EE 303, Quiz 4, Spring 2017, Dr. McCalley

1. (30 pts) The following is a circuit model of a transformer.

Answer the following questions:

- a. What element or elements model the leakage flux? X_1 and X_2
- b. What element or elements model the real power losses caused by eddy currents in the transformer core?__R___
- c. What element or elements model the hysteresis losses in the transformer core? R_{c}
- d. What element or elements model the real power losses caused by I^2R effect in the windings? _____R_1 and R_2____R_2 and R_2___R_2 and R_2__R_2 and R_2__R_2 and R_2__R_2 and R_2__R_2 and R_2_R_2 a
- e. What element or elements model the reactive power associated with setting up the magnetizing flux in the core?_
- 2. (40 pts) In the circuit below, the primary turns is N₁=100 and the secondary turns is N₂=10. Refer all of the numerical quantities indicated over to the primary side and draw the primary-side circuit you would use for analysis. Label the resistant elements appropriately and give their valu V'_2 , E'_2 , I'_2 , E'_1 , I'_1 , I'

Xm

Solution:

3. (30 pts) Consider the following circuit which is exactly the same as the one discussed in the last class. It is a per-phase circuit of a three-phase system. The three phase power consumed by load #3 is 95.04 kVA at 0.6 pf leading.

Choose your base line-to-neutral voltage as 5000volts and your base per-phase power as 100,000volt-amperes.

- a. Compute the base line current.
- b. Compute the base impedance for Y-connected loads.
- c. Compute the per-unit voltage applied at load.
- d. Compute the per-unit power consumed by load #3.
- e. Compute the per-unit impedances for the impedance of the two constant impedance loads.

Solution:

- a. $I_{base} = S_{1,base} / V_{LN, base} = 100,000/5000 = 20 \text{ or } I_{base} = S_{3,base} / (sqrt(3)V_{LL, base}) = 300,000/sqrt(3)sqrt(3)5000 = 20 \text{ amps.}$
- b. $Z_{base} = V_{LN,base}/I_{base} = 5000/20 = 250$ ohms or $Z_{base} = (V_{LL,base})^2/S_{3,base} = (sqrt(3)*5000)^2/300,000 = 250$ ohms
- c. V_{pu,load}=4800/5000=0.96pu
- d. $S_{3,pu}=95,040(0.6-j0.8)/300,000=0.3168(0.6-j0.8)$
- e. $Z_{1,pu}=(150+j50)/250=(0.6+j0.2)pu; Z_{2,pu}=300+j200//250=(1.2+j0.8)pu.$