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Module B3
3.1 Sinusoidal steady-state analysis (single-phase), a review

3.2 Three-phase analysis

2

Kirtley
Chapter 2: AC Voltage, Current and Power

2.1 Sources and Power

2.2 Resistors, Inductors, and Capacitors

Chapter 4: Polyphase systems

4.1 Three-phase systems

4.2 Line-Line Voltages



Basic concepts of electric power
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With exception of a few High Voltage DC circuits, the 

entire electric grid operates to deliver “alternating 

current” (AC). An “AC voltage” appears below.

The waveform completes one cycle 

in 0.0167 sec. This is the “period” 

of the waveform and is 1/f. So, 

f=1/0.0167=60Hz or 60 cycles/sec. 

The maximum value of the 

waveform is 400 volts.   

max( ) sin 400sin(377 )v t V t t 

Since 1 cycle completes 2π radians, 

ω=(2π rad/cyc)*60cyc/sec=377rad/sec.

We can therefore express this voltage 

as



KVL and Ohm’s Law
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The below is a circuit model of a voltage source 

connected to a resistance. 

tV

tv

sin

)(

max



We apply Kirchoff’s 

Voltage Law (KVL): the 

sum of voltages around 

the loop must be 0:

)(tvL

 


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0)()(

tvtv
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L

L


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We may apply Ohm’s Law 

to obtain the current:
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Voltage and current for resistive cct
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Compare voltage & current. Assume R=2 ohms.

tVtvL sin)( max max 400
( ) sin sin377

2

V
i t t t

R
 

Current & voltage 

cross 0 simultaneously 



Capacitance
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The below is a circuit model of a voltage source 

connected to a capacitance. 

tV

tv

sin
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max



Again, from KVL:
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 



)()(

0)()(

tvtv

tvtv

L

L





The current is given by:
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Voltage and current for capacitive cct
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Compare voltage & current. Assume C=0.001farad.

tVtvL sin)( max max( ) sin
2

.001 377 400sin 150.8sin
2 2

i t C V t

t t


 

 
 

 
   

 

   
       

   

Current crosses 0 

before voltage. We say 

“current leads voltage.”

If we multiply the time 

axis by ω=377 rad/sec, 

we would see that 

current leads voltage 

by π/2 radians.



Inductance
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The below is a circuit model of a voltage source 

connected to an inductor. 

tV

tv

sin
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

Again, from KVL:
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The current is given by:
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Voltage and current for inductive cct
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Compare voltage & current. Assume L=.01 henry.

tVtvL sin)( max

Current crosses 0 after 

voltage. We say 

“current lags voltage.”

If we multiply the time 

axis by ω=377 rad/sec, 

we would see that 

current lags voltage by 

π/2 radians.

max( ) sin
2

400
sin 106.1sin

377 0.01 2 2

V
i t t
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



 
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 
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   
      

    



Impedance
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RESISTIVE:

CAPACITIVE:

INDUCTIVE:

It is clear that ZR=R. 

Is ZC=1/ωC? Is ZL=ωL? 

No, because we also need to take care of the phase shifts. 

tVtvL sin)( max



Impedance
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Therefore

Then, with ZC=1/jωC, ZL=jωL, we get correct current expressions.











2
sinsin


 ttj 










2
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sin 



t

j

t

To do so, let’s utilize the imaginary unit “j” which has the 

following properties: 

• It is the square root of -1: 

• From the Euler relation:

With ϕ=π/2, we obtain:

Therefore, j has magnitude of “1” and angle π/2.

1j

 sincos je j 

jje j  2/sin2/cos2/ 



Impedance
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RESISTIVE:

CAPACITIVE:

INDUCTIVE:

Z, called impedance, is a generalization of resistance 

that accounts for the effects of capacitance & inductance.  



Impedance

13

In a purely resistive circuit, Z=ZR=R.

In a purely capacitive circuit, Z=ZC=1/jωC.

In a purely inductive circuit, Z=ZL=jωL. 

We also define:

• Capacitive reactance: XC=1/ωC 

• Inductive reactance: XL=ωL 

In a purely resistive circuit, Z=ZR=R.

In a purely capacitive circuit, Z=ZC=1/jωC=XC/j.

But recall j=√-1, then j2=-1. So (XC/j)*(j/j)=-jXC. 

So Z=ZC=-jXC.

In a purely inductive circuit, Z=ZL=jωL=jXL. 



Impedance
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It is possible to have an impedance that is a combination of 

resistance, capacitance, and inductance.

tV

tv

sin

)(

max

 )(tvL

 



LjX 3
CjX

R

Then   jXRXXjRjXjXRZ CLCL 

)(ti

The impedance, Z, can be thought of as a vector on the 

complex plane.



Impedance
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Real

Imaginary

R

X

Z

  jXRXXjRjXjXRZ CLCL 

Inductive

Capacitive



Example 1
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Let R=2Ω, C=0.001farad, L=0.01henry, Vmax=400.

1048.12)6525.277.3(2

)001.0377/(01.03772

jj

jj



Then Z=R+jωL-j/ωC

tV

tv

sin

)(

max

 )(tvL

 



LjX 3
CjX

R

)(ti

The current will be

max sin( ) 400sin
( )

2 1.1048

L
V tv t t

i t
Z Z j

 
  



But how to 

get this?
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400sin
( )

2 1.1048

t
i t

j






You can divide each numerical point in the sinusoidal 

numerator by the complex denominator, then take the 

magnitude and angle of the resulting complex number. 

But observe that only the magnitude changes as t increases. This 

is because the “phasor angle” of the numerator and the vector 

angle of the denominator both remain constant with t. That is:

400sin
( )

2 1.1048

t
i t

j






400 0sin

Z

t

Z










But what is |Z|∟θZ?



Impedance
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Real

Imaginary

2

1048.1

Z









92.28radians5047.0

2

1048.1
tan

2

1048.1
tan

1

Z

Z





2849.221048.1 22 Z

 92.282849.2ZZ 

 

 

400 0sin 400
( ) (0 ) sin

400
28.92 sin 175.06 28.92 sin

2.2849

Z

Z

t
i t t

Z Z

t t


 



 


   



     

So:

And from the previous slide:



Impedance
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So ( ) 175.06 28.92 sini t t  
Recalling that 28.92°=0.5047 radians, we write the above as:

 ( ) 175.06sin 0.5047i t t  We can plot this:

Current crosses 0 after 

voltage. We say 

“current lags voltage.”

If we multiply the time 

axis by ω=377 rad/sec, 

we would see that 

current lags voltage by 

0.5047 radians.



Phasors
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Let’s review what we just did:

max sin( ) 400sin
( )

2 1.1048

L
V tv t t

i t
Z Z j

 
  



   

 

400 0sin 400 400
(0 ) sin 28.92 sin

2.2849

175.06 28.92 sin 175.06sin 0.5047

Z

Z

t
t t

Z Z

t t


  



 


      



    

Notice that nothing ever happened to the ωt part. Nor did the 

sinusoidal function change. This means that the frequency of 

the current is the same as the frequency of the voltage. If 

this is the case, then why do we need to carry the sinωt 

through the calculations? Why not just drop it? This is what 

we do when we use phasor notation, as in the next slide. 



Phasors
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Define:

Phasor for source voltage:

Phasor for load voltage:

Phasor for current:

Also recall the impedance:

Then… 

SVSS V V̂

LVLL V V̂

II Î

ZV
L

Z

VLL
I L

L

Z

V

Z

V

Z
I 




 






||||

ˆ
ˆ V
I

ZZZ 

There is an implicit 

sinωt that we are not 

writing. This sinωt  

gives rotation to the 

vectors which make 

them phasors.

There is no implicit 

sinωt  impedance is 

a vector, not a phasor!

Real

Imaginary

Z

(does not 

rotate)

LV̂
Î

These do 

rotate.

Rotation is in 

CCW direction



Instantaneous Power
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Instantaneous power is given by )()()( titvtp 

Let  vtVtv   cos)( max
 itIti   cos)( max

Then    

   iv

iv

ttIV

tItVtitvtp









coscos

coscos)()()(

maxmax

maxmax

Apply trig identity:     bababa  coscos
2

1
coscos

    

       )]22cos([cos
2

2coscos
2

coscos
2

)(

maxmaxmaxmax

maxmax

ivviviviv

iviv

v

t
IV

t
IV

tttt
IV

tp













    )()(2coscos
2

)( maxmax
ivviv t

IV
tp  

Gathering terms in the argument of the second cos function:



Instantaneous Power
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Rearrange and distribute:

where:

Apply trig identity to last term:   bababa sinsincoscoscos 

    )()(2coscos
2

)( maxmax
ivviv t

IV
tp  

  )sin()(2sin)cos()(2coscos
2

)( maxmax
ivvivviv tt

IV
tp  

  )(2sin)sin(
2

)(2cos)cos(
2

cos
2

)( maxmaxmaxmaxmaxmax
vivviviv t

IV
t

IVIV
tp  

  )sin(
2

,cos
2

maxmaxmaxmax
iviv

IV
Q

IV
P  

Then: )(2sin)(2cos)( vv tQtPPtp  

Real power

Active power

Watts

Imaginary power

Reactive power

VARs
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Then:

 max max

max max

400 175.06
cos cos(0 .5047) 30647

2 2

400 175.06
sin( ) sin(0 .5047) 16930

2 2

v i

v i

V I
P

V I
Q

 

 


    


    

Consider example 1, where Vmax=400, θv=0, 

( ) cos2( ) sin 2( )

30647 30647cos2(377 ) 16930sin 2(377 )

v vp t P P t Q t

t t

       

  

)sin()( max vtVtv  

and we computed that Imax=175.06, θi = -.5047rad, 

 itIti   sin)( max

watts

vars

TERM1 TERM2 TERM3
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TERM1 TERM2 TERM3

• Power is delivered only if the 

average power is not 0.

• The average value of term2 and 

term3 is 0. These terms are not 

responsible for power delivery.

• The average value of the 

composite, which is instntans 

power, p(t), is term1, P. 

• Interesting side note: instntns 

power varies at twice the 

nominal frequency.


T

avg dttx
T

X )(
1

The average of a periodic 

signal x(t) is given by:

( ) cos2( ) sin 2( )

30647 30647cos2(377 ) 16930sin 2(377 )

v vp t P P t Q t

t t

       

  



Effective or RMS value
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The power delivered is:

We want to obtain the constant (or DC) value of a current

which delivers the same average power to a resistor.

)(tv
)(tv

 



RZR 

)(ti

effV
effV

 



RZR 

effI


T

Rdtti
T

P )(
1 2

The power delivered is:

RIP eff

2
Equate

 
T

effeff

T

dtti
T

IRIRdtti
T

)(
1

)(
1 222



Effective or RMS value
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The power delivered is:

We want to obtain the constant (or DC) value of a voltage

which delivers the same average power to a resistor.

)(tv

)(tv

 



RZR 

)(ti

effV
effV

 



RZR 

effI


T

Rdttv
T

P /)(
1 2

The power delivered is:

RVP eff /2
Equate

 
T

effeff

T

dttv
T

VRVRdttv
T

)(
1

//)(
1 222



Effective or RMS value
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The root-mean-square value of any periodic signal x(t) is:


T

eff dttx
T

X )(
1 2

Let x(t) be v(t): )sin()( max vtVtv  

 
T

v

T

eff dttV
T

dttv
T

V )(sin
1

)(
1 22

max

2 

Apply trig identity:  )2cos(1
2

1
sin 2 aa 

222
))(2cos(1

2

max

2

max

0

2

max

2

max V

T

TV
t

T

V
dtt

T

V
V

T

T

veff   

Current may be similarly treated, resulting in
2

maxI
Ieff 



Power and Phasor notation
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We previously derived power expressions for P and Q in 

terms of Vmax and Imax. We may now express these in terms 

of rms (effective) values:

     

   iveffeffiv

effeff

iv

iveffeffiv

effeff

iv

IV
IVIV

Q

IV
IVIV

P









sinsin
2

22
)sin(

2

coscos
2

22
cos

2

maxmax

maxmax

This simplifies our power expressions. Commercial voltages 

and currents are always specified as rms values. 

Phasor magnitudes may be rms or maximum. Unless it is 

otherwise specified, we assume phasor magnitudes are rms, 

and we will drop the subscript “eff.” Thus,

   iviv VIQVIP   sin;cos
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     sinsin;coscos VIVIQVIVIP iviv 

Power factor angle, defined θ, is the angle by which voltage 

across an element leads current through the element, i.e., 

θ=θv-θi. It is also the angle of the load Z, i.e., Z=|Z|∟θ. One 

observes from the P, Q expressions that it is also the 

argument of the trig functions. Therefore:

The power factor is given as pf=cosθ. It is always positive, 

therefore we usually indicate pf with either the word “leading” 

(for capacitive load) or “lagging” (for inductive load). The 

following table summarizes important relations.

Load, Z Im{Z} θi (θv=0) θ (θv=0) pf Q sign Q Load

R only 0 0 0 1.0 0 0 vars

R and L + - + 0 to 1, lagging + Absorbing vars

R and C - + - 0 to 1, leading - Supplying vars
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



sin

cos

VIQ

VIP





Consider a windfarm at the end of a transmission line. The P 

and Q “load” in this case represents the utility grid. 

Windfarms using so-called “fixed-speed” induction gens 

consume vars, and so the load must be capacitive. This 

means current is leading, θi>0, and θ<0 (with θv=0).

3
)(tv Load

Trans Line 

impedance

Windfarm

substation

Assume V is constant, and we must supply P (this is the 

windfarm output). With V and P constant, from P=VIcosθ, 

Icosθ=I×pf must be constant. What do we want pf to be? 

)(ti
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Assume P=33MW, V=39.84kV. This means that 

Here are a few possibilities for Icosθ =I×pf.

I (amperes) 828.3 871.9 920.3 1035.4

Pf (leading) 1 0.95 0.9 0.8

3.828384.39/633/coscos  EEVPIVIP 

We need higher power factor to obtain lower current. 

Lower current is desired in order to minimize 

I2R (real power) losses in the transmission line. 
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Power factor correction (PFC)
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So what do you do if your windfarm has a power factor 

of 0.85 lagging but the grid code requires 0.95 lagging?

Install a PFC device at the windfarm’s point of interconnection 

with the grid. This is normally the windfarm’s substation.

3
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Power factor 

correction device

This least expensive PFC device is a switched capacitor, 

or several switched capacitors. These are static devices, 

however. Dynamic devices are also available but are more 

expensive (and you get dynamic responsiveness as well). 



What is reactive power?
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2. It occurs as the coefficient of the double frequency 

“sin” term in p(t):

)(2sin)(2cos)( vv tQtPPtp  

1. It is given by:  ivVIQ   sin

3. It is the maximum value of the rate of energy flowing 

alternately into the reactive component of the load (away 

from the source) and away from the reactive component of 

the load (toward the source). It is only present when there is 

a stored energy device (C or L) in the circuit.

4. Its units are “volt-amperes-reactive” or “vars.” 

Dimensionally, vars are the same as watts and volt-amperes.

5. Three attributes of reactive power:
a. It does no useful work (its average value is 0).

b. Its presence increases current magnitude for a given P and V.

c. Derivatives of Q “flow” equations (not shown in these slides) 

indicate that Q is closely related to voltage magnitudes. 



Complex power
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Complex power is defined as:

jQPS  *
IVˆˆ

where:

iv IˆVˆ   IV
The asterisk next to the “I” phasor indicates conjugation:

iIˆ *
I



Power triangle
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|S|
Q

P

θ

22 QPSjQPS 



Example 3
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The below represents one of the phases of a generator 

supplying a load. The box to the right represents the load. The 

current flowing into the load is 1397.4 A at 0.866 pf leading, 

with 398.37 volts at its terminals. What complex power is 

delivered to the load?

278340482100)30sin30(cos556680

30556680)304.1397(037.398

)304.1397(037.398ˆˆ *

jj

S





 *
IV

Solution: θ=-cos-1(.866)=-30°.

 θi=-θ=30°.

037.398





304.1397

Thus, P=0.482100MW,  

Q=-0.27834MVARs

We also define the apparent power |S|, the magnitude of S:

5567.027834.4821. 2222  QPSjQPS


