Module E3-a
Economic Dispatch
HW: Probs 1-5, 11
Due Tuesday 4/23



Min f
f”%xsx): X° —2X

df (x)
dx
X=1 minimizes this function

(Also, f(1) =-1)
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Min f(x) subject to h(x)=x=0.5
F(x)= f(x)—A(h(X)-0.5) = x* —2x—A(x—-0.5)
oF (X)

OX

FX) _ _yi05=0

=2Xx—2-1=0

X=0.5 minimizes this function
(also, 4=-1, 1(0.5)=-0.75)



Min f(x) subject to g(x)=x<0.5
F(x)= f(x)— u(g(x)-0.5) = x* —2x — x(x —0.5)
oF (x)

=2X—-2—u=0
OX “
FO)_ x105=0
ou

X=0.5 minimizes this function
(Also, 1 =-1,1(0.5)=-0.75)



Min f(x) subject to g(x)=x<1.5

F(x)= f(x)—u(g(x)-1.5) = x* —2x — x(x —1.5)

oF (X)
=2X—2—1u=0
OX H
oF (%) =—X+1.5=0
ou

Xx=1.5 DOES NOT minimize this function!



Conclusion:
Our approach seems to work fine for
.equality constraints

«and for inequality constraints when we
know they are binding

but not for inequality constraints when they are not binding!



General solution approach when we
have Inequality constraints:

Solve problem without them and then
check to see If inequality constraints
are satisfied. If not, add the violated
constraint(s) as equality constraints.




The previous problems illustrated
simple applications of the general approach
to solving optimization problems.

Optimization problems can also be
multivariable.

They can also have both equality and
Inequality constraints.



Another example.

min f(X,X,) =%’ +X,°
subject to
h(X;,X,)=2%+X, =3
g(X,X%,)=X%,<0.5



Circle is where plane

Intersects the bowl and represents the set of feasible solutions

of the equality-constrained problem.



Solve, ignoring inequality constraint.

F(X,X,)=X°+X°— (2% + X, —3)
QE:Z&—ZﬂzO

OX,
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OX,

oF
—=2%X +X,—-3=0
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But x,>0.5, so this solution is infeasible.



So we must bring in inequality constraint.

F (X, %) = X12 T Xz2 — (2% + X, —3) — p(x, —0.5)

a—F:2x1—2/I:O
OX,

oF
—=2X,—-A—-u=0
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f(x)=1.8125

Note f(x) is larger than without
the inequality constraint (solution
got worse), but that the inequality
constraint x,<0.5 is satisfied.
This is therefore the optimal
feasible solution.
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Intersects the bowl and represents the set of feasible solutions

of the equality-constrained problem.

Circle is where plane



Some definitions:

« X are decision variables

* f(X) Is the objective function

 h(X)=c are the equality constraints

* J(X)< b are the inequality constraints.



General optimization problem.

Min f (x)

subject to:

g (x

)<Db
h(x)=c

and: x>0

Aside:
« The non-negativity constraint on decision-variables is imposed to ensure the feasible region

Is bounded from below (reflecting engineering constraints imposing non-negativity).
« Doing so does not cause loss of generality because you can always make a non-positive
decision variable x to be non-negative by defining y=-x.




General solution strategy

Form the LaGrangian Function:
F(x A=t (04" [h()-c]-4" [o(x)-b]

The underlines indicate vectors.




Theorem: The solution to the previous
problem is found when the Karush-Kuhn-Tucker (KKT)

conditions are satisfied.
oF _
OX;

Albert Tucker, Harold Kuhn, é,F .

1905-1995 1925-2014 - =
Published conditions in 1951. 0’7& _
J

0 Yi=1n

0 Vij=1m

{

,Ukligk(l)—bk:lzo Vk=1r

=0  Vi=1n

1917-1997
Developed conditions in 1939 in
his (unpublished) MS thesis. Ile ZO \V/ k — 1, I

Aside: We assert (here) that the p, are the decrease in the objective function for an increase in b,;
then we see that non-negativity constraints are imposed on the p, because a negative p, would

indicate increasing b, (which enlarges the feasible region) makes the objective function larger
(gets worse).



The complementarity condition (also known
as the complimentary slackness condition):
1x[gk(x)—b]=0 Vk=1r

Complementary slackness: There cannot be slack in both a
constraint and the associated dual variable (this one
becomes clearer by studying duality, which we will not do).

Complementarity: the state
of working usefully together.

If u, #0,theng, (x)—b, =0(binding)
If g, (X) —b, #0, then x4, =0 (not binding)

This 1s a math way of saying:
Ignore constraint if not binding
and use It as equality constraint if binding.



Economic dispatch problem

Unit cost function:
COST, = Ci(Pi)=ai(Pi)* +biPi +c (E3.40)

where COST; = production cost
C; = energy to cost conversion curve

P; = production power



Unit capacity limits

P>P. P <P

where
Pi = Pmn = min generator level
Pi = Pmx = max generator level

Notation: double underline means lower bound.
Double overline means upper bound.



Transmission model

N

Z Pi = Pb+ PLoss + Ptie (E3.29)

=1



General EDC problem statement.
min f(P) =) Ci(Pi)
1=1
Subject to
Z Pi = Pb+ Pross + Ptie
=1

P



General case, LaGrangian Function
F(P, A, ) = Zc A{Z Pi—PTJ

[ P1+ P1 ,ul[Pl— P1]

II‘t

— 2[— P2+Ez — ,uz[Pz— Pz]

IS

~ pia|~ Pn+Pn] - wlPo—Pr|  (E3.31

Notation: double underline for lower bound multiplier
double overline for upper bound multiplier.



General case, KKT conditions:

E:O — aC—(P)_]A—Iu, i=0 Vi:l,n (E332)
aPi 8P|

oF _ Zn: Pi — Po — PLoss — Piie =0 (E3.33)
8& 1 |

ET[Q(_) Q]zQ = ,ill[— P1-|—£1]:O, ,Lll[Pl—El]IO
gz[— P2+£2]=0, Zz[Pz—Ez‘zO

;[— P+ Pn]=0, Zn[Pn —Enlz 0 (E3.34)

>0 Vi=ln = EiZO,ZiZO Vi=1ln



Two unit system, LaGrangian Function:

F(P,Pa, A, o g iz piz) = CilPy)+Co(P)
- — A[P1+ P, —Pr]
_ ﬁl[_ P14 P1] - lepl— El]
—/_12[— P2+£2]—;2[P2—Ezl (E3.35)



Two unit system, KKT conditions:

oF oC1(P1) =

oP1 oP1 = : )
OF 6C2(P2) —

—=0 = ———-A+u2—u2=0 E3.37
oP2 oP2 Lo ( )
oF

8—/1:0 = Pi1+P2-Pr=0 (E3.38)

ET[D()_()— c]=0 = ,L=11[— P1+P1]=0, ;1[P1— El]I 0
/=12[— P2+ 52] =0, /=12ll32 — Ez]z 0



Now let’s add some numbers.

Table E3.4 Dispatch Data for Example E3.2
Unit 1 Unit 2

Generation

Specifications:
Minimum Generation 200 MW [100 MW
Maximum Generation 380 MW 200 MW
Cost Curve Coefficients:

Quadratic Term 0.016 0.019
Linear Term 2.187 2.407
Constant Term 120.312 |74.074

Minimum load limitations are caused by fuel combustion stability and inherent
steam generator design constraints. For example, most supercritical units cannot
operate below 30% of design capability. A minimum flow of 30% is required to
cool the tubes in the furnace of the steam generator adequately. — A. Wood and B.
Wollenberg, “Power generation, operation, and control,” 2" edition, Wiley, 1996.



C,(P,) =0.016(P1)* + 2.187(P1)+120.312

C,(P,) =0.019(P2)* + 2.407(P2)+ 74.074
h(P,,P,) = P1+ P2 =400

200< P1<380= P1<380, — P, <-200
100< P2<200= P2<200, —P, <-100



LaGrangian function

F(Py P2, A, g, gt 2, o) = 0.016 (Po)f +2.187 (P1)+120.312

+0.019(P2)” +2.407 (P2)+ 74.074
— A[P1+ P2 - 400]

~ ga[~ P1+200] ~ zu[P1 - 380]
— Ez[— P2 -|—100] — ;z[Pz — 200]



KKT conditions:

F -0 = 0032(P:)+2.187— 4+ m— =0

oP1

F 0 = 0038(P2)+2407— A+ p2—p2=0

oP2

a—F:O = P1+P2-400=0
oA

u'lg(x)-c]=0 = u[-P1+200]=0, wP:-380]=0

2]~ P2+100]=0, u2[P2-200]=0



Assume all inequality constraints are non-binding.
This means that

=0 and =0 Vi=1n

And KKT conditions become
0.032(P1)+2.187-1=0

0.038(P2)+2.407-1=0
P1+P2-400=0



Rewrite them as:

0.032(P1)+0(P2)— A =-2.187
(P1)+0.038(P2)— A =-2.407
P14+ P2=400

And It Is easy to see how to put them into
matrix form for solution in matlab.



10.032
0
1

Solution yields:

0 —1
0.038 —-1|x
1 0
b,
P2

A

P1| [-2.187

D, |=| - 2.407
A 400

1220.297
179.71
024




Whatis A ?
= $9.24/MW-hr from previous problem

It IS the system “incremental cost.”

It Is the cost If the system provides an
additional MW over the next hour.

It 1s the cost of “increasing” the RHS of the
equality constraint by 1 MW for an hour.

We can verify this.



Verification for meaning of lambda.

» Compute total costs/hr for Pd=400 MW

» Compute total costs/hr for Pd=401 MW

 Find the difference In total costs/hr for
the two demands.

If our interpretation of lambda Is correct,
this difference should be $9.24.



Get cost/hr for each unit.
C1(P1)=0.016(220.29)° + 2.187(220.29) +120.312

Ci(P1)=1378.53$/hr

C2(P2)=0.019(179.71)° + 2.407(179.71)+ 74.074
C2(P2)=1120.25$/hr

Total cost/hr are C1+C2

Cr = Ca(P1)+C2(P2)=1378.53+1120.25 = 2498.78



Now solve EDC for Pd=401 MW to get P1,P2

0032 0 1| [Pu]| [-2187
0 0.038 -1|x|Pz2|=|-2.407

1 1 o |4 | 401
P1| [220.83
P2|=|180.17

Al | 9.25



Get cost/hr for each unit.
C1(P1)=0.016(220.83)° + 2.187(220.83)+120.312

Ci(P1)=1383.52%/hr

C2(P2)=0.019(180.17)° + 2.407(180.17)+ 74.074
C2(P2)=1124.51$/hr

Total cost/hr are C1+C2
Cr =C1(P1)+ C2(P2)=1383.52+1124.51 = 2508.03

Total cost/hr changed by 2508.03-2498.78 = 9.25 $/hr,
which is in agreement with our interpretation of lambda.
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