Name (2 n	tc)	•	
INDITIC (~ P	wj.	•	

Quiz 2, EE 303, September 14, 2017, Dr. McCalley. Closed book, closed notes, calculator allowed, communication devices not allowed; Answer on this sheet of paper.

- 1. A three-phase line has an impedance of 2+j4 ohms/phase, and the line feeds two balanced three-phase loads that are connected in parallel. The first load is Y-connected and has an impedance of 30+j40 ohms/phase. The second load is delta-connected and has an impedance of 60-j45 ohms/phase. The line is energized at the sending end from a three-phase balanced supply of line voltage 207.85 volts. Taking the phase voltage V_{an} at the supply as reference, determine:
- a. (30 pts) The current, real power, and reactive power drawn from the supply.
- b. (25 pts) The line voltage at the combined loads.
- c. (25 pts) The current per phase in each load.

Solution:

(a) The Δ -connected load is transformed into an equivalent Y. The impedance per phase of the equivalent Y is

$$Z_2 = \frac{60 - j45}{3} = 20 - j15 \Omega$$

The phase voltage

$$V_1 = \frac{207.85}{\sqrt{3}} = 120 \text{ V}$$

The single-phase equivalent circuit is shown in the following figure.

The total impedance is

$$Z = 2 + j4 + \frac{(30 + j40)(20 - j15)}{(30 + j40) + (20 - j15)} = 2 + j4 + 22 - j4 = 24 \Omega$$

with the phase voltage $V_{\it an}$ as reference, the current in phase $\it a$ is

$$I = \frac{V_1}{Z} = \frac{120 \angle 0^{\circ}}{24} = 5 \text{ A}$$

The three-phase power supplied is

$$S = 3V_1 I^* = 3(120 \angle 0^\circ)(5 \angle 0^\circ) = 1800 \text{ W}$$

(b) The phase voltage at the load terminal is

$$V_2 = 120 \angle 0^{\circ} - (2 + j4)(5 \angle 0^{\circ}) = 110 - j20 = 111.8 \angle -10.3^{\circ} \text{ V}$$

The line voltage at the load terminal is

$$V_{2ab} = \sqrt{3} \angle 30^{\circ} V_2 = \sqrt{3} (111.8) \angle 19.7^{\circ} = 193.64 \angle 19.7^{\circ} \text{ V}$$

(c) The current per phase in the Y-connected load and in the equivalent Y of the
$$\Delta$$
 load is
$$I_1 = \frac{V_2}{Z_1} = \frac{110 - j20}{30 + j40} = 1 - j2 = 2.236 \angle -63.4^{\circ} \text{ A}; \qquad I_2 = \frac{V_2}{Z_2} = \frac{110 - j20}{20 - j15} = 4 + j2 = 4.472 \angle 26.56^{\circ} \text{ A}$$

The phase current in the original Δ -connected load, i.e., I_{ab} is given by

$$I_{ab} = \frac{I_2}{\sqrt{3}\angle - 30^\circ} = \frac{4.472\angle 26.56^\circ}{\sqrt{3}\angle - 30^\circ} = 2.582\angle 56.56^\circ \text{ A}$$

- 2. (18 pts) Consider the relation $S=(V3)|V_{LL}||I_L||\cos\theta+j\sin\theta|$, where V_{LL} is the line-to-line voltage phasor and I_L is the line current phasor, and | • | indicates magnitude. Answer true/false for the below statements:
 - F____a) S is the per-phase complex power.
 - T____b) This relation can be used for both Y- and Δ -connected loads.
 - F____c) The angle θ is the angle by which V_{LL} leads I_{L} .