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Module PE.PAS.U19.5 
Generation adequacy evaluation 

U19.1 Introduction 

Probabilistic evaluation of generation adequacy is traditionally 

performed for one of two classes of decision problems. The first 

one is the generation capacity planning problem where one wants 

to determine the long-range generation needs of the system. The 

second one is the short-term operational problem where one wants 

to determine the unit commitment over the next few days or weeks.  

We may think of the problem of generation adequacy evaluation in 

terms of Fig. U19.1.  

 



 

Fig. U19.1: Evaluation of Generation Adequacy 

In Fig. U19.1, we see that there are a number of generation units, 

and there is a single lumped load. Significantly, we also observe 

that all generation units are modeled as if they were connected 

directly to the load, i.e., transmission is not modeled. The 

implication of this is that, in generation adequacy evaluation, 

transmission is assumed to be perfectly reliable. 

We begin our treatment by first identifying the necessary modeling 

requirements in terms of, in Section U19.2, the generation side, 
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and, in Section U19.3, the load side. Section U19.4 describes a 

common computational approach associated with the generation 

capacity planning problem, and Section U19.5 illustrates how this 

approach is typically used for capacity planning. Section U19.6 

provides an alternative way of computing generation capacity 

planning indices. Section U19.7 briefly summarizes three 

important issues central to a more extended treatment of the topic.  

U19.2 Generator model 

In the basic capacity planning study, each individual generation 

unit is represented using the two-state Markov model illustrated in 

Fig. U19.2. 
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Fig. U19.2: Two-State Markov Model 

This model was described in Sections U16.4-U16.5 and Section 

U18.2.3 of modules U16 & U18, respectively (suggest reviewing 

U16, U16.4-U16.5), using Atptp )()( = , where p(t) is a vector of 

state probabilities and, with λjk and λj as transition intensities, A is 

the transition intensity matrix given by (for the general case) 



















−

−

=

nnn

n

n

A















1

2221

1121

 

Important relations for this model, in terms of long-run availability 

A and long-run unavailability U, are provided here again, for 

convenience, where m=MTTF, r=MTTR, µ and λ are transition 

rates (number of transitions per unit time) for repair (D to Up) and 

for failure (Up to D), respectively; T is the mean cycle time, and f 

is a “frequency” which gives expected number of direct transfers 

between states per-unit time. In U16.6.2, we show that f= λpup 

https://home.engineering.iastate.edu/~jdm/ee653/U16-inclass.doc
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where pup is the long-run probability of being up, i.e., it is 

p1(t→∞), p(t)=[p1(t), p2(t)]. We also show that 

• whereas λ gives the expected number of transfers from Up to D per unit 

time, given the system is Up, 

• f gives the expected number of transfers from Up to D per unit time, with no 

condition specified, and 

up

μ m m f SH
A= p = = = = =

λ+ μ m+r T λ FOH +SH
 (U19.1) 

D

λ r r f FOH
U = p = FOR= = = = =

λ+ μ m+r T μ FOH +SH
(U19.2) 

In (U19.2), the FOR is the forced outage rate. One should be 

careful to note that the FOR is not a rate at all but rather an 

estimator for a probability. The terms in the right-hand-expressions 

of (U19.1) and (U19.2) are defined as follows: 

• Forced outage hours (FOH) is the number of hours a unit was in 

an unplanned outage state;  

• Service hours (SH) is the number of hours a unit was in the in-

service state. It does not include reserve shutdown hours (a 

reserve shutdown exists whenever a unit is available but is not 

synchronized1). 

Module U18 also describes how one can approximate the effects of 

derating (the unit is operating but at reduced capacity due to, for 

example, the outages of auxiliary equipment such as pulverizers, 

water pumps, fans, or environmental constraints) and of reserve 

shutdown (very important for peaking units), by using the 

equivalent forced outage rate, EFOR, according to: 

hours derated

forcedshutdown 

reserve equivalent

  
hours

service
  

hours outage

forced

 
hours derated

forced equivalent
  

hours outage

forced

EFOR

++

+

=

 

 
1 See Section 4.8.1, “Reserve Shutdowns,” in “Powergads User Manual,” Integ Enterprise Consulting, at 

https://www.pjm.com/~/media/etools/egads/egads-user-guide.ashx.  

https://www.pjm.com/~/media/etools/egads/egads-user-guide.ashx
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ERSFDHSHFOH

EFDHFOH
EFOR

++

+
=   (U19.3) 

The basis for (U19.3) is not simple, and so we will not address it 

here. But it is very well explained in Module U18 (see Fig. U18.3).  

U19.2.1 Capacity outage table for identical units 

A capacity table is simply a probabilistic description of the 

possible capacity states of the system being evaluated. The 

simplest case is that of the one-unit system, where there are two 

possible capacity states: 0 and C, where C is the maximum 

capacity of the unit. Table U19.1 shows capacities and 

corresponding probabilities. 

Table U19.1: Capacity Table for 1 Unit System 

Capacity Probability 

C A 

0 U 

We may also describe this system in terms of capacity outage 

states. Such a description is generally given via a capacity outage 

table, as in Table U19.2. 

Table U19.2: Capacity Outage Table for 1 Unit System 

Capacity Outage Probability 

0 A 

C U 

Figure U19.3 provides the probability mass function (pmf)2 for this 

one-unit system. 

 
2 A PMF, for a discrete RV, provides for each value that the RV may assume, the probability of occurrence for the corresponding 
outcome of an experimental trial. Notationally, we write ( )xfX

to denote the PMF of the RV X. It may be interpreted as  xXP = , or, 

in words, “the probability that X equals x”, where x is any specific value that X may assume. 

https://home.engineering.iastate.edu/~jdm/ee653/U18-inclass.doc
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Fig. U19.3: pmf for Capacity Outage of One-Unit Example 
 

Now consider a two-unit system, with both units of capacity C. We 

can obtain the capacity outage table by basic reasoning, resulting 

in Table U19.3. 

Table U19.3: Capacity Outage Table for 2 Identical Units 

Capacity Outage Probability 

0 A2 

C AU 

C UA 

2C U2 

We may also more formally obtain Table U19.3 by considering the 

fact that it provides the pmf of the sum of two random variables. 

Define X1 as the capacity outage random variable (RV) for unit 1 

and X2 as the capacity outage RV for unit 2, with pmfs fX1(x) and 

fX2(x), each of which appear as in Fig. U19.3. We desire fY(y), the 

pmf of Y, where Y=X1+X2. Recall from Module U13, Section 

U13.3.2, that we obtain fY(y) by convolving fX1(x) with fX2(x), i.e.,  

https://home.engineering.iastate.edu/~jdm/ee653/U13-inclass.doc
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 −=


−

dttyftfyf
XXY

)()()(
21  (U19.4) 

But, inspection of fX1(x) and fX2(x), as given by Fig. U19.3, 

indicates that, since X1 and X2 are discrete random variables, their 

pmfs are comprised of impulses. Convolution of any function with 

an impulse function simply shifts and scales that function. The 

shift moves the origin of the original function to the location of the 

impulse, and the scale is by the value of the impulse. Fig. U19.4 

illustrates this idea for the case at hand. 
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 Fig. U19.4: Convolution of Generator Outage Capacity pmfs 

 

Figure U19.5 shows the resultant pmf for the capacity outage for 2 

identical units each of capacity C. 
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Fig. U19.5: pmf for Capacity Outage of 2 Unit Example 

We note that Fig. U19.5 indicates there are only 3 states, but in 

Table U19.3, there are 4. One may reason from Table U19.3 that 

there are two possible ways of seeing a capacity outage of C, either 

unit 1 goes down or unit 2 goes down. Since these two states are 

the same, we may combine their probabilities, resulting in Table 

U19.4, which conforms to Fig. U19.5. 

Table U19.4: Capacity Outage Table for 2 Identical Units 

Capacity Outage Probability 

0 A2 

C 2AU 

2C U2 

In fact, we saw this same kind of problem in Section U10.2 of 

module U10, where we showed that the probabilities can be 

handled using a binomial distribution, since each unit may be 

considered as a “trial” with only two possible outcomes (up or 

down). We may then write the probability of having r units out of 

service as: 

)()(
)!(!

!
],,Pr[ rnr

rX
AU

rnr

n
UnrXP −

=
−

===  (U19.5) 

https://home.engineering.iastate.edu/~jdm/ee653/U10-inclass.doc
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where n is the number of units.  

It is interesting to note we may also think about this problem via a 

state-space model, as shown in U19.6 where we have indicated the 

state of each unit together with the capacity outage level associated 

with each system state. Note that we are not representing the 

possibility of common mode or dependent failures. 

 

 

 
 

 

 

 
 

 
1u, 2u 

0 out 

1u, 2d 

C out 

1d, 2u 

C out 

1d, 2d 

2C out 

 

Fig. U19.6: State Space Model for 2-Unit System 

From Section U16.8 of module 16, since the two middle states of 

Fig. U19.3 satisfy the merging condition (a group of (internal) 

states can be merged if the transition intensities to any external 

states are the same from each internal state) and they satisfy rule 3 

(two states should be combined only if they are of the same state 

classification – in this case, the same capacity), we may combine 

them using rule 1 (when two (internal) states have transition rates 

that are identical to common external states, those two states can 

be merged into one; entry rates are added, exit rates remain the 

same.) Therefore, Fig. U19.6 becomes Fig. U19.7. 
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Fig. U19.7: Reduced State Space Model for 2 Unit System 

The 2λ transition in Fig. U19.7 reflects the fact that the “0 out” 

state may transition to the “C out” state because of unit 1 or 

because of unit 2, but it does not reflect a common mode outage 

since the middle state is a state in which only 1 unit is failed. 
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Similarly, the 2 transition in Fig. U19.6 reflects the fact the “2C 

out” state may transition to the “C out” state because of repair to 

unit 1 or repair to unit 2, but it does not reflect a common mode 

repair since the middle state is a state in which only 1 unit is 

repaired. 

One may also compute frequency and duration for each state in 

Fig. U19.7 according to (U16.32) and (U16.33) from module U16, 

repeated here for convenience: 

=



jk

jkjj
pf 

,    (U19.6) 




=

jk
jk

jT


1

   (U19.7) 

Table U19.5 tabulates all of the information. 

 

Table U19.5: Capacity Outage Table for 2 Identical Units with 

Frequencies and Durations 

Capacity 

Outage 

Probability Frequency Duration 

0 A2 2λA2 1/2λ 

C 2AU 2AUλ 1/λ 

2C U2 2U2 1/2 

U19.2.2 Capacity outage table for units having different capacities 

Reference [1] provides a simple example for the more realistic case 

of having multiple units with different capacities, which we adapt 

and present here. Consider a system with two 3 MW units (units 1 

https://home.engineering.iastate.edu/~jdm/ee653/U16-inclass.doc
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and 2) and one 5 MW unit (unit 3), all of which have forced outage 

rates (FOR) of 0.02. (The fact that all units have the same FOR 

means that we could handle this using the binomial distribution, 

which would not be applicable if any unit had a different FOR).  

The pmfs of the two identical 3 MW units can be convolved as in 

Section U19.2.1 to give the pmf of Fig. U19.8 and the 

corresponding capacity outage table of Table U19.6. 
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Fig. U19.8: pmf for Capacity Outage of Convolved 3 MW Units 

 

Table U19.6: Capacity Outage Table for Convolved 3 MW Units 

Capacity Outage Probability 

0 0.982=0.9604 

3 2(0.98)(0.02)=0.0392 

6 0.022=0.0004 

 

Now we want to convolve in the 5 MW unit. The pmf for this unit 

is given by Fig. U19.9. 
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Fig. U19.9: pmf for 5 MW Capacity Outage 

Convolving the pmf of Fig. U19.8 with the pmf of Fig. U19.9 

results in the pmf illustrated in Fig. U19.10, with the 

corresponding capacity outage table given in Table U19.7. 

 

Table U19.7: Capacity Outage Table for Convolved 3 MW Units 

and 5 MW Unit 

Capacity 

Outage 

Description Probability 

0 All units up. 0.980.9604=0.941192 

3 U3 up, U1 or U2 down. 0.980.0392=0.038416 

5 U3 down, U1 and U2 up. 0.020.9604=0.019208 

6 U3 up, U1 and U2 down. 0.980.0004=0.000392 

8 U3 down, U1 or U2 down. 0.020.0392=0.000784 

11 All units down 0.020.0004=0.000008 
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Unit 3 “0 MW capacity outage”  

convolved with two 3 MW units pmf 

Unit 3 “5 MW capacity outage” 

convolved with two 3 MW units pmf 

Resultant final pmf accounting for all 

three units 

 Fig. U19.10: Procedure for convolving Two 3 MW units with 5 

MW Unit (top two plots) and final 3 unit pmf  

U19.2.3 Convolution algorithm 

The procedure illustrated above can be expressed algorithmically, 

which is advantageous in order to code it.  
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Two-state model:  

The algorithm is simplest if we assume that all units are 

represented using two-state models.  

Let k denote the kth unit to be convolved in, Ak and Uk its 

availability and FOR, respectively, and Ck its capacity. 

The composite capacity outage pmf before a convolution is 

denoted by fYold(y), and after by fYnew(y), so that for unit k, the 

capacity outage random variables are related by Ynew=Yold+Xk. We 

assume that there are N units to be convolved. 

The algorithm follows.  

1. Let k=1. 

2. Convolve in the next unit according to: 

)()()(
kYoldkYoldkYnew

CyfUyfAyf −+=  (U19.8) 

for all values of y for which fYold(y)0  and/or fYold(y-Ck) 0. 

3. If k=N, stop, else k=k+1 and go to 2. 

Note that in (U19.8) the influence of the argument in the last term 

fYold(y-Ck) is to shift the function fYold(y) to the right by an amount 

equal to Ck. This corresponds to the shift influence of the kth unit 

pmf impulse at Xk=Ck. 

U19.2.4 Deconvolution 

An interesting situation frequently occurs, particularly in 

operations, but also in production costing programs, when the 

composite pmf has been computed for a large number of units, and 

capacity outage probabilities are fully available. Then one of the 

units is decommitted, and the existing composite pmf no longer 

applies. How to obtain a new one?  

One obvious approach is to simply start over and perform the 

convolution for each and every unit. But this is time-consuming, 

and besides, there is a much better way! We have a better approach 

based on the following fact:  
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The computation of fYnew(y) is independent of 

the order in which the units are convolved. 

Consider, in (U19.8), the term fYold(y). This is the composite pmf 

just before the “last” unit was convolved in.  

Given we have fYnew(y), we assume that the “last” unit 

convolved in was the unit that we would like to decommit.  

It may not have been the last unit, in actuality, but because the 

computation of fYnew(y) is independent of order, we can make this 

assumption without loss of generality. 

In that case, we may “convolve out” the decommited unit.  

How to do that? Consider solving (U19.8) for fYold(y), resulting in: 

k

kYoldkYnew

Yold
A

CyfUyf
yf

)()(
)(

−−
=   (U19.9) 

The problem with the above is that the function we want to 

compute on the left-hand-side, fYold(y), is also on the right-hand-

side, as fYold(y-Ck).  

There is a way out of this, however. It stems from two facts. 

Fact 1: The probability of having capacity outage less than 0 is 

zero, i.e., the “best” that we can do is that we have no capacity 

outage, in which case the capacity outage is zero. Therefore any 

valid capacity outage pmf must be zero to the left of the origin. 

Fact 2: fYold(●) is a valid capacity outage pmf. 

Implication: For values of y such that 0<y<Ck, fYold(y-Ck) evaluates 

to the left of the origin and therefore, since fYold is a valid capacity 

outage pmf, it MUST BE ZERO in this range. As a result,  

k

k

Ynew

Yold
Cy

A

yf
yf = 0         ,

)(
)(   (U19.10) 

But what about the case of Ck<y<IC, where IC is the total installed 

capacity? Here, we must use (U19.9). But let’s assume that we 
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have already computed fYold(y) for 0<y<Ck. Then the first time we 

use (U19.9) is when y=Ck. Then we have: 

k

YoldkkYnew

kYold
A

fUCf
Cf

)0()(
)(

−
=  

But we already have computed fYold(0) from (U19.10)! 

And we will be able to use the values of fYold(y), 0<y<Ck, in 

computing all values of fYold(y), Ck<y<2Ck. In fact, we will be able 

to compute all of the remaining values of fYold(y) in this way! 

As an example, try deconvolving one of the 3 MW units from the 

capacity outage table of Table U19.7 (which is also illustrated at 

the bottom of Fig. U19.10). In this case, C3=3, A3=0.98, U3=0.02. 

The computations are given in Table U19.8. 

Note that, since fYold(y-Ck)=0 for y<Ck, (U19.9) includes the case 

of (U19.10), and we can express the algorithm using (U19.9) only. 

The deconvolution algorithm is given below. There is just one step. 

We assume that we are deconvolving unit k. 

1. Compute: 

k

kYoldkYnew

Yold
A

CyfUyf
yf

)()(
)(

−−
=  

consecutively for y=0, ….,IC such that  

fYnew(y)0 and/or fYold(y-Ck)0, 

where IC is the installed capacity of the system before 

deconvolution. 

2. Stop. 
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Table U19.8: Computations for Deconvolution Example 

Capacity 

Outage y 

fYnew(y) fYold(y) 

0 0.94119200 
9604.

98.

941192.)0(
)0(

3

===
A

f
f Ynew

Yold
 

3 0.0384160 

0196.
98.

9604.02.00384160.

)33()3(
)3(

3

3

=
−

=

−−
=

A

fUf
f YoldYnew

Yold

 

5 0.019208 

0196.
98.

002.019208.

)35()5(
)5(

3

3

=
−

=

−−
=

A

fUf
f YoldYnew

Yold

 

6 0.00039200 

0
98.

0196.02.000392.

)36()6(
)6(

3

3

=
−
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−−
=

A

fUf
f YoldYnew

Yold

 

8 0.00078400 
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98.

0196.02.000784.

)38()8(
)8(

3
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=
−

=

−−
=

A

fUf
f YoldYnew

Yold  

11 0.00000800 

0
98.

0004.02.000008.

)311()11(
)11(

3

3

=
−

=

−−
=

A

fUf
f YoldYnew

Yold  
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U19.2.5 Multi-state models 

We have so far addressed only the case where all units are 

represented by two-state models. It may be, however, that we 

would like to account for derated units, in which case we need to 

address the multi-state model as well. This situation presents no 

additional conceptual difficulty relative to the two-state model, as 

the pmf for each unit will still consist of only impulses, except 

now, each unit will have a pmf consisting of as many impulses as it 

has states, instead of only two.  

We do, however, need to generalize the algorithms for convolution 

and deconvolution.  

Convolution algorithm for multi-state case: 

With N the total number of units: 

1. Let k=1. 

2. Convolve in the next unit according to: 

)()(
1

kjYold

n

j
kjYnew

Cyfpyf
k

−=
=

    (U19.11) 

for all values of y for which fYold(y) or fYold(y-Ckj) are non-zero. 

Here, nk is the number of states for unit k; pkj is the jth state 

probability for unit k; Ckj is the jth capacity outage for unit k. 

3. If k=N, stop, else k=k+1 and go to 2. 

Note (U19.11) is the same as (U19.8) if nk=2, with Ak=pk1, Uk=pk2. 

)()()(
kYoldkYoldkYnew

CyfUyfAyf −+=  (U19.8) 

Deconvolution algorithm for multi-state case: 

We again assume that we are deconvolving unit k. To determine 

the deconvolution equation for the multi-state case, rewrite 

(U19.11) by extracting from the summation the first term, 

according to: 
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)()()(
2

1 kjYold

n

j
kjYoldkYnew

Cyfpyfpyf
k

−+=
=

 

where we have assumed that the first capacity outage state for unit 

k is zero, i.e., Ck1=0. Solving for fYold(y), we have: 

1

2

)()(

)(
k

kjYold

n

j
kjYnew

Yold
p

Cyfpyf

yf

k

−−

=
=  

We assume that we are deconvolving unit k. The algorithm is: 

1. Compute: 

1

2

)()(

)(
k

kjYold

n

j
kjYnew

Yold
p

Cyfpyf

yf

k

−−

=
=   (U19.12) 

consecutively for y=0, ….,IC, and y such that fYnew(y)0,  

fYold(y-Ckj)0, where IC is the installed capacity of the system 

before deconvolution. 

2. Stop. 

U19.3 Load model 

Consider Fig. U19.11, instantaneous demand as function of time. 
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Fig. U19.11: Instantaneous demand vs. time 



Module PE.PAS.U19.5 Generation adequacy evaluation 19 

Although this curve is only illustrated for seven days, one could 

easily imagine extending the curve to cover a full year.  

 

From such a yearly curve, we may identify the percent of time for 

which the demand exceeds a given value. If we assume that the 

curve is a forecasted curve for the next year, then this percentage is 

equivalent to the probability that the demand will exceed the given 

value in that year. 

The procedure for obtaining the percent of time for which the 

demand exceeds a given value is as follows. 

1. Discretize the curve into N equal time segments, so that the 

value of the discretized curve in each segment takes on the 

maximum value of the continuous curve in that segment. 

2. The percentage of time the demand exceeds a value d is 

obtained by counting the number of segments having a value 

greater than d and dividing by N. 

3. Plot the demand d against the percent of time the demand 

exceeds a value d. A typical such plot is illustrated in Fig. 

U19.12. 
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Fig. U19.12: Load duration curve 
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Fig. U19.12 is often generically referred to as a load duration 

curve (LDC). However, one should be aware that there is a 

significant difference between LDCs based on hourly segments 

and LDCs based on daily segments.  

• Hourly: the load duration curve indicates the percentage of 

hours through the year that the hourly peak exceeds a value d. 

• Daily: the load duration curve indicates the percentage of days 

through the year that the daily peak exceeds a value d.  

Thus, one must realize that the load duration curve gives the 

percentage of time through the year that the load exceeds a value d, 

only under the assumption that 

• Hourly: the load is constant throughout the hour at the hourly 

peak. 

• Daily: the load is constant throughout the day at the daily peak.  

Clearly, the smaller the segment, the better approximation is given 

by the LDC to the actual percentage of time through the year that 

the load exceeds a value d. Nonetheless, both daily and hourly-

based LDCs are used in practice.  

 

The LDC may also be drawn in another way that is convenient for 

computation. Consider first normalizing the abscissa (x-

coordinate) by dividing all values by 100, so that we obtain all 

abscissa values in the range of 0 to 1.  

The abscissa then represents the probability that the demand 

exceeds the corresponding value d. We denote this probability 

using the notation for a cumulative distribution function (cdf), 

FD(d). However, one should realize that it is actually the 

complement of a true cdf, i.e.,  

( ) ( ) 1 ( )DF d P D d P D d=  = −   

Here, D is a random variable and d are the values it may take.  

 

Finally, we can switch the axes of the LDC so that we plot FD(d) as 

a function of d. Figure U19.12 illustrates the curve, which we refer 
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to as the load shape curve or the load model for the given time 

period. 
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Fig. U19.12: Load shape 

 

Note that Chanan Singh in his notes on “Load Modeling” gives an 

algorithm for getting the load model from one scan of the hourly 

load data [12]. 

U19.4 Calculation by Capacity Outage Tables 

Module U17 identifies the loss of load probability (LOLP) and the 

loss of load expectation (LOLE) as two indices for characterizing 

generation adequacy risk. The LOLP is the probability of losing 

load throughout the time interval (year). LOLE is the expected 

number of time units (hours or days) per time interval (year) for 

which the load will exceed the demand.  

Fig. U19.13 illustrates a typical load-capacity relationship [1] 

where the load model is shown as a continuous curve for a period 

of 365 days. The capacity outage state, Ck, is shown so that one 

observes that load interruption only occurs under the condition that 

the load exceeds the installed capacity less the capacity outage, i.e., 

d>IC-Ck. The minimum demand for which this is the case is 

dk=IC-Ck. Thus, the probability of having an outage of capacity Ck 

and of having the demand exceed dk is given by the capacity 
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outage pmf and FD(dk), i.e., fY(Ck)FD(dk)= fY(Ck)FD(IC-Ck). (This 

assumes independence between outage events and demand).  
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Fig. U19.13: Relationship between capacity outage, load model [1] 

 

The LOLP is computed as the sum over all capacity outage states: 
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)()(    (U19.13) 

and the LOLE as: 

= −=
==

N

k
kkY

N

k
kDkY

tCfCICFCfLOLE
11

)(365*)()( (U19.14) 

where N is the total number of capacity outage states. 
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Example: Compute the LOLP and the LOLE for the capacity 

outage table of Table U19.7, for the (daily) load shape curve given 

by Fig. U19.14. Table U19.7 is repeated below for convenience. 

Table U19.7: Capacity Outage Table for Convolved 3 MW Units 

and 5 MW Unit 

Capacity 

Outage 

Description Probability 

0 All units up. 0.980.9604=0.941192 

3 U3 up, U1 or U2 down. 0.980.0392=0.038416 

5 U3 down, U1 and U2 up. 0.020.9604=0.019208 

6 U3 up, U1 and U2 down. 0.980.0004=0.000392 

8 U3 down, U1 or U2 down. 0.020.0392=0.000784 

11 All units down 0.020.0004=0.000008 
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Fig. U19.14: Load shape curve for example 
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From (U19.13), we then have: 

year

FfFfFf

FfFfFf

CICFCfLOLP

DYDYDY

DYDYDY

N

k
kDkY

/008044.0            

1*000008.875.*000784.375.*000392.            

25.*019208.0625.*038416.0*941192.            

)0()11()3()8()5()6(            

)6()5()8()3()11()0(             

)()(
1

=

+++

++=

=+++

++=

 −=
=

 

We could compute LOLE using (U19.14),  

= −=
==

N

k
kkY

N

k
kDkY

tCfCICFCfLOLE
11

)(365*)()( (U19.14) 

but it is easier to just recognize that  

LOLE=LOLP*365=0.008044*365 =2.93606 days/year. 

This means that we can expect to see 2.93606 complete days of 

load interruption each year, assuming that the peak load per day 

lasts all day. Another index often cited is the years/day, in this 

case, 1/2.93606=0.3406 years/day. This is the number of years that 

must pass before we see a full day of load interruption. A well-

known metric is “1 day in 10” indicating LOLE=0.1 day/year, or 

years/day should be 10. 

Two important qualifiers should be emphasized: 

• This LOLE is the load outage time expected as a result of 

generation unavailability and does not include the effects of 

transmission or distribution system components unavailability. 

• This amount of outage time would correspond to the long-run 

average of this system only if 

o all 3 units are always committed, i.e., no reserve shutdown, 

and there is no maintenance; 

o the demand remains at its daily peak throughout each day. 
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These qualifiers are obviously pointing towards inaccuracies in the 

model and as a result, indicate that the indices computed should 

not be perceived as accurate in an absolute sense. However, the 

indices do serve well for comparative purposes. 

U19.5 A capacity planning example 

Reference [1] provides an illustrative example showing how the 

generation adequacy calculation procedure in the previous section 

can be applied to the capacity planning problem. We adapt that 

example here. 

Consider a system containing five 40 MW units each with a 

FOR=0.01, so that the installed capacity is 200 MW. We can go 

through a convolution process for this, or else we can observe that 

there are six distinct capacity outage levels: outage of 0, 40, 80, 

120, 160, and 200 MW, and that for each of these capacity outage 

levels, there are a number of states equal to the combination of 5 

things taken r at a time, where r is 0, 1, 2, 3, 4, and 5, respectively. 

It is a combination, where order does not matter, instead of a 

permutation, where order does, because, for example, the status 

vector {U1, U2, U3, U4, U5} characterizes the same state (and 

corresponding probability) as the status vector {U2, U1, U3, U4, 

U5}. Therefore we may identify the number of each specific 

combination of states with 0, 1, 2, …,5 outages as n

rC = n! / (n - r)!r! . 

For example, the number of states with a capacity outage level of 

80 MW (2 units out) will be 

5

2C = 5! / (5 - 2)!(2!)= 5 4 / 2= 10  

The probability of any one such state will be 

(0.01)(0.01)(0.99)(0.99)(0.99)=0.00009703, and so the probability 

of this state will be 10*(0.00009703)=0.0009703. 

Proceeding in this way (or alternatively, performing the 

convolution), the capacity outage table for the system is developed 

and is shown in Table U19.9, where capacity outage states having 

probabilities less than 10-6 have been neglected.  
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Table U19.9: Capacity outage table for example [1] 

Capacity 

Outage 

Description Probability 

0 All units up 0.950991 

40 1 unit down 0.048029 

80 2 units down 0.000970 

120 3 units down 0.000009 

The next year’s system load model is represented by the load shape 

curve of Fig. U19.15a, which is a linear approximation of an actual 

load shape curve. Note that the forecasted annual system peak load 

is 120 MW. 
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Fig U19.15a: Load shape curve for example [1] 

The procedure of the previous section was applied, i.e., the 

following expression was evaluated, 
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
N

Y k D k

k=1

LOLE = f (C )F (IC - C )* 365   (U19.14) 

and the LOLE and years/day were computed as 0.002005 

days/year and 498 years/day, respectively. Certainly this is a very 

reliable system! The reason for the high reliability is, of course, 

that the installed capacity is so much greater than the system 

annual peak. 

However, the load will grow in the future, so it is of interest to see 

how these indices vary as peak load increases. Table U19.10 

summarizes LOLE and years/day for the system peak beginning at 

120 MW and increasing to 200 MW in units of 10 (this is to just 

illustrate the effect on the indices; the 10 MW increment should 

not be interpreted as an annual load growth). This is imposed on 

the load model by shifting it to the right by 10 MW for each 10 

MW increment, as illustrated by the dark line in Fig. U19.15b for a 

160 MW system peak. A similar thing is done for 130, 140, 150, 

170, 180, 190, and 200 MW system peaks, and indices are 

recomputed for each. 
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Fig U19.15b: Load shape curve for example [1] 
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Table U19.10: Variation in LOLE with System Annual Peak [1] 

System annual peak 

(MW) 

Indices 

LOLE, days/year Years/day 

120 0.002005 498 

130 0.04772 20.96 

140 0.08687 11.51 

150 0.1208 8.28 

160 0.1506 6.64 

170 1.895 0.53 

180 3.447 0.29 

190 4.837 0.21 

200 6.083 0.16 

The LOLE (days/year) is plotted on semi-log scale in Fig. U19.16.  

 

Fig. U19.16: LOLE as a function of system annual peak load [1] 

LOLE=6 days/yr 
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Obviously, we must add some capacity before we reach an annual 

peak demand of 200 MW, as the LOLE is about 6 days/year at that 

level (very high!). But at what peak demand level should capacity 

be added? 

The answer to this question can be identified if we select a 

threshold risk level beyond which we will not allow. This is 

basically a management decision, but of course, all management 

decisions can be facilitated by quantitative analysis. We will 

forego such analysis here and instead arbitrarily select 0.15 

days/year as the threshold risk level.  

Assume: 

• we have forecasted a 10% per year load growth (very high) and 

so the peak loads will be, for years 0, 1, 2, 3, 4, 5, 6, 7, 8, given 

by 120, 132, 145, 160, 176. 193, 213, 234, and 257 MW, 

respectively; 

• we have decided to add one 50 MW unit at a time, each with 

FOR=0.01, as the load grows, in order to ensure the system 

satisfies the identified threshold risk level.  

The question is: when do we add the units? 

To answer this question, we will repeat the analysis of Table 

U19.10, except for four different installed capacities: 200 MW, 

250 MW, 300 MW, and 350 MW, corresponding to additional 

units of 0, 1, 2, and 3, respectively.  

Table U19.11 summarizes the calculations. Fig. U19.17 illustrates 

the variation in LOLE with peak load for each case, together with 

vertical lines indicating the peak load value for each year.  
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Table U19.11: LOLE Calculations for Example [1] 

System annual 

peak (MW) 

LOLE (days/year) 

200 MW 250 MW 300 MW 350 MW 

100 0.001210 - - - 

120 0.002005 - - - 

140 0.08687 0.001301 - - 

160 0.1506 0.002625 - - 

180 3.447 0.06858 - - 

200 6.083 0.1505 0.002996 - 

220 - 2.058 0.03615 - 

240 - 4.853 0.1361 0.002980 

250 - 6.083 0.1800 0.004034 

260 - - 0.6610 0.01175 

280 - - 3.566 0.1075 

300 - - 6.082 0.2904 

320 - - - 2.248 

340 - - - 4.880 

350 - - - 6.083 
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Fig. U19.17: Capacity planning example [1] 

The unit additions would need to be made in years 3, 5, and 7. The 

dotted line tracks the year-by-year risk variation.  

This approach ensures that the stated reliability criteria are met; 

however, the other influence to the decision-making process is, as 

always, economic. Recall that we assumed that we would solve our 

capacity problem by adding capacity at increments of 50 MW at a 

time. It would be quite atypical if this were the only solution 

3 4 5 6 7 8 9 
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approach considered. For example, one might consider larger or 

smaller increments, or more or less reliable units (different FOR).  

Different decisions would have different influence on the system 

risk; they would also have different present worth values. The 

influence on risk and present worth would need be weighed one 

against another in order to arrive a “good” decision.  

Question: 

Why would you want to perform this kind of calculation for a 

system in which generators are built by electricity market 

participants rather than a centralized vertically integrated utility 

company? 

U19.6 The effective load approach 

Most of what we have seen in sections U19.1-U19.5 characterize 

the view taken by [1]. We now provide another view, based on [2].  

U19.6.1 Preliminary Definitions 

Let’s characterize the load shape curve with t=g(d), as illustrated in 

Fig. U19.18. It is important to note that the load shape curve 

characterizes the (forecasted) future time period and is therefore a 

probabilistic characterization of the demand. 
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Fig. U19.18: Load shape t=g(d) 
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Here: 

• d is the system load 

• t is the number of time units in the interval T for which the load 

is greater than d and is most typically given in hours or days 

• t=g(d) expresses the functional dependence of t on d 

• T represents, most typically, a day, week, month, or year 

The cumulative distribution function (cdf) introduced in Section 

U19.3 is given by 

T

dg

T

t
dDPdF

D

)(
)()( ===   (U19.15) 

One may also compute the total energy ET consumed in the period 

T as the area under the curve, i.e., 

   (U19.16) 

The average demand (a power quantity) in the period T is obtained 

from 

===
maxmax

00

)()(
11 d

D

d

Tavg
dFdg

T
E

T
d   (U19.17) 

Now let’s assume that the planned system generation capacity, i.e., 

the installed capacity, is CT, and that CT<dmax. This is an 

undesirable situation, since we will not be able to serve some 

demands, even when there is no capacity outage! Nonetheless, it 

serves well to understand the relation of the load duration curve to 

several useful indices. The situation is illustrated in Fig. U19.19. 
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dλ  g E 
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Fig. U19.19: Illustration of Unserved Demand 

Then, under the assumption that the given capacity CT is perfectly 

reliable, we may express three useful reliability indices: 

• Loss of load expectation, LOLE: the number of time units that 

the load will exceed the capacity, 

)(
TC

CgtLOLE
T

==   (U19.18) 

• Loss of load probability, LOLP: the probability that the load 

will be interrupted during the time period T 

)()(
TDT

CFCDPLOLP ==  (U19.19) 

One may think that, given CT<dmax, then LOLP=1, i.e., the event 

“load interruption during T” is certain. The reason why it is not 

certain is because the load model is probabilistic. So LOLP is 

simply reflecting the uncertainty associated with demand, i.e., 

the demand may or may not exceed CT, according to FD(CT). 

• Expected demand not served, EDNS: If the average (or 

expected) demand is given by (U19.17), then it follows that the 

expected demand not served would be:  
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=
max

)(
d

C
D

T

dFEDNS     (U19.20) 

which would be the same area as in Fig. U19.19 when the 

ordinate is normalized to provide FD(d) instead of t. Reference 

[2] provides a rigorous derivation for (U19.20). 

• Expected energy not served, EENS: This is the total amount of 

time multiplied by the expected demand not served, i.e.,  

==
maxmax

)()(
d

C

d

C
D

TT

dgdFTEENS   (U19.21) 

which is the area shown in Fig. U19.19. 

U19.6.2 Effective load 

The notion of effective load is used to account for the unreliability 

of the generation, and it is essential for understanding the view 

taken by [2].  

The basic idea is that the total system capacity is always CT, and 

the effect of capacity outages are accounted for by changing the 

load model in an appropriate fashion, and then the different indices 

are computed as given in (U19.18), (U19.19), and (U19.20). 

A capacity outage of Ci is therefore modeled as an increase in the 

demand, not as a decrease in capacity! 

We have already defined D as the random variable characterizing 

the demand. Now we define two more random variables: 

• Dj is the random increase in load for outage of unit i. 

• De is the random load accounting for outage of all units and 

represents the effective load. 

Thus, the random variables D, De, and Dj are related according to: 

+=
=

N

j
je

DDD
1

   (U19.21) 
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It is important to realize that, whereas Cj represents the capacity of 

unit j and is a deterministic value, Dj represents the increase in load 

corresponding to outage of unit j and is a random variable. The 

probability mass function (pmf) for Dj is assumed to be as given in 

Fig. U19.20, i.e., a two-state model. We denote the pmf for Dj as 

fDj(dj) 
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Outage load, dj Cj 0 
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Fig. U19.20: Two state generator outage model 

Recall from module U13 that the pdf of the sum of two random 

variables is the convolution of their individual pdfs. In addition, it 

is true that the cdf of two random variables can be found by 

convolving the cdf of one of them with the pdf (or pmf) of the 

other, that is, for random variables X and Y, with Z=X+Y, that 




−=

−=


 dfzFzF YXZ )()()(
  (U19.22) 

Let’s consider the case for only one unit, i.e., from (U19.21),  

je
DDD +=     (U19.23) 

Then, by (U19.22), we have that: 

 −=


−=

 dfdFdF
jee

DeDeD
)()()( )0()1(

 (U19.24) 

https://home.engineering.iastate.edu/~jdm/ee653/U13-inclass.doc
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where the notation )()( j

D
F  indicates the cdf after the jth unit is 

convolved in. Under this notation, then, (U19.23) becomes 

j

j

e

j

e
DDD += − )1()(

   (U19.25) 

and the general case for (U19.24) is: 
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 (U19.26) 

which expresses the equivalent load after the jth unit is convolved 

in.  

Since fDj(dj) is discrete (i.e., a pmf), we may rewrite (U19.26) as 
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D
dfddFdF  (U19.27) 

From an intuitive perspective, (U19.27) is providing the 

convolution of the load shape )()1( −j

D
F  with the set of impulse 

functions comprising fDj(dj). When using a 2-state model for each 

generator, fDj(dj) is comprised of only 2 impulse functions, one at 0 

and one at Cj. Recalling that the convolution of a function with an 

impulse function simply shifts and scales that function, (U19.27) 

can be expressed for the 2-state generator model as: 
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je

j

Dje

j

Dje

j

D
CdFUdFAdF

eee

−+= −−
 (U19.28) 

So the cdf for the effective load following convolution with 

capacity outage pmf of the jth unit, is the sum of  

• the original cdf, scaled by Aj and 

• the original cdf, scaled by Uj and right-shifted by Cj. 

Example: Fig. U19.21 illustrates the convolution process for a 

single unit C1=4 MW supplying a system having peak demand 

dmax=4 MW, with demand cdf given as in plot (a) based on a total 

time interval of T=1 year. 



Module PE.PAS.U19.5 Generation adequacy evaluation 38 

 

)()0(

eD
dF

r

 

)()1(

eD
dF

r

 

1 

1    2      3     4     5      6     7      8 de 

0.8 

0.6 

0.4 

0.2 

* 
1 

1    2      3     4     5      6     7      8 

C1=4 

0.8 

0,6 

0.4 

0.2 

1. 

1    2      3     4     5      6     7      8 de 

0.8 

0.6 

0.4 

0.2 

+ 

1. 

1    2      3     4     5      6     7      8 de 

0.8 

0.6 

0.4 

0.2 

1.0 

1    2      3     4     5      6     7      8 de 

0.8 

0.6 

0.4 

0.2 

= 

(c) (d) 

(e) 

(a) 
(b) fDj(dj) 

Fig. U19.21: Convolving in the first unit 

Plots (c) and (d) represent the intermediate steps of the convolution 

where the original cdf )()0(

eD
dF

e

 was scaled by A1=0.8 and 

U1=0.2, respectively, and right-shifted by 0 and C1=4, respectively. 

Note the effect of convolution is to spread the original cdf.  

Plot (d) may raise some question since it appears that the constant 

part of the original cdf has been extended too far to the left. The 

reason for this apparent discrepancy is that all of the original cdf, 

in plot (a), was not shown. The complete cdf is illustrated in Fig. 
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U19.22 below, which shows clearly that 1)()0( =
eD

dF
e

 for de<0, 

reflecting the fact that P(De>de)=1 for de<0. 
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Fig. U19.22: Complete cdf including values for de<0 

Let’s consider that the “first” unit we just convolved in is actually 

the only unit. If that unit were perfectly reliable, then, because 

C1=4 and dmax=4, our system would never have loss of load. This 

would be the situation if we applied the ideas of Fig. U19.19 to 

Fig. U19.21, plot (a). 

However, Fig. U19.21, plot (e) tells a different story. Fig. U19.23 

applies the ideas of Fig. U19.19 to Fig. U19.21, plot (e) to show 

how the cdf on the equivalent load indicates that, for a total 

capacity of CT=4, we do in fact have some chance of losing load. 
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Fig. U19.23: Illustration of loss of load region 

The desired indices are obtained from (U19.18), (U19.19), and 

(U19.20) as: 
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A LOLE of 0.2 years is 73 days, a very poor reliability level that 

reflects the fact we have only a single unit with a high FOR=0.2. 

The LOLP is given by: 
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and the EDNS is given by: 
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which is just the shaded area in Fig. U19.23, most easily computed 

using the basic geometry of the figure, according to:  

MW5.0)2.0)(3(
2

1
)1(2.0 =+  

The EENS is given by 
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or TEDNS=1(0.5)=0.5MW-years, or 8760(0.5)=4380MWhrs. 

U19.7 Four additional issues 

A more extended treatment of generation adequacy evaluation 

would treat a number of additional issues. Here, we just point to 

these issues with a brief overview of each so that the interested 

reader may follow up on them as desired. The main issues are 

model uncertainty (U16.7.1), maintenance (U16.7.2), convolution 

techniques (U16.7.3), and frequency and duration approach 

(U16.7.4). 

U19.7.1 Model uncertainty 

We have modeled uncertainty in our analysis of generation 

adequacy. However, we have assumed that our uncertainty models 
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are precise, i.e., the unit FORs and the load forecast used to obtain 

the load duration curves are both perfectly accurate. The fact of the 

matter is that the unit FORs and the load forecast are estimates of 

the “true” parameters, and they will always be estimates no matter 

how much data is collected! Therefore, it is of interest to model 

uncertainty in the model parameters and then identify the influence 

of these uncertainties on the resulting adequacy indices. 

One method of modeling parameter uncertainty is to represent each 

parameter with a numerical distribution. Then repeatedly draw 

values from each distribution, and calculate the reliability indices 

using those values. If the parameter values are drawn as a function 

of their probabilities, as indicated by the distribution, then the 

computed reliability indices will also form a distribution, from 

which we may compute their statistics, e.g., mean, variance, etc.  

For example, if the peak load is normally distributed, then the 

distribution may be discretized, and each interval of the 

distribution can be assigned to an interval on (0,1) in proportion to 

its area under the normal curve. Then a random draw on (0,1), 

which is then converted to the peak load value through the 

assignment, will reflect the desired normal distribution. Figure 

U19.24 illustrates the process.  
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Fig. U19.24: Monte Carlo Simulation 
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This process is called Monte Carlo simulation (MCS) and is almost 

always an available option for computing reliability indices under 

parameter uncertainty. The advantage to MCS is that it is 

conceptually simple to implement. The disadvantage is that it is 

computationally intensive. 

Load forecast uncertainty: 

There are two basic methods. The first, well articulated in [1], is 

the most computational but the easiest to understand. The approach 

is to model the peak load using a discretized normal distribution, as 

shown in Fig. U19.24, where the mean of the distribution 

corresponds to the forecasted load. 
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Fig. U19.25: Modeling of load uncertainty [1] 

The load shape curve is adjusted for each of the load values 

corresponding to the seven standard deviations from the mean       

(-3, -2, -1, 0, 1, 2, 3), where 1 standard deviation is estimated based 

on the load forecasting program used and the amount of time over 

which the forecast is being done. A reasonable value could be 2%, 

for example.  

Then the indices are computed for each different load shape and 

composite indices are computed as a weighted function of the 

individual indices, where the weights are the probabilities given in 

Fig. U19.25. 
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A second method is given in [1] but perhaps more thoroughly 

described in [2]. The basic idea is that a single cdf is constructed 

that reflects the uncertainty of the peak load forecast, using 

= 


 )()|()( )0()0( fdFdF
DD

  (U19.29) 

Once this cdf is obtained, the indices are computed using one of 

our standard approaches. 

It is important to realize that modeling of uncertainty in load 

forecast always results in indices reflecting poorer reliability 

because the rate of increase of the indices is nonlinear with peak 

load, in that it is higher at higher load levels than at lower load 

levels. 

FOR uncertainty:  

References [1, 4] address inclusion of FOR uncertainty using a 

covariance matrix corresponding to the capacity outage table. The 

method is based on [5]. One important conclusion from this work 

is that although FOR uncertainty certainly affects the distribution 

of the reliability indices, it does not affect their expected values. 

This is in contrast to load forecast uncertainty.  

U19.7.2 Maintenance 

The conceptually simplest method for including unit maintenance 

is through the capacity outage approach according to the 

following: 

1. Compute a “full” capacity outage table.  

2. Divide the year into Ny intervals and obtain a unique load shape 

cdf FDp(d) for each period p. 

3. For each interval p=1, Ny 

a. Identify the units out on maintenance in this interval 

b. Deconvolve each outaged unit from the capacity outage 

table to get a capacity outage table for period p, using the 
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algorithm of Section U19.2.4. Denote the resulting 

capacity outage pmf as fYp(y). 

c. Compute the LOLE for period p as (similar to (U19.14)): 
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(U19.30) 

where Np is the total number of capacity outage states for 

period p and Ndays are the number of days in period p. 

4. The annual LOLE is then given as the sum of the LOLEp, i.e., 

=
=

Y
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p
p

LOLELOLE
1

   (U19.31) 

U19.7.3 Convolution techniques 

We have seen that convolution plays a major role in both the 

capacity table approach and the effective load approach. The 

convolution method illustrated for both approaches is called the 

recursive method. One drawback of this method is that it is quite 

computationally intensive and can require significant computer 

resources when it is used for systems having a large number of 

units and/or units with a large number of derated states.  

As a result, there has been a great deal of research effort into 

developing faster convolution methods. This work has resulted in, 

in addition to the recursive method, the following methods [3]: 

• Fourier transform [6] 

• Method of cumulants [7] 

• Segmentation method [8, 9, 10] 

• Energy function method [3] 

Of these, the method of cumulants is very fast, and the recursive 

method very is accurate. The segmentation method is said to 

achieve a good tradeoff between speed and accuracy. Chanan 

Singh summarizes the method of cumulants in his notes [12]. 
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U19.7.4 Frequency and duration approach 

The methods presented in this module so far provide the ability to 

compute LOLP, LOLE, EDNS, and EENS, but they do not provide 

the ability to compute 

• Frequency of occurrence of an insufficient capacity condition  

• The duration for which an insufficient capacity condition is 

likely to exist. 

A competing method which provides these latter quantities goes, 

quite naturally, under the name of the frequency and duration 

(F&D) approach. The F&D approach is based on state space 

diagrams and Markov models. We touched on this at the end of 

Section U19.2.1 above by showing that we may represent a 2 

generator system via a Markov model and then compute state 

probabilities, frequencies, and durations for each of the states.  

The underlying steps for the F&D approach, outlined in chapter 10 

of [11], are: 

1. Develop the Markov model and corresponding state transition 

matrix, A for the system. 

2. Use the state transition matrix to solve for the long-run 

probabilities from 0=pA and ∑pj=1 (note that we have dropped 

the subscript  for brevity, but it should be understood that all 

probabilities in this section are long-run probabilities). 

3. Evaluate the frequency of encountering the individual states 

from (U16.31), repeated here for convenience: 







==
jk

jkjj
jk

jkj ppf  ,,   (U19.32) 

which can be expressed as: 

fj=pj,[total rate of departure from state j] 
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4. Evaluate the mean duration of each state, i.e., the mean time of 

residing in each state, from (U16.33), repeated here for 

convenience: 

j
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=
,1

   (U19.33) 

(Note that [11] uses mj to denote the duration for state j and uses 

Tj to denote the cycle time for state j, which is the reciprocal of 

the state j frequency fj. One should carefully distinguish 

between the cycle time and the mean duration.  

• The cycle time is the mean time between entering a given 

state to next entering that same state.  

• The duration is the mean time of remaining in a given state.) 

5. Identify the states corresponding to failure, lumped into a 

cumulative state denoted as J. 

6. Compute the cumulative probability of the failure states pJ as 

the sum of the individual state probabilities: 

=
Jj

jJ
pp    (U19.34) 

7. Compute the cumulative frequency fJ of the failure states (see 

section U16.8.2) as the total of the frequencies leaving a failure 

state j for an non-failure state k: 


 

=
Jk Jj

jkJ ff
   (U19.35) 

Because (see (U16.29)) fjk=λjk pj,, (U19.35) can be expressed as 



Module PE.PAS.U19.5 Generation adequacy evaluation 47 

 



 


 


 


=

==

Jj Jk
jkj

Jj Jk
jjk

Jk Jj
jjkJ

p

ppf





,

,,

                                (U19.36) 

8. Compute the cumulative duration for the failure states, as: 

J

J

J
f

p
T =     (U19.37) 

The above approach is quite convenient for a system of just a very 

few states, and it is important for our purposes because it lays out 

the underlying principles on which the F&D is based.  

However, for a large system, the above approach is not very useful 

because of step 1 where we must develop the Markov model. This 

difficulty is circumvented by building the capacity outage table 

using recursive relations for the capacity outage (e.g. state) 

probabilities together with additional recursive relations for state 

transitions and state frequencies [1, 2, 4, 11]. 
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