identify that there are
6x7x6x2x2x2=2016 system states.

How do we obtain the probability of a particular system state?
Assuming that the capacity of the set i of elements is independent
of the capacity of the set j of elements, the probability of a
particular state is given by:

PI‘()_() — EII Pr(Xj) (U21.9)

For example, the probability of the state corresponding to
maximum capacity x=[6 7 6 2 2 2] is given by:

Pr(x) = Pr(x;) x Pr(x,) x Pr(X3) x Pr(x,) x Pr(xs) x Pr(xg)
—0.8° x0.8% x0.8% x0.99x0.99 x 0.99

=0.3277x0.2621x0.3277x0.99x0.99 x0.99
=0.02731149

This indicates it is not very likely that at any given moment, we
will find all of the components up in this system! Systems with a
large number of not-very reliable components are always like this
(the 16 generators have availabilities of only 80%).

On the other hand, the probability of the state corresponding to
minimum capacity x=[1 1 1 1 1 1]is given by:

Pr(x) = Pr(x;) xPr(x,)xPr(X3) xPr(x,)xPr(xs)xPr(xg)
—0.2°x0.2% x0.2° x0.01x0.01x0.01
—0.00032 x0.000064 x 0.00032x0.01x0.01x 0.01

~6.5536x10718



Module PE.PAS.U21.5 Multiarea reliability analysis 60

and so we see that it is extremely unlikely that at any given
moment, we will find all of the components down in this system.

Notice that the above calculations are according to the binomial
distribution, as given in Module U10, according to:

n!

P, =Pr[X=r,n,pl=——— L p'@-p)"" (U21.10)
for r failures out of n components where each component has
failure probability of p.

Just to illustrate, we use the binomial distribution to compute the
probability of a general state, say, x=[2 4 6 1 2 2], according to:

Pr(x) = Pr(x;) x Pr(x,) x Pr(x3) x Pr(x,) x Pr(Xs) x Pr(X;)
=5(.24)(.8) x 20(.2%)(.8%) x 0.8° x 0.01x 0.99 x 0.99
= 0.0064 x 0.0819x 0.3277 x 0.01x 0.99 x 0.99

—~1.6838x10°°

Note that the convolution technique used to generate Table U21.13
IS a more general way to get the individual probabilities Pr[x;] used
in the above calculations (the binomial distribution only works
when all components have the same failure probability).

We define the states corresponding to the maximum and minimum
capacities as M and m, respectively, i.e.,

M=[676222landm=[1 1111 1]

We may then enumerate all 2016 states from the minimum state to
the maximum state as follows:

Statel: m= [111111]
State 2: [211111]
State 3: [221111]

Staten:. M= [67 6 2 2 2]
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It is clear that we can obtain the probability for any particular
system state that we like. This fact motivates the following
algorithm for computing loss of load probability.

LOLP=0
For i=1,n,

Perform max flow for state i

If failed state, LOLP=LOLP+Pr(state i)
End

However, it is obviously extremely computationally intensive,
since we must perform a max-flow computation for every single
state. We refer to this approach as “enumeration.” Clearly, we need
a better way!

There are 3 alternatives to enumeration, as follows:

1. Decomposition: This method treats groups of states rather than
individual states by decomposing the states into sets.

2. Monte-Carlo Simulation: Here, states are sampled from the
state-space and indices are computed by statistical inference.

3. Hybrid: Here, a combination of decomposition and simulation
methods are employed, leading to the so-called decomposition-
simulation approach.

We will discuss only the decomposition approach.
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U21.7.3 The decomposition approach
KEY IDEAS FOR THIS SECTION:

o A-sets: A set of acceptable states can be identified
as all states between

o the state where all arc capacities are set to the
max flow level of a success state, and

o the maximum state.

This set may be identified with one max flow
calculation.

e Probability of an identified set of states can be
efficiently computed using cumulative probabilities
for each component.

o | -sets: A set of failure states may be identified as
all states between

o the minimum state and

o the state where all components are at
maximum capacity except one, and the
capacity of that one is just below the capacity
that is required for success.

This set may be identified with one max flow
calculation.

e U-sets: Sets not identified as acceptable or failure
sets are unidentified sets. We can further
decompose unidentified sets in A-sets and L-sets.
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The material in this subsection is adapted from [12], which was
motivated by [17].

The decomposition approach proceeds by dividing all of the states
into sets of three different types, described as follows:

« Sets of acceptable states, Ax: These sets consist of states that
have the load satisfied in every area.

 Sets of system loss of load states, Lx: These sets consist of states
that have at least one area experiencing loss of load (also called
unacceptable states).

 Sets of unclassified states, Ux: The states in these sets have not
been classified into acceptable or unacceptable states.

Initially, of course, all states are unclassified and therefore are
contained in Set U. The approach is to decompose this initial set
into A, L, and U subsets, and then repeat the procedure on the
remaining U subset until a desired level of decomposition is
achieved.

Consider an unclassified set S consisting of states {xi, x...} [note
that x1 denotes “state 1” whereas X; (without underline) denotes
“the capacity designation of arc 1”’] defined by a maximum state M
and a minimum state m such that

S={xi: m<xi <M} (U21.11)

The notion of what it means for one set to be less than or equal to
another is similar to the notion of “between,” but we will provide
some more clarification. The above means that, for all |,

« the j™ element of m must be less than or equal to the j™ element
of xj, and

« the j™ element of x; must be less than or equal to the j™ element
of M.

Mathematically, we say that:
M<Xi <M= m<x;<Mj v (U21.12)
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Soifm=[1 1111 1]andM=[6 7 6 2 2 2], then the set
defined by S={x; : m < x; < M}

« would include, for example,
[111111]
[L11112],

[6 76 2 2 1],
[6 76 22 2]

 but would not include, for example,
[L11110]and
[6 75 2 2 3]

Using a simpler example, let’s assume the three transmission lines
are assumed to be un-failable. Then their states are fixed to “2”. So
ifm=[1 1122 2]andM=[2 2 2 2 2 2], then the set defined

by S={xi : m < xi <M}
e would include

[1112272]
[1122272]
[1212272]
[1222272]
2112272
2122272
2212272
2222272]

 but would not include, for example,
[2 2322 2]
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We observe that in specifying S={x; : m < x; < M}, the ordering of
the set is unimportant; rather, what is important is the satisfaction
of the inequality:

Mm<Xi<M=2> m;i< Xijj < Mi ¥j (U21.12)

l.e., that each element of m be less than or equal to each
corresponding element of M.

With this definition, we can describe the first step of the
decomposition approach where we identify the A-set.

Identification of the A-set

Suppose we set all the arc capacities of the network model equal to
the capacities in the max state and make a max flow calculation
such that the max flow is equal to the sum of the area loads and is
therefore an acceptable state (if the max state is unacceptable, then
LOLP=1.0, i.e., there are no success states). Then the max state is
obviously a success state, i.e., no area suffers loss of load.

This information can be even more useful, however, if, in this max
flow solution, we have arcs for which the flows are not at
maximum capacity, because, for such arcs,

 another acceptable state can be identified immediately as the
one with each arc capacity reduced to the flow level of the max
state max flow

 and all states between this state and the max state are also
acceptable.

Let’s give some notation to this idea. Let fj(M) denote the flow
through arc j for this max flow condition. Then a vector u can be
so defined that its j™" element is given by:

uj=capacity designation of arc j that has capacity equal
to the flow through arc j, f;(M).
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To illustrate, recall that Figure U21.17 gives the capacities and
flows corresponding to the max state and max flow for our
example system, repeated below for convenience:

Fig. U21.19: Max flows for max state

Here, we observe that no generation or transmission arc flow is at
maximum capacity, but rather fi[M]=4<5, f,[M]=5<6, f3[M]=4<5,
fa[M]=0<1, fs[M]=0<1, and fs[M]=0<1. The capacity designations
for these arcs corresponding to capacities equal to the flows are
u1=5, u,=6, us=5, us=1, us=1, us=1, so that the vector u is:

u=[56 5111]

If a state is such that capacities of all the arcs are equal or higher
than the corresponding arcs in u, then that state will also be
acceptable. Therefore all states between u and the max state
constitute an A-set, that is,

A={Xi:u<xi <M} (U21.13)
More explicitly,

A={xi:[6565111]<xi<[676222]}

There are, for each arc, two possible capacities. Therefore, the
number of acceptable states in this A-set is 2x2x2x2x2x2=64,

Thus, we can see that by making one max-flow calculation, we
have been able to classify 64 states as acceptable. In the
straightforward enumeration scheme, this would have required 64
max-flow calculations. So we made a considerable computational
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savings. This is good progress, addressing 64/2016=3.2% of states,
but we still have 2016-64=1952 states to evaluate.

What about the total probability corresponding to this A-set.
Clearly the brute-force approach is to simply compute the
probability of each and every state in the set and then sum these
state probabilities.

However, a simpler approach results from observing that we want
to obtain the joint probability of all six events designated by
ui=x;j<M; for j=1,...,6. If we assume these are independent events
(which is reasonable for components that fail independently), then
we have:

PI’[A] :PI’[(U1SXi1S|V|1)ﬂ(U2SXi2SMz)ﬁ(UgSXigﬁMg)
ﬁ(U4SXi4SM4)ﬁ (U5SXi5SM5)ﬁ(UGSXiGSM6)]

=Prui<xiz<M1]xPr[uz<xiz<M2] xPr[us<xiz<M3s]xPr[us<xis<M4]
6
XPf[UsSXi5SM5]XPr[u6gxi6§MG]:H Pr[uj < Xij <M j]
J:

(U21.14)
Now what is Pr[uj<x;j<M;]? This is nothing more than

Priui<x;i<M;]=Pr[(Xij=up)w. .. U(Xi=M;)]=Pr[xi=u;]+...+Pr[x;j=M;j]
(U21.15)
Substitution of (U21.15) into (U21.14) yields:

Pr[A]=1£[Pr[uj <x¥ <M|]

=1

- 6 {Pr[xij :Uj]+...+Pr[Xij = MJ]} (U21.16)

=L

Thus, we see that to compute the probability of the A-set (or any
specified range of sets), we first calculate the sum of probabilities
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of all states between the max and min state for a given arc. Then
we multiply these cumulated arc probabilities to find the set
probability. In practice, the sum can be found more readily by
taking the difference in the cumulative probabilities, i.e.,

6

Pr[A] =H{Pr[xij <M;]-Pr[x; <(u; _1)]} (U21.17)

j=1

For our example problem, we have 6 arcs, so we must compute 6
cumulated probabilities. Recalling that the A-set is specified by

A={x;:[565111]1<x<[676222]}
we see that:
« The arc 1 cumulated probability is given by:
PI’[Xi1:5]+PI‘[Xi1:6]

which are the probabilities of having 1 or 0 Area 1 gen-units out
of service, respectively. Recall Table U21.15, repeated here for
convenience.

capacity Cumulative probabilities for each arc j
designations, [ _ _ _ _ .
Xi )71 )72 =3 =4 J=5 )=
7 1.0
6 1.0] .737860 1.0
5 67232 | .344640 | .67232
4 26272 | .098880 | .26272
3 .05792 | .016960 | .05792
2 .00672 | .001600| .00672 1.0 1.0 1.0
1 .00032 | .000064 | .00032 01 01 01
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Using cumulative probabilities results in (from Table U21.15)
Pr[xi1<6]-Pr[xj1<4]=1.0-.26272=.73728
(Notice Pr[xj1<6]-Pr[xi1<4]=Pr[xi1=6,5,4,3,2,1]-Pr[xi1=4,3,2,1]

:Pr[xi1:6,5]).

Once again, recalling that the A-set is specified by
A={x;:[565111]<x<[676222]}

then...
« The arc 2 probabilities are:

Pr[Xi2=6]+Pr[Xi2=7]=Pr[Xi2<7]-Pr[xi2<5]=1.0-.34464=.65536

The arc 3 probabilities are:

Pr{xis=5]+Pr[Xis=6]=Pr[xis<6]-Pr[xix<4]=1.0-.26272=.73728

The arc 4 probabilities are:

Pr[xis=1]+Pr[xis=2]=Pr[xiu<2]-Pr[xis<0]=1.0-0=1.0

The arc 5 probabilities are:

Prxis=1]+Pr[Xis=2]=Pr[xis<2]-Pr[xis<0]=1.0-0=1.0

The arc 6 probabilities are:

Prxis=1]+Pr[Xxis=2]=Pr[xie<2]-Pr[xis<0]=1.0-0=1.0

The probability of the A-set then becomes:

(3728x.65536x%.73728x1.0x1.0x1.0=.356242

With 1 max-flow calculation, although we only addressed 3.2% of
states, we obtained knowledge of 35.6% of the probability space!

Identification of the L-set

1. Essential

Recall that an L-set is a set of failure states.

idea The essential idea for identifying L-sets is as follows. For any

particular component j, it may be possible to identify a capacity v;
for which any lower capacity Xij<v; necessarily results in loss of

Attempt to tell you how we will proceed from here...we will
approach the identification of the L-set in the following way:
1. Essential idea

2. What to do with it once you have it: probability calculation
3. What to do with it once you have it: overlapping sets.

4. How to find an L-set? Concept

5. How to find an L-set? Algorithm

6. How to find an L-set? Picture.

7. How to find an L-set? Underlying rationale.
8. Example.
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2. What to do
with it once
you have it:
probability
calculation.

load, independent of the capacities of other arcs. If this is the case,
then all states with x;j<v; are members of the L-set.

Therefore, if m and M are the minimum and maximum states, and
if we can find v; for component 1, then

v,-1 M, M, - M [V,
{ m m, m ] {Vl
where the L1 set is comprised of all states between the lower state,
denoted V ,, and the upper state, denoted V 1, i.e.,
Li={xi:V,<xi<V1} (U21.19)

The significance of this L set is, if arc 1 is between m; and vi-1
(inclusive), we have loss of load irrespective of other arc values.

1

(U21.18)

1 2 3 n

The probability of this L-set, Pr[L1], is computed in the same way
that we computed the probability of the A-set from (U21.17), i.e.,

PriL]= f[{Pr[Xi,- <Vyl-Prix, <(Vy, -DI}  (U21.20)

Expanded, (U21.20) becomes,
PriL1={Prlx, < (v, —D]-Pr[x, < (m, -1)]}
x{Pr[x, <M,]-Pr[x, <(m,-1)]}

><{Pt‘[Xi:,> < M,]-Pr[x,; <(m, _1)]}
. (U21.21)

x{Pr[x, <M, ]-Pr[x, <(m,-1)]}

n —
The 2" probability in each term is 0 since no state may be <m;.

A similar idea holds for the other arcs as well. For example, we
need to find v, such that there is no failure but if the system goes to
the next lower state v»-1, there will be failure (loss of load). This
also identifies an L-set.
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3. What to do
with it once
you have it:
overlapping
sets.

L', = “

2

(U21.22)
m m,m m

3 o e o

{I\/Il v,-1 M, - M

1 2

Now this is a legitimate L-set, i.e., all states are loss of load states.
However, there is overlap between L; and L’ that include the
following states:

v-1 v,-1 M, --- M
LZmLIZZ{l 2 3

m
It is easier to compute probabilities that we can use in the final
LOLP calculation if we maintain disjoint (nonintersecting or
nonoverlapping) L-sets. Therefore, we define the second L-set as:

{Ml v,-1 M, -+ M {vz
L, = = (U21.24)
Y m m m V,

3 o V.

n

(U21.23)

m m m

1 2 3 n

1 2

where it is clear that component j=1 is constrained to take on only
values that are outside of the L; set. Therefore, this set is
comprised of failed states that are not included in L.

The probability of this set is given similar to (U21.20):
PrIL,1=TT{Pr[x, <Va2;]-Pr{x, < (V,, -1)]} (U21.25)
j=1

Similarly, the third L-set is given by:

{Ml M, v,-1 -+ M, {vg
L, = = (U21.26)
vV, V m m V,

1 2 3 n \'

and its probability given by
PrIL,] = TT{Pr[X, <V ]1—-Prlx; < (V.; —D]} u21.27)
j=1



4, How to find
an L-set?
=» Concept.
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In general, if there are n arcs, there will be n L-sets generated, and
the k" set is given by:

L — M, M, M, - M, v.-1 M, - Ivln_ Vi
‘ Vi v, Vs Via m, me, - m V,
(U21.28)

An important guestion is, at this point:

How to find vy, the capacity of the k™ component such that
there is no failure (loss of load) but if the system goes to the
next lower state vi-1, there will be failure (loss of load)?

The obvious approach is, beginning with the maximum state M,
decrease the k™ component capacity by 1, and run the max flow to
see if the tested state is a failure state. If we repeat this over and
over, we are guaranteed to identify vy, or, alternatively, to identify
that changes to the k™ component’s capacity cannot cause system
failure. However, the computational cost of doing so is significant,
since it requires that we run a max flow for every tested capacity of
the k™ component’s arc.

Another method that would decrease this computational cost would
be the so-called bisection approach where our first capacity tested
Is halfway between My and my. If it is a failed state, then we test
the one halfway between it and M. If it is not a failed state, then
we test the one halfway between it and my, continuing in this
manner until we identify vy or until we identify that changes to the
k" component’s capacity cannot cause system failure.

Yet, there is a better method that only requires a single max flow.
It is based on the following premise.

Let arc k be connected from node i to node j.

« If, in the max flow calculation of the maximum state, arc k
carries flow fi to its terminating node j, and

« if, without arc k, the network has ek residual capacity to carry
flow from the source to that terminating node j,
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then the state with greatest capacity of arc k (and all other arcs
at maximum capacity) that is a failure state is when arc k
capacity is decreased by more than ex.

The implication is that if the flow in arc k is reduced by ey, this

much flow can be sent through the unused capacity of the
remaining network without having system loss of load. Thus, vk
(which indicates the capacity just higher than the capacity
necessary for failure) corresponds to the state with capacity equal

to erjust-greaterthan fi-ex.
= howtofind | VVE summarize the steps for iglentifying vk as follows. Assume that
an L-set? arc k connects node i to node j.
Algorithm.

1.

This algorithm
begins from the
U set being
decomposed. At
the beginning,
this “U-set” is
the full set, and
the “maximum
capacities of the
U set being
decomposed” is
M.

Set all states of the network to the maximum capacities of the U (3
set being decomposed (initially, this would be M).

2. Find the max flow using the max flow algorithm.
3. If the max flow found is less than the total demand, then there is

4.

loss of load in at least one area; thus the entire set U is an L set.
Identify v as follows:

As we have seen, the max
flow solution is not
unique. This means there
is not a unique
decomposition process,
i.e., each max-flow
solution can generate its
own series of A, L, and U
sets. | believe the final
result will always be a
unique set of A, L, and U
sets. However, | have not
proved this, nor have |
been able to find a proof
for this in the literature,
though I have not
tried/looked too hard.

a. Remove the k™ arc. Retain(preserve) flows found in step 2
on all other arcs by letting new capacities of all remaining
arcs equal to their original capacities less their flows. In
other words, let new arc capacities be the capacity
remaining of each arc in the step 2 max flow.

b. Find the maximum additional flow from node s to node |,
or, equivalently, find the maximum flow from node s to
node j with all arcs at their new capacities. This is done by
simply identifying node j as the sink node and running the

max-flow algorithm. Denote the maximum additional flow
from node s to node j as ex.

c. Identify the desired component k capacity designation
such that the corresponding capacity is equal to erjust

greater—than fi-ex. This is vk. Failure occurs for any
component k capacity designation less than vy.
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6. How to find
an L-set?
Picture.

7. How to find
an L-set?
Underlying
rationale.

8. Example.

The picture below illustrates (arc k is really internal to the bubble).
Max Flow on Orig NW

All arc capacities
set to cj-fj

The reason this works is as follows:

e If, with arc k in the network, the max flow from s to t is F, with
fi on arc k, and this is a success (all load arcs to t at capacity),

e and if the max additional flow the network is capable of
providing from s to j is ek (established by our max-flow s to j
calculation with arc k out and other arc capacities adjusted),

e then reducing arc k capacity below fx-ex must result in a max
flow less than F (which is therefore a failed state), because the
arc k capacity is below fx-ex, yet there is only ek capacity in the
rest of the network.

To illustrate using an example, recall that Figure U21.20 gives the
capacities and flows corresponding to the max state for our
example system, repeated below for convenience:

Fig. U21.20: Max flows for max state

Residual Flow on Modified NW

Since a max flow
is not unique, is it
possible that
reducing arc k
capacity below
fk-ex might still
result in a max
flow of F because
the max flow
algorithm
discovers a
different flow
pattern? The
answer is “no” but
need to give
explanation/proof.
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Also, recallthatm=[1 1 1 1 1 1JandM=[6 7 6 2 2 2]. Thus,
by (U21.18), L is given by:

I L A VA 172
' m m m - m |V,

1 2 3 n -

(U21.29)
) {vl—l 76 2 2 2

11 11111

Applying step 4 to find vi, we remove arc 1 (generation for Area
1). Fig. U21.21 shows the network with arc 1 removed and other
flows as in the solution to the max-state max-flow problem given
in Fig. U21.20.

(V !
(1,0) t
© @ @

(1.0\
(5,4 W

Fig. U21.21: Max flows for max state with arc 1 removed

Fig. U21.22 shows the arc capacity values adjusted to the new
values corresponding to the difference between the flows in the
max-flow solution and the old capacities, i.e., the residual
capacities. Note that all load arcs have zero capacity, and node 1
(the terminating node for arc 1) is now modeled as the sink node.
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Fig. U21.22: Network with arc 1 removed using residual capacities

Applying the max-flow algorithm to the network of Fig. U21.22,
we obtain the flows indicated in Fig. U21.23.

Fig. U21.23: Network with arc 1 removed using residual capacities

Thus, we see that the residual capacity in the network is e1=2. Since
from Fig. U21.20, the arc 1 flow in the max-state max flow condition
was fi=4, we can conclude that with arc 1 capacity at fi-e1=4-2=2, the
state will be just acceptable (any additional capacity decrease in arc 1
will result in a failure state). This means that vi corresponds to the arc 1
capacity of 2 (or 200 MW). Reference to Table U21.14, repeated
below for convenience,

Table U21.14: Possible capacities of each arc & capacity designations

capacity Possible capacities for each arc j
designations, X;
j=1 j=2 j=3 j=4 j=5 j=6

7 600

6 500 500 500

5 400 400 400

4 300 300 300

3 200 200 200

2 100 100 100 100 100 100
1 0 0 0 0 0 0
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indicates that the 200 MW capacity designation for arc 1 is 3, thus,
v1=3. Therefore, (U21.18), repeated here for convenience,

v—-1 M, M., --- M vV
L, ={ 1 2 e ” ={ ' (U21.18)
m, m, m; - M Vi
IS, in this case,
2 7 6 2 2 2 (v,
L, = = (U21.30)
1 11111 |V,

This is 2x7x6x2x2x2=672 states, which is 672/2016=33% of the
states.

Similarly, we may repeat the step 4 procedure for arcs 2 and 3,
obtaining e,=2 and e3=2. It is unnecessary to repeat the procedure
for arcs 4, 5, and 6 (the transmission arcs) since their flows in the
max-state max flow are zero, implying that it is not possible to
change their capacity in a way that will cause a failure state.
Effectively, this means that the L-sets for these arcs, L4, Ls, and L,
are empty.

Since from Fig. U21.20, the arcs 2 and 3 flows in the max-state
max flow condition were f,=5 and f3=4, we can conclude that with
arcs 2 and 3 capacities at f>-e,=5-2=3 and f3-e3=4-2=2 in their
respective states, these states will be just acceptable (any additional
capacity decrease in arc 2 in its state or in arc 3 in its state will
result in a failure state). This means that v, corresponds to the arc 2
capacity of 3 (or 300 MW) and vscorresponds to the arc 3 capacity
of 2 (or 200 MW).

Reference to Table U21.14 indicates that the 300 MW capacity
designation for arc 2 is 4, thus, vo=4. Therefore, (U21.21) is

_636222_{V2

= - (U21.31)
311111 |,
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This is 4x3x6x2x2x2=576 states or 576/2016=28.6% of the states.

Note that the element corresponding to the component 1 in the
lower state was set to v; S0 as to maintain disjoint sets.

Reference to Table U21.14 indicates that the 200 MW capacity
designation for arc 3 is 3, thus v3=3. Therefore, (U21.26) is

6 7 2 2 2 2 [V,
L, = = (U21.32)
341111 |V,

This Is 4x4x2x2x2x2=256 states or 256/2016=12.7% of the states.

Now compute the probabilities. The probability of the L; set is
given by (U21.20) or (U21.21). Using the appropriate cumulative
probabilities from Table U21.15, we find:

PrIL]=TT{PrIx, <Vu]1-Prlx, < (V. -1}

= {Pr[x, <2]-Pr[x, <0]}
x {Pr[x, < 7]—-Pr[x, < 0]}
x {Pr[x, < 6] —Pr[x, < 0]}
x {Pr[x, < 2]-Pr[x, <0]}
x {Pr[x, < 2]-Pr[x, <0]}
x {Pr[x, < 2]—-Pr[x, <0]}

={.00672—o}><6{ 0}x{1-0}x{1-0}x{1-0}x{1-0}

=.00672

The probability of the L, set is given by (U21.22). Using the
appropriate cumulative probabilities from Table U21.15, we find:

PrL,]=TT{Prx, <V2;]-Pr[x, <(V,, -1}
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= {Pr[x, <6]—Pr[x, < 2]}

x {Pr[x, < 3]-Pr[x, < 0]}

x {Pr[x, < 6]—Pr[x, < 0]}

x {Pr[x, < 2]-Pr[x, < 0]}

x {Pr[x, < 2]-Pr[x, < 0]}

x {Pr[x, < 2]-Pr[x, < 0]}
={1-.00672}x {01696 — 0}x {1 0}x {1-0}x {1-0}x {1-0}
=.016846

The probability of the Ls set is given by (U21.27). Using the
appropriate cumulative probabilities from Table U21.15, we find:

PriL,] = H{Pr[x <V ]-Prx, < (Vo -1}

= {Pr[x, <6]-Pr[x, < 2]}
{Pr[x, < 7]-Pr[x, < 3]
{Pr[x < 2]-Pr[x, <0]
{Pr[x, < 2]-Pr[x, < 0]
x {Pr[x, < 2]—Pr[x, < 0]
x {Pr[x, < 2]-Pr[x, < 0]}

={1-.00672}x {1-.01696}x {.00672 —0}x {1 - 0}x {10} x {1- 0}

=.00656164

The total probability of the L-sets is given by
Pr[L]=Pr[L1]+Pr[L2]+Pr[L3]=.00672+.016846+.00656164
=.03012764

X
X

X

j
j
j
j
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If we had no unclassified states, this would be the LOLP.
However, the number of states identified so far for A, L1, L2, L3 is
64, 672, 576, 256, respectively, for total of 1568 (1568/2016=
77.8%), so there are 2016-1568=448 remaining; we need to check
unclassified states. This is important because it provides us with an
accuracy indication of using the total probability of the L-sets that
have been identified so far as the LOLP.

Recall the probabilities of the various sets A, L1, L2, and L3 are
0.356242, 0.00672, 0.016846, and 0.00656164, respectively, for a
total probability of 0.38636964, and so, although there are only
448 states unclassified, those unclassified states comprise 1-
0.38636964=0.61363036 of the probability.

Identification of the U-set

We need to determine which states are unclassified. Recall that we
have identified:

» Acceptable (A) states as those between u and M. The basic
criterion here, for an acceptable state, is to say that all arcs must
be equal to or above their u-state capacity (the u-state is the one
with each arc capacity reduced to the flow level of the max state
max flow).

« Loss of load (L) states as those between V. ; and \7] for

j=1,...,n. The basic criterion here, for a loss of load state, is to
say that at least one arc must be below its v-state capacity (the
v-state is the one with one arc k capacity equal to fj-ej, which is
the amount just higher than the capacity necessary for failure).

Thus, we can say that a state remains unclassified if:
At least one arc is below its u-state capacity and
« All arcs are equal to or above their v-state capacity.

With these criteria, we may immediately write down a set of
unclassified states as:
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u-1 M, M, - M (U
U, ={ 1 2 e ” ={ b (U21.33)
Vi v, Voo ooV, U,
Similarly, we may write down another one as
. M o U~ 1 M 3 M n
U’ = (U21.34)
V, v, vV, -V

However, U’ would not be disjoint with Uy, i.e., the following
states would be included in both sets:

' {ul—l u,-1 M, --- M
U nNnU', =

Vl
As indicated in identifying L-states, this would create difficulties
in computing the total probability of the unclassified states.
Therefore, the second U-state should be:

o [Mou-t My M, (U Vst
“lu v, v, - v U, |

3 n

n

(U21.35)

Vv Vv Vv

2 3 e o 0 n

The third U-state is:
y {I\/Il M, u-1 - M
3:

3 n

{u ;
= (U21.37)
U, u, Vs eV U,

n

In general, there will be n U-sets generated, with the k™" U-set
given by:

u -1 M

k-1 k

1 u, u, e Uy Vi v

(U21.38)
The probabilities are computed as usual.
For our example, we have:

Mn_{
w VY

up
U,
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y_J4 76222 Ju
1343111 |u,
6 5 6 2 2 2 (U,
U2=< = <
543111 |U,
6 7 4 2 2 2 (U,
U3:< =
56 3111 |U

Total unclassified sets is
Ul: 2x4x4x2x2x2=256 states. U2: 2x2x4x2x2x2=128 states.

U3: 2x2x2x2x2x2=64 states. Total is 448 states, which is the same
the number of remaining states we obtained from adding up all the
A-set states and the L-set states.

ASIDE

Here is a good question I once received:

“l attempted a problem, however, | don't feel that | understand
conceptually what I am being asked to compute. Could you talk a little
more about the analysis method that you went through on Monday today
in class? | think my question boils down to:

ifL1=[276222;111111]then
whyisUL=[476222;343111]?

Shouldn't anything above [2 7 6 2 2 2] be considered acceptable
suchas[376222]and[476222]?”

SHORT ANSWER: L1 guarantees everything “between” [111111]and[27 622 2] is
failed, but it says nothing about something “above” [27 622 2]suchas[376222]and[476222].

The only guarantee on acceptable states comes from the A-set, which is
A={Xj:u<x,<M}={x;:[56 511 1]<x<[676 22 2]}

States “between” L-set upper bounds and A-set lower-bounds are unclassified.
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How did we
find u-state?
By setting
capacities to
the flows in
the max flow
solution!

How did we
find each
component’s
v-state
capacity? By
lowering
each
component’s
capacity
(with other
components
in max-state
capacity)
until we
failed the
system, then
the v-state
capacity is
the next
capacity up.

LONG ANSWER:

Remember that the criteria for an unclassified state includes:

« At least one arc is below its u-state capacity

A single vector gives the u-state capacities, from the A-set specification:
A={Xj:u<x;<M}={x;:[56 511 1]<x<[676 22 2]}

If just one element is below its u-state capacity, we cannot be certain the
state is acceptable. The u-state capacity that the first unclassified set needs to
be below is u;=5, i.e., u;-1=4. The remaining elements can be anything,
because if element 1 is 4 or below, then it cannot be guaranteed to be within
the acceptable set. Thus:

g w1l My My e M, [Uy 4 7T 6 2 22
' Vi Voo V3o Vo (Ugp (V1 v V3o W

The criteria for an unclassified state also includes:

« All arcs are equal to or above their v-state capacity.

The v-state capacity for element j, v;, is found from L;, which will have v;-1
in column j. Thus, we inspect L;, L,, and L3 below (notice underlined
numbers), and observe that

L1: 2 7 6 2 2 2: Vl V1'1=29V1=3;
111111 |,

6 36 2 2 2 [V,

L2 = = V2-1=3 9V2=4;
311111 V,

L3: 6 72 272 2: Vs V3-1=2 =>Vv;3=3;
34 1 111 V,

If all elements are above their v-state capacity, we cannot be certain that the
state is failed. Since it is not possible to limit the transmission lines enough
to definitely fail the system (independent of the other element states), we
consider their v-states to be their minimum states 1. Therefore:

U {ul—l M, M; .- M, {ul {4 76 2 22
1= =

Vl V2 V3 s Vn

lu, 1343111
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END ASIDE

Note that Ui, Us, and Us would have all three arcs 1, 2, and 3
above or equal to their u-capacities of us, uy, and us, respectively,
according to (U21.34). Any states for which this is true have
already been classified as acceptable, since the max-state max flow
indicated O flow on arcs 4, 5, and 6. Therefore, Us, Us, and Us are
empty sets and we can obtain Pr[U] as the sum of probabilities of
Ui, Uz, and Us. The appropriate calculations are given below:

Pr(U1)=(.26272-.00672)x(1-.01696)x(1-.00672)x1x1x1=.24997
Pr(Uz)=(1-.26272)x(.34464-.01696)x(1-.00672)x1x1x1=.23997
Pr(Us)=(1-.26272)x(1-.34464)x(.26272-.00672)x1x1x1=.1237
Pr(U)=Pr(U1)+Pr(Uz)+Pr(Us)=.61337

This completes the first stage of decomposition. At this stage, we
know that LOLP>P(L)=.03012764.

It is of interest to note the sum of probabilities for the three
identified sets, i.e.,

Pr(A)+Pr(L)+Pr(U)=.356242+.03012764+.61337=.99974

This probability should be 1.0, as all states have been classified;
the small difference can be attributed to round-off error.

However, we see that Pr(U) is quite large. This indicates that we
need to do some more work by decomposing the identified U-sets
into their resulting A-sets, L-sets, and U-sets. This should continue
until either no U set remains or the total probability of all U-sets is
below a certain threshold.

It is also possible to obtain area indices. This is done by
decomposing the L-sets into sets having identical area load loss
characteristics. Reference [12] addresses this issue together with
several other issues, including:

« Use of Monte-Carlo sampling for estimating contribution to
reliability indices from remaining nondecomposed U-sets.
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« Analysis including load uncertainty.
« Composite system analysis
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