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Pop Quiz!!!
Let R=2Q), C=0.001farad, L=0.01henry, V. .,=400.

—i(t)

+ noo
v(t) = i
JX L VL (t)
V__ sin a)t<.‘ — )K= )

w=377rad /sec

You have 3 mins to compute the current i(t). If you
don’t know how, write down what you think are
guestions that, if answered, would enable you to do it.
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Example 1
Let R=2Q), C=0.001farad, L=0.01henry, V, .,=400.

—1i(t)

+ T

_ R C te th
v(t) = : ompute the
X v, (t) .
V i t<. B jXL current i(t)

o SIN @ ‘ C

Then Z=R+jwL-j/wC =2+ J377x0.01— J /(377x0.001)

=2+ J(3.77—2.6525) =2+ j1.1048
The current will be
i(t) = Vv (t) V,xSInwt  400sin et Let’s look into

Z 24 j1.1048 this a bit...
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Basic concepts of electric power

With exception of a few High Voltage DC circuits, the
entire electric grid operates to deliver “alternating
current” (AC). An "AC voltage” appears below.

The maximum value of the )
waveform is 400 volts. /
The waveform completes one cycle .
iIn 0.0167 sec. This is the “period”

of the waveform and is 1/f. So, \“\
f=1/0.0167=60Hz or 60 cycles/sec. . = ——-

SSSSSSS

Since 1 cycle completes 21T radians,
w=(21T rad/cyc)*60cyc/sec=37/rad/sec.
We can therefore express this voltage

as v(t)=V_, sinwt =400sIn(377t)



KVL and Ohm’s Law

The below Is a circuit model of a voltage source

connected to a resistance. _li(t)
+ +

v(t) = PPN Z.=R< v, (t)

V_.. sin ot ‘
We apply Kirchoff’s We may apply Ohm’s Law
Voltage Law (KVL): the to obtain the current:
sum of voltages around Vv (t) W o
the loop must be 0: I(t) = . ol

v(t)—v () =0 £

=V, (t) =Vv(t)



Voltage and current for resistive cct

Compare voltage & current. Assume R=2 ohms.

v, (t) =V, Sin ak i(t) = VEaX

SIN wt = ﬂzosin 377t

__ Current & voltage
. cross 0 simultaneously

SSSSSSS



Capacitance

The below Is a circuit model of a voltage source
connected to a capacitance. _li(t)

+ +
v(t) = Ze —— v.(1)
V.., SIN a)t<.‘ )

Again, from KVL: The current is given by:
| v (D)
v(t)—-v, (t)=0 i(t)=C —t wCV__ COS wt

= v, (t) = v(t) = N iy Si”(wt +%) /\

Coswt =

V T sin(wt + 77/ 2)
= —"_gin| wt +—
sin| a2
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Voltage and current for capacitive cct
Compare voltage & current. Assume C=0.001farad.
VL (t) :Vmax Sin ot i(t)=CwV,, Sin(a)t+5j =

.001x377 % 400sin (a)t n gj —150.8sin [a)t n gj

~__Current crosses 0
| before voltage. We say
w /o \_—~~_ . “current leads voltage.”
| If we multiply the time
| axis by w=377 rad/sec,
| we would see that
NS current leads voltage

sssss o by 11/2 radians.



Inductance
The below Is a circuit model of a voltage source

connected to an inductor. _li(t)
+ +
v(t) = P Zu3 v (1)
V... Sin ot ‘
Again, from KVL: The Current IS given by:
v(t)—v, (t)=0 i) == j v, (£) == E cos ot

= v, (t) =v(t) Vo Sm(am j vV sm(a)t—zJ
ol 2] alL 2



Voltage and current for inductive cct
Compare voltage & current. Assume L=.01 henry.

T

Vi (t) =V . Sin ot i(t) :VmaLX sin(a)t—Ej

Q

= =t sin a)t—Z =106.1sIn cot—Z
377x0.01 2 2

Current crosses 0O after
/ voltage. We say
“current lags voltage.”

If we multiply the time
axis by w=377 rad/sec,
we would see that
N current lags voltage by
Tt T 11/2 radians.
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In the three expressions below, we use
Ohm'’s law to express current in terms of
V (t) — V Sl 1 a)t I m ped a n ce impedance, then equate that expression to
L max

the one we found in the 5 previous slides.

Vo .
RESISTIVE: 1(t) = i (t) ;“;X sinawt  Itis clear that Zg=R.
R
CAPACITIVE: |()—V (D) _ Vi, sin(a)t+£j
Z. 1/aC 2
Vo
INDUCTIVE: I(t) = v ( ) MX g5IN (a)t _Zj
Z, o 2

s Z=1/wC? Is Z,=wL?

No, because we also need to take care of the phase shifts.
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Impedance

To take care of phase shifts, let’s utilize the imaginary unit
“I” which has the following properties:
. Itis the square root of -1:  j=+/-1
« From the Euler relation: e’ =cos¢g+ jsin ¢
With ¢=11/2, we obtain: e'*'* =cosz/2+ jsinz/2 = j
Therefore, | has magnitude of “1” and angle 11/2.

Therefore

Jsin et =sin (a)t + Ej Sin_a)t — sin (a)t _ Ej

Then, with Z-=1/jwC, Z =jwL, we get correct current expressions.
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Impedance
Vv (t) V

RESISTIVE: I1(t) = X sin ot
VAR R

: v, () V__ sin ot _
CAPACITIVE: i(t) = ——~> =T V_ jaoCsinawt =V__ «&Csin| ot +

= = 1 jac J ( 2)

v (t) V., SInot V sinwt V__ .
INDUCTIVE: i(t) =-= () _ - e _") — - max sm(a)t—zj
Z, JWL oL ] ol

Z, called impedance, Is a generalization of resistance
that accounts for the effects of capacitance & inductance.
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Impedance

In a purely resistive circuit, Z=Zz=R.
In a purely capacitive circuit, Z=2Z-=1/jwC.
In a purely inductive circuit, Z=Z, =jwL.

We also define:
« Capacitive reactance: X-=1/wC
* Inductive reactance: X, =wL

In a purely resistive circuit, Z=Zz=R.
In a purely capacitive circuit, Z=Z-=1/jwC=X/].

But recall j=V-1, then j2=-1. So (X/j)*(ilj)=-jXc.

In a purely inductive circuit, Z=Z, =jwL=]X,.
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Impedance

It is possible to have an impedance that is a combination of
resistance, capacitance, and inductance.

i)

+ R +
v(t) = jXLi v, (t)
C J

V.. SN ‘

Then Z =R+ jX, — jX. =R+ j(X, = X.)=R+ jX

The impedance, Z, can be thought of as a vector on the
complex plane.
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Impedance

Imaginary

1~~~ | / Inductive
|
X — I
|
1
- I

Y } Real
Capacitive

Z =R+ jX_—jXo =R+ j(X_ = X.)=R+ jX
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Example 1
Let R=2Q), C=0.001farad, L=0.01henry, V, .,=400.

—1i(t)

+ T

_ R C te th
v(t) = : ompute the
X v, (t) .
V i t<. B jXL current i(t)

o SIN @ ‘ C

Then Z=R+jwL-j/wC =2+ J377x0.01— J /(377x0.001)

=2+ J(3.77—2.6525) =2+ j1.1048
The current will be
i(t) = Vv (t) V,xSInwt  400sin et But how to

7 2+ j1.1048 evaluate this?
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Example 1
i(£) = 400_5mwt
2+ ]1.1048

You can divide each numerical point in the sinusoidal
numerator by the complex denominator, then take the
magnitude and angle of each resulting complex number.

But observe that only the magnitude changes as t increases. This
Is because the “phasor angle” of the numerator (0°) and the vector
angle of the denominator both remain constant with t. That is:

(t) = 400sin wt _ 400£0sIn et
2+ j1.1048 \z\@
\_'_l

=>»But what is |Z|L_06,7 .



Impedance

) Imaginary
2|26, =2+ j1.1048 . Z| = V1.1048 + 2% = 2.2849
1.1048 /
>N l
y N\ Real
So: 2 \ an g, _ 11048
£2
‘Z‘LHZ = 2.2849/28.92° o :tan_11.1248 _
And from the previous slide: 0.5047radians = 28.92°
. 400£0sinwt 400 .
i(t) = 7126, = 7] (£(0-6,))sin wt
400

= (4—28.92°)sin wt =175.06/ — 28.92°sin wt
2.2849 19



Impedance
so i(t) =175.06£ —28.92°sin wt

Recalling that 28.92°=0.5047 radians, we write the above as:
i(t) =175.065sin(wt—0.5047) =>We can plot this:

400

300

%urrent crosses 0 after
oltage. We say
“current lags voltage.”

200 [
100 -

‘/": : : o’ 3 : ¢

S VN ~/ If we multiply the time
e ____________ ___________ ............ ____________ _________ ‘ M, """ éiXiS by w=377 rad /S ec,
i I B B N -/ we would see that

\ ~ current lags voltage by
oo o 45047 radians.

sssss ds

volts or amperes
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Phasors

Let's review what we Just did:
Sinwty,  400sin wt

i(t) =
(0= 2+ j1.1048

Express in polar notation Separate magnitude & angle calculations Express numerically

_400£0sinet _ 4900/ y)sin ot = —220_(~28.92°)sin
z|z0, |z 2.2849
Do the arithmetic

= (175.06Z — 28.92°)

Express numerically

Convert from polar notation to trigopnometric notation

sin wt|=175.06sin (a)t — 0.5047)

Notice that nothing ever happened to the wt part. Nor did the
sinusoidal function change. This means that the frequency of
the current is the same as the frequency of the voltage. If
this is the case, then why do we need to carry the sinwt
through the calculations? Why not just drop it? This is what
we do when we use phasor notation, as in the next slide.
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Phasors

Define:

Phasor for source voltage:
Phasor for load voltage:
Phasor for current:

Also recall the impedance:
Then...

N

\:/s :Vslﬁ/s
V. =V 24,
=124
Z=|z|26,

VL VLZ%L _ VL

I=1/¢ =

Z |z|z0, |Z]

L%L -0,

—

There is an implicit
sinwt that we are not
writing. This sinwt
gives rotation to the
vectors which make
them phasors.

There is no implicit
sinwt = impedance is
a vector, not a phasor!

Rotation is in

Imaginary CCW direction

These do

i . rotate.

e
<YL
Real
Z

(does not
rotate)
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Instantaneous Power

Instantaneous power is given by  p(t) = v(t)i(t)

Let v(t)=V_ cos(at+6,) i(t) =1, cOS(at +6,)
Then P(t) =V()i(t) =V COS(@t +6, )l s, COS(ck + 6, )
=V__1__ cos(wt+6,)cos(at +6,)

Apply trig identity: cosacosb = % [cos(a—b)+cos(a+b)

p(t) = w[cos(a)t +6, — ot -0 )+cos(at+ 6, +wt+6 )]

— Vo [cos(6, — 6,)+cos(2at + 8, + 6,)]= Ve e [cos(8, — 0 )+ cos(2at + 26, — 6, + )]
2 2 ——

Gathering terms in the argument of the second cos function:

n(t) = V”‘ale X |cos(6, — 6, )+cos(2(at +6,)— (6, - 6,))]
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Instantaneous Power
p(t) = V”‘ale X cos(6, — 6, )+ cos(2(at +6,)— (6, —6,))]

Apply trig identity to last term: cos(a—b)= cosacosb +sin asin b

p(t) = w [cos(8, — 6, )+ cos2(awt + 8,) cos(8, — 6,) +sin 2(wt +8,)sin(8, — )]
Rearrange and distribute:
p(t) = \%cos(eV —6, )+V’“f"X2I X cos(6, —6,) cos 2(wt +6,) Q@sin(@v —6,)sin 2(wt+6,)

Then: p(t)=P+Pcos2(at+6,)+Qsin2(at+06,)

where: Pzwcos(ev—ei), Q:%sin(@v—ﬁi)

| |

Real power Imaginary power

Active power Reactive power
Watts VARS
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Example 2
Consider example 1, where V,,,=400, 6,=0,
v(t)=V_, Sin(at+6,)
nax=179.06, 6, = -.5047rad,
i(t)=1_sin(at+80)

and we computed that |

Then:
P= Vmax—zlmax cos(6, —0,) = 400 X;75'O6 cos(0+.5047) =30647 watts
Q= Vm‘a‘x—zlm"""Sin(<9V —6,) = 400)(;75'06 sin(0+.5047) =16930  vars

p(t)=P+Pcos2(at+6,)+Qsin2(wt +6,)
= 30647 + 30647 cos 2(377t) +16930sin 2(377t)

TERM1 TERM2 TERM3
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Example 2

p(t)=P+Pcos2(wt+6,)+Qsin2(wt+6,)
= 30647 +30647 cos 2(377t) +16930sin 2(377t)

x 10
8 -
§ COMPOSITE
: - TERM1
P : /| AERM2 \ : ‘
z s [/ \ JERM3 | /
\ / A% Nk f
\d / \ [/
OV s /. 5 S o
N
25 ’
-4 i i i i i i i i
0 0002 0004 0006 0008  0.01 0012 0014 0016
seconds

0.018

TERMS3

The average of a periodic
signal x(t) is given by:

1
Xaug =7 l X(t)dt
 Power delivered is the avg of

p(t); power is delivered only if
the avg of p(t) is not O.

1 » The average value of term2 and

term3is 0. These terms are not
responsible for power delivery.

« Average value of the composite
[the composite is instntans
power, p(t)] is terml, P.

* Interesting side note: instntns
power varies at twice the
nominal frequency. 26



Effective or RMS value

We want to obtain the constant (or DC) value of a current
which delivers the same average power to a resistor.

_li(t)

‘Ieff

4 AC circuit + 4 DC circuit +
Z = R v t) Z — R Veff
(o) <.‘ R ) V<.‘ R
The power delivered is: The power delivered is:

1¢., 2
— — =
P T Jl (t)Rdt P IeffR

Equate
.

1

T

?J'iz(t)Rdt: IZR= 1, =\/%ji2(t)dt

T
27



Effective or RMS value

We want to obtain the constant (or DC) value of a voltage
which delivers the same average power to a resistor.

_li(t) _lleff

AC circult + 4 DC circuit +

+
V(t) <. ZR — R V(t) Veﬁ<. ZR — R Veff

The power delivered is: The power delivered is:
1 2 2
P:?jv (t)/ Rdt P=Vg R

T

Equate

1 1
= [V () /Rdt=V IR=V,, = \/? [v*(t)dt

T T
28



Effective or RMS value

The root-mean-square value of any periodic signal x(t) is:
1
X = |[= | x?(t)dt
JTI ®
Let x(t) be v(t): V() =V, sin(at+6,)

_ 1, _ 1 2 =2
V., = \/? 1 v2(t)dt = \/? !vmax sin’ (et + 6, )dt

Apply trig identity: sin®a= %[1—008(26\)]

2 5 >
Veff — Vmax jl_COS(Z(a)t + HV))dt — \/Vmax t‘T — VmaxT — Vmax
T o ooV 2

max

Current may be similarly treated, resulting in 1. = 2
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Power and Phasor notation

We previously derived power expressions for P and Q In
terms of V., and | ... We may now express these in terms

of rms (effective) values:

2V . 21

P — \%COS(HV _ (9i ) — \/7 Effzf = COS(HV o ei ) :Veff Ieff COS((9v o HI)
2V . 2|

Q — wsm(gv _Qi) — \/7 eff2\/7 al Siﬂ(@v _ei):Veff Ieff Siﬂ(@v _ei)

This simplifies our power expressions. Commercial voltages
and currents are always specified as rms values.

Phasor magnitudes may be rms or maximum. Unless it is

otherwise specified, we assume phasor magnitudes are rms,

and we will drop the subscript “eff.” Thus,
P=Vlcos(8,-8)  Q=Visin(8,-8)
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Power factor

Power factor angle, defined 6, is the angle by which voltage
across an element leads current through the element, i.e.,
0=0,-0. It is also the angle of the load Z, i.e., Z=|Z|L_8. One
observes from the P, Q expressions that it is also the
argument of the trig functions of P and Q. Therefore:

P=Vicos(@,-&)=Vlcoss;  Q=Visin(g,-6)=Vising

The power factor is given as pf=cos®0. It is always positive,
therefore we usually indicate pf with either the word “leading”
(for capacitive load) or “lagging” (for inductive load). The
following table summarizes important relations.

I R T Y Y

R onIy 0 vars
Rand L + - + Oto 1, lagging + Absorbing vars

Rand C - + - 0to 1, leading - Supplying vars
31



Power factor

Consider a load at the end of a transmission line. Assume
the load is highly inductive. This means current is lagging,
0.<0, and 6>0 (with 8,=0).

/\/—m —i®

Trans Line
Impedance

P =VI cos@
Load

Q=Vlsing

v.(t v(t)

Assume V is constant, and we must supply P (this is the real
power of the load). With V and P constant, from P=VIcos8,
lcosO=Ixpf must be constant. What do we want pf to be?



Power factor

Assume P=33MW, V=39.84kV. This means that

P =Vl coséd = | cosd=P/V =33E6/39.84E3=828.3
Here are a few possibilities for Icos0 =Ixpf.

| (amperes) 828.3 871.9 920.3
Pf (leading) 1 0.95 0.9

1035.4
0.8
~or a given P, we need higher pf to obtain

_ower current is desired in order to minimize
°R (real power) losses in the transmission line.

/\/—‘( —i®)

Trans Line
impedance

v, (t) v(t)

Load

ower current.
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Power factor correction (PFC)

So what do you do if your load has a power factor of 0.85
but your provider requires that you have 0.95 ?

=>»Install a PFC device at the load’s point of interconnection with

the grid. 0
/\/—(v‘*
J
Trans Line
Impedance
v, (t) Power factor 7 ~T Load V(1)

correction device

The least expensive PFC device is a switched capacitor,

or several switched capacitors. These are static devices,
however. Dynamic devices are also available but are more
expensive (and you get dynamic responsiveness as well).



What is reactive power?

1. Itis given by: Q=Visin(g,-6)
2. It occurs as the coefficient of the double frequency
“sin” term in p(t):

p(t) =P+ Pcos2(at+6,)+Qsin 2(wt +6,)
3. It Is the maximum value of the rate of energy flowing
alternately into the reactive component of the load (away
from the source) and away from the reactive component of
the load (toward the source). It is only present when there is
a stored energy device (C or L) in the circuit.
4. Its units are “volt-amperes-reactive” or “vars.”
Dimensionally, vars are the same as watts and volt-amperes.

5. Three attributes of reactive power:

a. It does no useful work (its average value is 0).

b. Its presence increases current magnitude for a given P and V.

c. Derivatives of Q “flow” equations (not shown in these slides)
Indicate that Q is closely related to voltage magnitudes. 35




Complex power

Complex power is defined as:

/\/\*

S=VI"=P+jQ

where:

V=Vvs0, 1I=1/6
The asterisk next to the “I” phasor indicates conjugation:

I"=1£-6
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Power triangle

S|

)

P

S=P+jQ=|S|=/P?+Q?

37



Example 3

The below represents one of the phases of a generator
supplying a load. The box to the right represents the load. The
current flowing into the load is 1397.4 A at 0.866 pf leading,
with 398.37 volts at its terminals. What complex power is
delivered to the load from this phase alone?

—— 1397426

+ < 98.37.£0°

We also define the apparent power |S|, the magnitude of S:
S=P+jQ=5|=/P?+Q? =+.4827 +.27834 =0.5567

Solution: 8=-cos*(.866)=-30°.
> 6.=-6=30°.
S =VI" =398.37£0x(1397.4.£30)"

=398.37£0x (1397.4 £ — 30) = 556680 £ — 30
=556680(c0s30— jsin 30) = 482100 — j278340

Thus, P=0.482100MW,
Q=-0.27834MVARS
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