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Notes on Mutual Inductance and Transformers 
J. McCalley 

1.0 Use of Transformers 
Transformers are one of the most common electrical devices. Perhaps the most familiar application 

today is for small electronic devices such as laptop computers. The circuit diagram for such an 

application is given in Fig. 1. 

 

Fig. 1 

Transformers are also used in devices with rechargeable batteries, e.g., drills, screwdrivers, cordless 

phones.  Another major transformer application is the ballast used in florescent lighting, as shown in Fig. 

2.  
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Fig. 2 

In the electric power industry, several types of transformers are utilized, including the power 

transformer and the instrument transformer. Our interest is the power transformer. Power transformers 

are used in the following ways: 

 Stepping up the voltage from a generator to high voltage transmission levels; 

 Stepping down the voltage to distribution primary voltage levels; 

 Stepping down the voltage to distribution secondary voltage levels; 

 Interconnecting different system voltage levels in the HV and EHV systems. 

2.0 Self inductance 
Consider the arrangement of Fig. 3. 

 
Fig. 3 

Ampere’s law is  
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ILdH 


     (1) 

Ampere’s law says that the line integral of magnetic field intensity H about any closed path equals the 

current enclosed by that path. When (1) is applied to the arrangement of Fig. 3,  

 The path is the dotted line;  

 The magnetic field intensity is along the direction of φ, which is in the same direction as dL;  

 The left hand side of (1) therefore becomes just Hl, where l is the mean length of the path 

around the core. 

 The right-hand-side of (1) is the number of turns times the current, Ni. 

Therefore, we obtain 

NiHl        (2) 

We recall from basic electromagnetics that 

HB        (3) 

where B is the magnetic flux density (webers/m2), and μ is the permeability of the iron with units of 

Henry/m or Newtons/ampere2 (μ for a given material is the amount of flux density B that will flow in 

that material for a unit value of magnetic field strength H. For most types of iron used in transformers, 

μ=5000μ0 N/A2, where μ0=4π×10-7N/A2 is the permeability of free space). 

 We also know that flux φ (webers) is related to flux density by 

BA       (4) 

where A is the cross-sectional area of the iron core. Solving for B in (4) and substituting into (3), solving 

for H, and substituting into (2) yields 

Nil
A





      (5) 

Solving for φ results in 

Ni
l

A
        (6) 

Now we define: 
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 Magnetomotive Force, NiF  

 Reluctance: 
l

A
R  

Then (6) becomes 

 
F

R
      (7) 

Equation (7) should remind you of a familiar relation… Ohm’s Law! 

Ohm’s Law is I=V/R and so the analogy is 

 I  φ (flux “flows” like current) 

 V  F (MMF provides the “push” like voltage) 

 R  R (Reluctance “resists” like resistance) 

 

===================================================================================== 

Example 1 [1]: The magnetic circuit shown in the below figure has N=100 turns, a cross-section area of 

Am=Ag=40cm2, an air gap length of lg=0.5mm, and a mean core length of lc=1.2m. The relative 

permeability of the iron is μr=2500. The current in the coil is IDC=7.8 amperes. Determine the flux and 

flux density in the air gap. 
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Solution: We may think of this magnetic circuit in terms of its electric analogue, as shown below. 

 

The electric analogue makes the solution immediately clear, where 

 
F

R
 

The MMF is computed as 

100*7.8 780 ampere-turnsNI  F  

The reluctance of the air-gap is computed as 

7 2

0.5 /1000
99,472amperes/Weber

(4 10 )(40 /100 )

g

gap

g

l

A  
 


=R  

The reluctance of the core is computed as 

7 2

1.2
95,492amperes/Weber

2500(4 10 )(40 /100 )

c
core

c

l

A  
 


=R  

The flux is then computed as 

780
0.004Webers

99,472 95,492
   



F

R
 

The flux density is given by 

2

0.004
1 Tesla

40 / (100)
B

A


    

=============================================================================== 
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Now let’s return to (6) and multiply both sides by N to obtain 

iN
l

A
N 2
        (8) 

Define: 

 Flux linkage:  

 N        (9) 

 Self inductance: 

R

N

l

AN
L

22




      (10) 

Substituting (9) and (10) into (8), we obtain 

Li        (11) 

We will introduce some additional notation that will help us later, as follows: 

1

11
11

i
L


        (12) 

And so we can see that the self-inductance L11 is the ratio of 

 the flux from coil 1 linking with coil 1, λ11 

 to the current in coil 1, i1. 

Observe from (12) that a large L11 means that a little current i1 generates a lot of flux linkages λ11. What 

makes L11 large? Recall: 

l

AN
L

2

1
11


  

And so we see that to make self inductance large, we need to  

 make N1, μ, and A large 

 make l small 

And so a large L11 results from  
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 many turns (N1) 

 large cross section (A) 

 compact construction (small l) 

 large μ (e.g., core made of iron) 

Recalling that reluctance is given by 
l

A
R , we see that a magnetic circuit characterized by a large 

self-inductance will have a small magnetic path reluctance.  

Example 2 [1]: Compute the self-inductance of the magnetic circuit given in Example 1. 

Solution: Here, we need to recognize that the magnetic field intensity, H, will be different in the iron 

core than in the air gap. We can see that this must be so because the air gap is in series with the core 

and so the flux φ in the air gap must be the same as the flux in the core. Since the cross-sectional area in 

the air gap and in the core are the same, the flux densities B must also be the same. But because B=μH, 

and the permeability of the air gap differs from the permeability of the core, the magnetic field 

intensities must differ as well. Thus, equation (2) will change to  

c c g gH l H l Ni   

Using B=μH, we have 

c g

c g

B B
l l Ni

 
 



gc

c g

ll
B Ni

 

 
  

  
 

And using B=φ/A, we have 

gc

c g

ll
Ni

A



 

 
  

  
 

Solving for φ, we obtain 

gc c g

c g

Ni Ni

ll

A A



 

 



R R  

Using subscripted notation to identify the flux from coil 1 linking with coil 1 results in 
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1 1 1 1
11

gc c g

c g

N i N i

ll

A A



 

 



R R  

Recalling that self-inductance is given by 

11
11

1

L
i


  

and that λ11=N1φ11, we can write that 

11 1 11
11

1 1

N
L

i i

 
   

Substitution for φ11 results in 

2

1
11

c g

N
L 

R R
 

Recalling from Example 1 that N1=100 and  

99,472amperes/Webergap R  

95,492amperes/Webercore R  

the self-inductance becomes: 
2

11

100
0.0513 henries

95492 99472
L  


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3.0 Mutual inductance 
Let’s consider another arrangement as shown in Fig. 4. 

 

Fig. 4 

We have for each coil: 

1

11
11

i
L


        (13a) 

2

22
22

i
L


        (13b) 

We can also define L12 and L21. 

L12 is the ratio of  

 the flux from coil 2 linking with coil 1, λ12 

 to the current in coil 2, i2. 

That is, 

2

12
12

i
L


        (14a) 

where the first subscript, 1 in this case, indicates “links with coil 1” and the second subscript, 2 in this 

case, indicates “flux from coil 2.” 

Here, we also have that  

i1 
φ 

N1 

i2 

N2 
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2

121
1212112

i

N
LN


        (14b) 

Likewise, we have that 

1

21
21

i
L


        (15a) 

1

212
2121221

i

N
LN


       (15b) 

Now let’s assume that all flux produced by each coil links with the other coil. The implication of this is 

that there is no leakage flux, as illustrated in Fig. 5. 

 

Fig. 5 

Although in reality there is some leakage flux, it is quite small because the iron has much less reluctance 

than the air. With this assumption, then we can write that  

 the flux from coil 2 linking with coil 1 is equal to the flux from coil 2 linking with coil 2, i.e.,  

222212 iN
l

A
        (16a) 

 the flux from coil 1 linking with coil 2 is equal to the flux from coil 1 linking with coil 1, i.e.,  

i1 
φ 

N1 

i2 

N2 

This leakage flux is assumed to be zero. 
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111121 iN
l

A
        (16b) 

Substitution of (16a) and (16b) into (14b) and (15b), respectively, results in: 

1 2 2
1 12 1 2

12 1 2

2 2

A
N N i

N N NAlL N N
i i l


 

   
R

    (17a) 

2 1 1
2 21 2 1

21 2 1

1 1

A
N N i

N N NAlL N N
i i l


 

   
R

    (17b) 

Examination of (17a) and (17b) leads to  

1 2
21 12

N N
L L 

R
      (18) 

Also recall  

2N
L 
R

      (10) 

or in subscripted notation 

2

1
11

N
L 

R
      (19a) 

2

2
22

N
L 

R
      (19b) 

Solving for N1 and N2in (19a) and (19b) results in 

1 11N L R       (20a) 

2 22N L R       (20b) 

Now substitute (20a) and (20b) into (18) to obtain 
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11 22

21 12 11 22

L L
L L L L  

R R

R
      (21) 

Definition: L12=L21 is the mutual inductance and is normally denoted M. 

Mutual inductance gives the ratio of 

 flux from coil k linking with coil j, λjk  

 to the current in coil k, ik, 

That is,  












1

21

2

12

i

i
M





       (22) 

4.0 Polarity and dot convention for coupled circuits 
Consider Fig. 6 illustrating two coupled circuits. Assume the voltage v1 is DC, but you have a dial you can 

turn to increase v1. Also assume that the secondary is open (i.e., the dashed line connecting the 

secondary terminals to a load is not really there). The coil 1 has very small resistance so that in the 

steady-state, the current is not infinite.  

 

Fig. 6 

Now assume that we increase the voltage v1 to some higher value.  This causes the current i1 to increase 
with time which causes the flux from coil 1, φ11, to also increase with time (which means that the flux 
linkages λ11 also increase with time). By Faraday’s Law,  

i1 
φ11 

N1 

i2 

N2 
e1 

e2 

v1 

φ21 



13 

 

11 1 11 11 1
1 1 11

( )d d N d di
e N L

dt dt dt dt

  
        (23) 

In addition, the coil 2 sees that same flux increase, which we denote by φ21 (and correspondingly, the 

flux linkages are denoted as λ21). Again, by Faraday’s Law,  

21 2 21 21 1 1
2 2 21

( )d d N d di di
e N L M

dt dt dt dt dt

  
         (24) 

Question: How do we know the sign of the right-hand-side of (24)? That is, how do we know which of 

the below are correct? 

1
2

1
2

di
e M

dt

di
e M

dt

 

 
     (25) 

Here is another way to ask our question:  

Does the assumed polarity of our e2 match the actual polarity of the voltage that would be induced by 

the changing current i1? If so, we should choose the equation in (25) with the positive sign. If not, we 

should choose the equation in (25) with the negative sign. 

And so what is the answer? To obtain the answer, we need to recall Lenz’s Law. This law states that the 

induced voltage e2 must be in a direction so as to establish a current in a direction to produce a flux 

opposing the change in flux that produced e2. (You can find a good explanation/illustration of Lenz’s Law 

at https://www.khanacademy.org/science/physics/magnetic-forces-and-magnetic-fields/magnetic-flux-

faradays-law/v/lenzs-law).  

When e1 increases, i1 increases, and by the right-hand-rule (RHR), φ21 increases.  

Our assumed polarity of e2 would cause current to flow into the load in the direction shown. How do we 

know if this polarity is correct or not? We know it is correct because the RHR says that a current in the 

direction of i2 would cause flux in the direction opposite to the direction of the φ21 increase. Thus, for 

the given polarity of e2, the sign of (25) should be positive, i.e.,  

1
2

di
e M

dt
   

How might we obtain a different answer? 

There are two ways. 

https://www.khanacademy.org/science/physics/magnetic-forces-and-magnetic-fields/magnetic-flux-faradays-law/v/lenzs-law
https://www.khanacademy.org/science/physics/magnetic-forces-and-magnetic-fields/magnetic-flux-faradays-law/v/lenzs-law
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First way: Switch the sign of e2, as in Fig. 7. 

 

Fig. 7 

In Fig. 7, the current i2, by the RHR, would produce a flux in the same direction as the φ21 increase. In 

this case, we should use the negative sign in (25) according to: 

1
2

di
e M

dt
   

Second way: Switch the sense of the coil 2 wrapping, as in Fig. 8. 

 

Fig. 8 

In Fig. 8, the current i2, by the RHR, would produce a flux in the same direction as the φ21 increase. In 

this case, we should again use the negative sign in (25). 

 

i1 
φ11 

N1 

i2 

N2 
e1 

e2 

v1 

φ21 

i1 
φ11 

N1 

i2 

N2 
e1 

e2 

v1 

φ21 
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The main point here is that we want to be able to know which secondary terminal, when defined with 

positive voltage polarity, results in using the form of (25) with a positive sign.  

On paper, there are two approaches for doing this. The first is to draw the physical winding and to go 

through the Lenz’s Law analysis as we have been doing above.  

The second approach is easier, and it is to use the so-called “dot convention.”  

In the dot convention, we will mark one terminal on either side of the transformer so that  

 when e2 is defined positive at the dotted terminal of coil 2 and 

 i1 is into the dotted terminal of coil 1, then 

1
2

di
e M

dt
   

Example 3:  

 

So far, we have focused on answering the following question: given the dotted terminals, how to 

determine the sign to use in (25)? 

Here is another question: If you are given the physical layout, how do you obtain the dot-markings? 

There are two approaches: 
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First approach: Use Lenz’s Law and the right-hand-rule (RHR) to determine if a defined voltage direction 

at the secondary produces a current in the secondary that generates flux opposing the flux change that 

caused that voltage. 

Second approach: Do it by steps: 

1. Arbitrarily pick a terminal on one side and dot it. 

2. Assign a current into the dotted terminal. 

3. Use RHR to determine flux direction for current assigned in step 2. 

4. Arbitrarily pick a terminal on the other side and assign a current out of (into) it. 

5. Use RHR to determine flux direction for current assigned in Step 4. 

6. Compare the direction of the two fluxes (the one from Step 3 and the one from Step 5). If the 

two flux directions are opposite (same), then the terminal chosen in Step 4 is correct. If the two 

flux directions are same (opposite), then the terminal chosen in Step 4 is incorrect – dot the 

other terminal.   

This approach depends on the following principle (consistent with words in italics in above steps): 

Current entering one dotted terminal and leaving the other dotted terminal should produce fluxes 

inside the core that are in opposite directions. 

An alternative statement of this principle is as follows (consistent with words in underline bold in 

above steps): Currents entering the dotted terminals should produce fluxes inside the core that 

are in the same direction. 

Example 4: Determine the dotted terminals for the configuration below, and then write the relation 

between i1 and e2.  

 

i1 

N1 N2 
e2 
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Solution:  

Steps 1-3: 

 

Steps 4-6: 

 

Now we can write the equation for the above coupled circuits. Recall that in the dot convention, we will 

mark one terminal on either side of the transformer so that  

 when e2 is defined positive at the dotted terminal of coil 2 and 

 i1 is into the dotted terminal of coil 1, then 

1
2

di
e M

dt
   

In the above, however, although i2 is into the dotted terminal of coil 1, e2 is defined negative at the 

dotted terminal of coil 2. Therefore 

i1 

N1 N2 
e2 

φ11 

i2 φ22 

i1 

N1 N2 
e2 

φ11 
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1
2

di
e M

dt
   

But note, there is another way we could have solved this problem, as follows: 

Steps 1-3: 

 

Steps 4-6: 

 

Now we can write the equation for the above coupled circuits. Recall that in the dot convention, we will 

mark one terminal on either side of the transformer so that  

 when e2 is defined positive at the dotted terminal of coil 2 and 

 i1 is into the dotted terminal of coil 1, then 

i'1 

N1 N2 
e2 

φ11 

i2 

φ22 

i'1 

N1 N2 
e2 

φ11 
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1
2

di
e M

dt
   

In the above, we have i'1 flowing into the dotted terminal of coil 1, and e2 is defined positive at the 

dotted terminal of coil 2. Therefore 

1
2

di
e M

dt


   

If, however, we wanted to express e2 as a function of i1 (observing that i1=-i'1) then we would have 

1
2

di
e M

dt
   

Example:  

5.0 Writing circuit equations for coupled coils 
…. (see in-class notes) 

6.0 Derivation of transformer turns ratio relations 
…(we skipped this in class) 

7.0 Power for ideal transformer and referring quantities 
…(see in-class notes) 

8.0 Exact and approximate transformer models 
…(see in-class notes) 

9.0 Three-phase transformers 
A three-phase transformer will have six windings: three for the primary (phases A, B, and C on the 

primary) and three for the secondary (phases A, B, and C for the secondary).  

There are two very different approaches to developing a three-phase transformer. One approach is to 

use just one “three phase bank,” where here the word “bank” refers to a single core, i.e., a single 
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magnetic circuit. Figure 9 [1] illustrates, where each pair of primary and secondary windings (there are 

three pairs, one for each phase) are on the same leg. 

 

 

Figure 9: A three-phase transformer bank  

The three-phase bank illustrated in Fig. 9 is utilizing a “core-type” of construction. In the core-type, 

primary and secondary windings are wound outside and surround their leg. In another type of 

construction, the so-called “shell-type,” windings pass inside the core, forming a shell around the 

windings. Figure 10 [2] illustrates the difference. 

 

Figure 10: Core type (a) and shell type (b)  

Another approach to developing a three-phase transformer is to interconnect three single-phase 

transformers. This approach is illustrated in Fig. 11 below. 

 

 

                                                           
1 http://www.gamatronic.com/three-phase-transformers/  
2 http://www.itacanet.org/basic-electrical-engineering/part-15-transformers/  

http://www.itacanet.org/wpeng/basic-electrical-engineering/part-15-transformers/trans6/
http://www.gamatronic.com/three-phase-transformers/
http://www.itacanet.org/basic-electrical-engineering/part-15-transformers/
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Fig. 11: Single-phase transformer connections to form a three-phase transformer 
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The voltage transformation ratio for three-phase transformers is always given as the ratio of the line-to-

line voltage magnitude on either side. If a transformer is connected Y-Y or Δ-Δ, this ratio will be the 

same as the ratio of the winding voltages on either side (which is the same as the turns ratio N1/N2).  

However, for Y-Δ or Δ-Y connected transformers, the ratio of the line-to-line voltages on either side is 

not the same as the ratios of the winding voltages. This means that you can take three single-phase 

transformers, each with the same turns ratio, and connect them for a three-phase configuration such 

that the three-phase configuration will have a different line-to-line ratio than the phase-to-phase ratio! 

…see in-class examples. 

It is the line-to-line ratio that you should use in performing per-phase analysis. 

 


