
Module T1

Transmission

Read Module T1. 

Work problems 1, 2, 3, 6, 7, 8, 9 at end of Module T1. 

Turn in on Tuesday, April 2.



1. What are the typical voltage levels for bulk transmission lines?

2. What are the typical voltage levels for the subtransmission system?

3. When are underground transmission circuits used?      

4. If a transmission line is bundled so that it requires a total of 

9 conductors, how many conductors per phase are being used?      

5. What is a typical X/R ratio for a transmission line? (X, R are  

series reactance, resistance, respectively).

6. Which is larger for a transmission circuit: capacitance between 

the phases or capacitance between phases and ground?

7. Under heavily loaded conditions, is transmission line capacitance a 

desirable or undesirable influence? (think power factor)      

8. Explain why charging capacitance increases with line length.      

9. If a transmission line has impedance of Z=R+jX=1+j5, compute 

the admittance Y=G-jB, i.e., find G and B.      

10.If a transmission line has impedance of Z=R+jX=0+j5, compute 

the admittance Y=G-jB, i.e., find G and B.

I will draw 1 quiz question from the following questions.

11.Answer the following question using basic knowledge of power  

calculations in a circuit. A 3 phase transmission line has series  

impedance of Zpq ohms. The line has negligible shunt capacitance. The 

current in the line is 400 amps, when the 3-phase power flowing out 

of bus 1 into the line is +50 MWs and +20 MVARs. Compute the real & 

reactive power flowing out of the line into bus 2 if the impedance 

is: (a) Zpq=5+j50 (b) Zpq=0+j50 (c) Zpq=5+j0

All questions can be answered based on information contained in Module T1. However, you may have to think.



Electrical characteristics of a transmission line
• When loaded, we observe voltage drop in phase with 

current; incurs MW losses proportional to current2.

• When unloaded, we observe very small MW losses 

proportional to voltage2. 

• When loaded, we observe voltage drop ~90° ahead of 

current; incurs MVAR losses proportional to current2. 

• When unloaded, we observe fairly large MVAR supply 

proportional to voltage2. 

This is modeled with a series resistance, R.

This is modeled with a series (+) reactance, X.

This could be modeled with a shunt conductance, 

G, but it is negligible, and so we ignore it.

This is modeled with a shunt susceptance, BC

Every inch of the transmission line exhibits the above.



Electrical characteristics of a transmission line

p q

Because every inch of a transmission line exhibits the effects described 

on the previous slide, a “distributed parameter ” model is best.

However, such a model is large and bulky, and experience has it 

that a “lumped parameter” model works well. The lumped 

parameter model represents 

• the series effect as a single R+jX, and 

• the shunt effect as a single jBC.



Series impedance of a 3-phase transmission line

Zpq=R +  jX

p q
Ypq=G - jB
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Shunt susceptance of a 3-phase transmission line

p q

Ypp=jBc/2 Yqq=jBc/2

Observe that the total capacitive susceptance, jBC, is halved, with 

jBc/2 at each end of the transmission line.



The π-equivalent model of a 3-phase transmission line

Zpq=R +  jX

p q
Ypq=G - jB

Ypp=jBc/2 Yqq=jBc/2

• The “π-equivalent” transmission line model is 

very standard in power system engineering. 

• It is also well-known in other fields as one of 

several “two-port” networks.



p q

Ipqp p pV V   q q qV V  

Isp Isq

The π-equivalent model of a 3-phase transmission line;

nomenclature for voltages and currents



p q

Spq S’pq

Sqp
Ssp

Ssq

The π-equivalent model of a 3-phase transmission line;

nomenclature for apparent power flows



Power flow into capacitor
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Comments: 

• Power into capacitor is purely reactive;

• Neg sign implies Ssp flow direction reversed relative to 

direction indicated on previous slide; Q supplied to network.

• This result should not be mysterious. Let’s look at it from 

another perspective. Define Xc=1/(Bc/2)…

Assume all quantities are in per-unit. Then:
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Power flow into capacitor



Power flow into series impedance
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By Euler…



• Perform complex multiplication

• Collect real and imaginary parts

pqjQpqPpqS 

where…..
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Eqt. T1.17

Eqt. T1.18

These are the “exact” 

power flow equations.



Some comments:

• Qpq does not include Ssp

• Spq is NOT -Sqp

• May be used in per phase analysis
– voltages are phase to neutral

– P and Q are per phase powers

• May be used in per unit analysis

This means reactive equation on previous slide is 

from bus p into the line but does not include 

reactive flow into bus p shunt capacitor.. 

Although bus p shunt capacitor is modeled at 

the bus, we must remember that it represents 

capacitance in the line. 

This means complex power flowing from bus p 

into line is not the same as the negative of the 

complex power flowing from bus q into line..



A Simplification: Let R=0

Normally, for transmission lines, X >> R,

so that Z =R+jX  ~ = jX. 

What does setting R=0 do to Y=G-jB?

(This is the second time we have mentioned this in these 

slides – see slide #5)
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So R=0 implies G=0.



Let’s see what the approximation R=0 (G=0)

does to the power flow equations.
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Are these equations similar to anything you

have seen before?
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Eqt. T1.20

Eqt. T1.21
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Recall the equations for the synchronous gen

Make the following substitutions:
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The real power equation is the same as eqt. T1.20.

But note that the reactive power equation is

the negative of eqt. T1.21. Why?
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Eqt. T1.20

Eqt. T1.21



For the generator case, we compute:

Ef

Vt

Qout



p q

Qpq

Vp Vq

For the transmission case, we compute:
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Qpq

pq

Qg=Q’qp

=-Qpq

Vp
Vq

Grab the p-bus, flip it right-hand side, and locate

Qg. This is the Q computed for the syn gen.

The generator case 

computes Q’pq, not

Qpq!



A second simplification: small angle approximation

qp  Assume that is “small.”

This does tend to be the case for most 

transmission circuits.



A “small”

angle.
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Then the two power flow equations become:
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• Vp and Vq are usually very close to 1.0

• B is just a constant.

 Variations in each of the two power quantities 

are mainly affected by the difference term on 

the right hand side.
– Ppq is affected by voltage angle differences

– Qpq is affected by voltage magnitude differences

Eqt. T1.22

Eqt. T1.23



|V_p| theta_p (deg) |V_q| theta_q (deg)

Case 1 1.03 30 1.03 10

Case 2 1.06 30 1.03 10

Case 3 1.03 50 1.03 10

p q
Ypq=2.475-j24.752

Zpq=0.004+j0.04

Compute real Ppq and reactive Qpq for each case.

Use all three sets of equations:

Eqts. T1.17,T1.18 & T1.20, T1.21 & T1.22, T1.23



Eqns. T1.17 and T1.18 Eqns. T1.20 and

T1.21

Eqns. T1.22 and

T1.23

P_pq Q_pq P_pq Q_pq P_pq Q_pq

Case 1 9.139 0.685 8.98 1.58 9.17 0

Case 2 9.48 1.49 9.24 2.42 9.43 0.79
Case 3 17.49 4.46 16.87 6.14 18.33 0

Calculations for case 1 are in student text.

Here are the results for all cases.

Inspection of the first two columns indicate that

Cases 1 and 2 have almost the same P_pq but different Q_pq. 

This illustrates the effect of changing voltage magnitude.

Case 3 has a dramatic change in P_pq due to the fact that the 

voltage angle was changed.

“Exact” equations



Comparison between the three sets of columns for the 

three cases indicates that the approximate equations 

appear fairly accurate for real power flow but not so 

accurate for reactive power flow.

Eqns. T1.17 and T1.18 Eqns. T1.20 and

T1.21

Eqns. T1.22 and

T1.23

P_pq Q_pq P_pq Q_pq P_pq Q_pq

Case 1 9.139 0.685 8.98 1.58 9.17 0

Case 2 9.48 1.49 9.24 2.42 9.43 0.79
Case 3 17.49 4.46 16.87 6.14 18.33 0

“Exact” equations


