EE 303 Quiz 2, Spring 2017, Dr. McCalley, February 2, 2017 20 minutes, Closed book, Closed Notes, Calculator Allowed

1. (24) A Wye-connected load, with a-b-c phase sequence, has a line-to-neutral voltage magnitude of 120 volts. Assume the a-phase line-to-neutral voltage is reference. Identify the following phasors (magnitude and angle).

\mathbf{V}_{an} =120 $\angle 0^\circ$	$V_{ab} = (\sqrt{3})(120) \angle 30^{\circ} $
V _{bn} =120∠-120°	V_{bc} =_(√3)(120) ∠-90°
V _{cn} =120∠-240°	$V_{ca} = (\sqrt{3})(120) \angle -210^{\circ}$

2. (24) A Delta-connected load, with a-b-c phase sequence, has a line current magnitude of 10 amperes. Assume the a-phase line current is reference. Identify the following phasors (**magnitude and angle**).

$$I_{a}=_{10}\angle 0^{\circ}$$
 $I_{ab}=_{(10/\sqrt{3})}\angle 30^{\circ}$
 $I_{b}=_{10}\angle -120$
 $I_{bc}=_{(10/\sqrt{3})}\angle -90^{\circ}$
 $I_{c}=_{10}\angle -240$
 $I_{ca}=_{(10/\sqrt{3})}\angle -210^{\circ}$
 $I_{ca}=_{10}\angle -240$
 $I_{ca}=_{(10/\sqrt{3})}\angle -210^{\circ}$

3. (28) A 3-phase line has an impedance of 0.4+j2.7 ohms/phase. The line feeds 2 balanced 3-phase loads that are connected in parallel. The first load is absorbing 560.1kVA at 0.707 power factor lagging. The second load absorbs 132 kW at unity power factor. The line-to-neutral voltage at the load end of the line is 2200 volts. Determine the total real and reactive power loss in the line. Solution:

The total complex power is

$$S_{R(3\phi)} = 560.1(0.707 + j0.707) + 132 = 528 + j396 = 660 \angle 36.87^{\circ}$$
 kVA

With the phase voltage V_2 as reference, i.e., $V_2=2200/_0^\circ$, the current in the line is

$$I = \frac{S_{R(3\phi)}^{*}}{3V_{2}^{*}} = \frac{660,000\angle - 36.87^{\circ}}{3(2200\angle 0^{\circ})} = 100\angle - 36.87^{\circ} \text{ A}$$

The three-phase power loss in the line is

$$S_{L(3\phi)} = 3R|I|^2 + j3X|I|^2 = 3(0.4)(100)^2 + j3(2.7)(100)^2 = 12kW + j81kvar$$

- 4. (24) Consider the two magnetic circuits illustrated below; the cores of each are ferromagnetic and are identically constructed. Both circuits have N₁ primary coils and N₂ secondary coils. For each question below, assume that identical voltage sources are applied to the primary terminals (v₁).
 - i. Which magnetic circuit has the largest reluctance as seen by an applied magnetomotive force at the primary side? <u>Solution</u>: (b)
 - ii. Assume v₁ is a DC voltage. Is flux flowing in (a) larger, smaller, or equal to the flux flowing in (b)?
 <u>Solution</u>: Larger.
- iii. Assume v_1 is an AC voltage. Which magnetic circuit sees an induced voltage v_2 : (a), (b), both, or neither? **Solution**: both.

