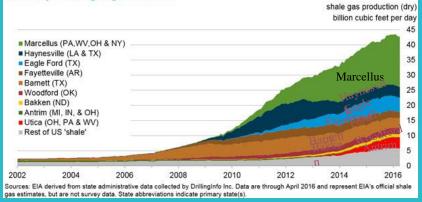
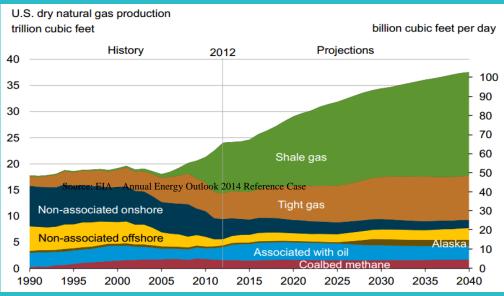
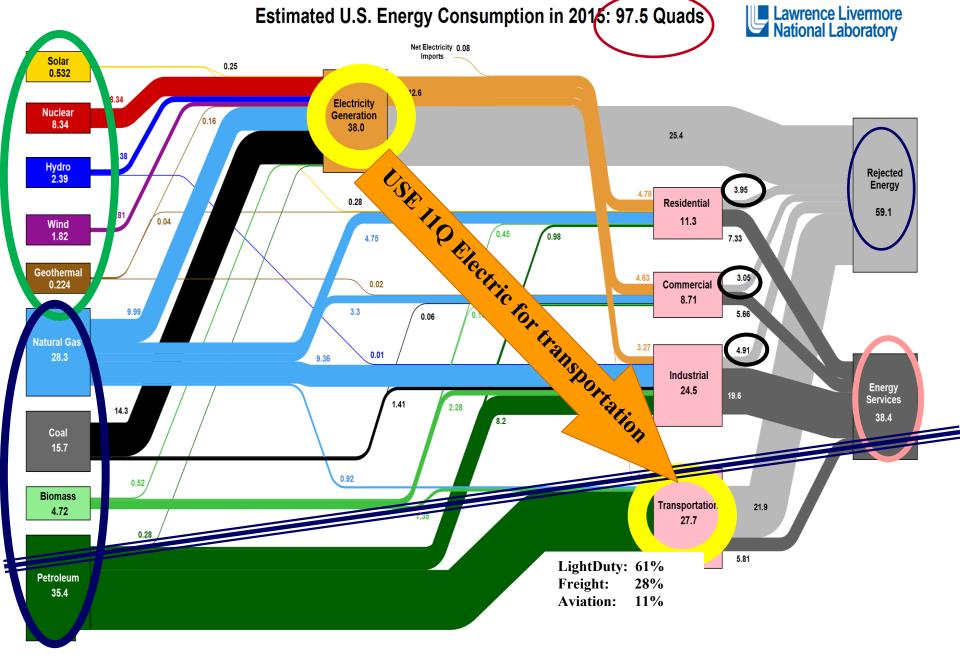
"Energy Systems" A Critical National Infrastructure Slide Deck #2


James D. McCalley Professor of Electrical and Computer Engineering Iowa State University Ames, IA

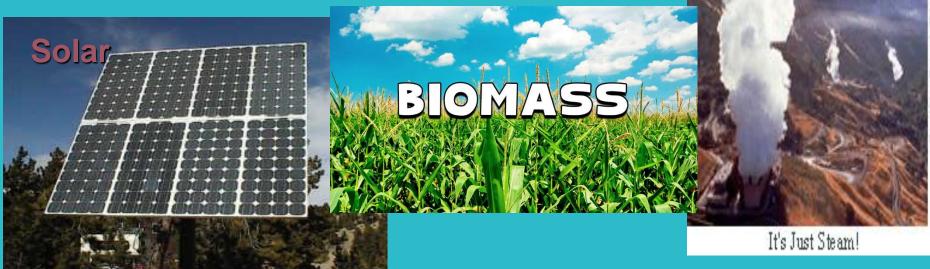
The Future of Energy


- Shale gas growth
- Big picture!
- Renewables
- Distributed generation
- ♦ Costs

Shale gas growth


U.S. dry shale gas production

3



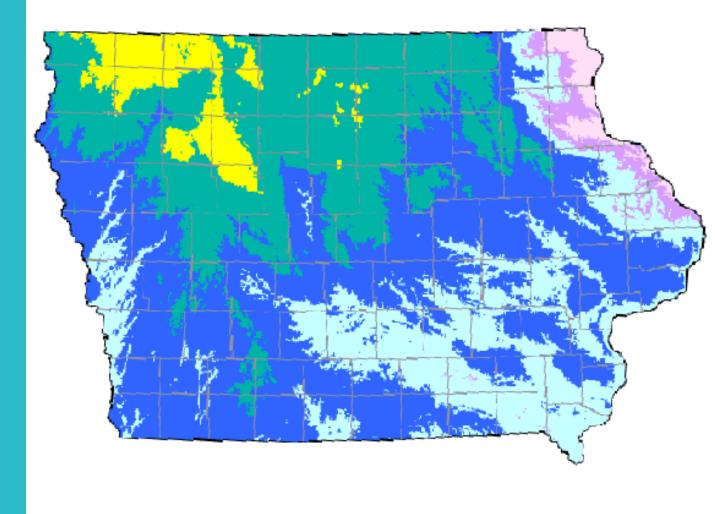
US Energy View: 2015

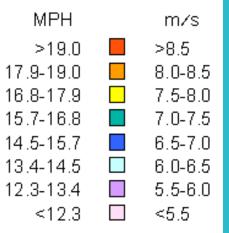
https://flowcharts.llnl.gov/index.html

Renewable Energy Geo

Geothermal

Where are US wind turbines today?


Source: US DOE, 2015 Wind technologies market report,


- 15 of top 20 are in the interior of the nation.
- Top 3 coastal states are West.
- East coast is light on wind but heavy on load.
- Implication?
- →3 options for East coast use of wind: Build high cost inland wind, go offshore, or use transmission to move it from Midwest

Installed Capacity (MW)				Percentage of In-State Generation		
Annual (2015)		Cumulative (end of 2015)		Actual (2015)*		
Texas	3,615	Texas	17,711	lowa	31.3%	→35% for
Oklahoma	1,402	lowa	6,209	South Dakota	25.5%	2016
Kansas	799	California	5,662	Kansas	23.9%	2010
lowa	524	Oklahoma	5,184	Oklahoma	18.4%	
Colorado	399	Illinois	3,842	North Dakota	17.7%	
Illinois	274	Kansas	3,764	Minnesota	17.0%	
New Mexico	268	Minnesota	3,235	Idaho	16.2%	
North Dakota	258	Oregon	3,153	Vermont	15.4%	
Minnesota	200	Washington	3,075	Colorado	14.2%	
California	194	Colorado	2,965	Oregon	11.3%	
South Dakota	175	North Dakota	2,143	Maine	10.5%	
Maine	173	Indiana	1,895	Texas	10.0%	
Indiana	150	New York	1,749	Nebraska	8.0%	
Nebraska	80	Michigan	1,531	Wyoming	7.7%	
Arizona	30	Wyoming	1,410	Montana	6.6%	
Maryland	30	Pennsylvania	1,340	Washington	6.5%	
New Hampshire	14	New Mexico	1,080	New Mexico	6.3%	
Ohio	8	South Dakota	977	California	6.2%	
Connecticut	5	Idaho	973	Hawaii	6.1%	
New York	1	Nebraska	890	Illinois	5.5%	
Rest of U.S.	0	Rest of U.S.	5,203	Rest of U.S.	1.0%	
TOTAL	8,598	TOTAL	73,992	TOTAL	4.7%	

Estimated Average Annual Wind Speeds

Typical average wind speeds on well exposed sites at 50 m above ground

Iowa Energy Center

This map was generated from data collected by the Iowa Wind Energy Institute under Iowa Energy Center Grant No. 93-04-02. The map was created using a model developed by Brower & Company, Andover, MA.

Copyright © 1997, Iowa Energy Center. All rights reserved. This map may not be republished without the written consent of the Iowa Energy Center.

Wind

The future: US wind potential by state

Annual wind energy potential (10¹² w-hrs)

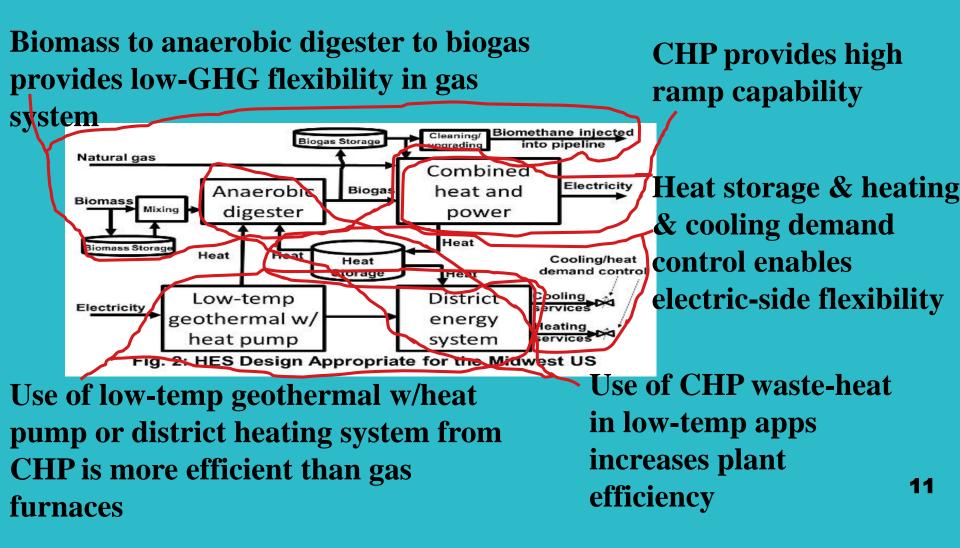
Annual wind energy potential

R=

2006 state annual retail sales States with high production and R-ratio have high export potential (Montana, Dakotas, Wyoming, Nebraska, Kansas)

Analysis assumes (a) only sites having capacity factor > 20% included; (a) loss of 20% and 10% of potential power for onshore and offshore, respectively, caused by interturbine interference, (c) offshore siting distance within 50 nm (92.6 km) of nearest shoreline.

The future: US wind potential


Contiguous US annu energy potential , 10		Multiples of Total US Energy Consumption*		
Onshore	62	2.12		
Offshore, 0-20 meter	1.2	.041		
Offshore, 20-50 m	2.1	.072		
Offshore, 50-200 m	2.2	.075		
Total	68	2.321		

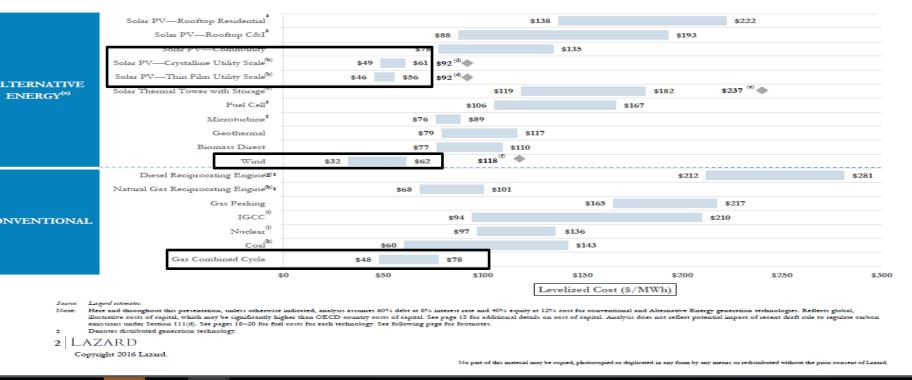
Total US Energy consumption across <u>*all*</u> sectors is 100 Quads:

$$100Q \times \frac{1E15BTU}{Q} \times \frac{kwh}{3413BTU} \times \frac{1000wh}{kwh} = 29.3E15wh$$

Source: Xi Lua, M. McElroya, and J. Kiviluomac, "Global potential for wind-generated electricity," Proc. of the National Academy of Sciences, 2009, 10

What about biomass & heat?

Cost comparison of different energy resources

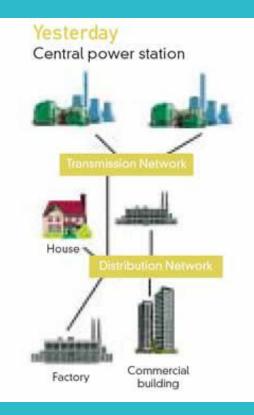

🖻 😼 🗟 🗟 🔁

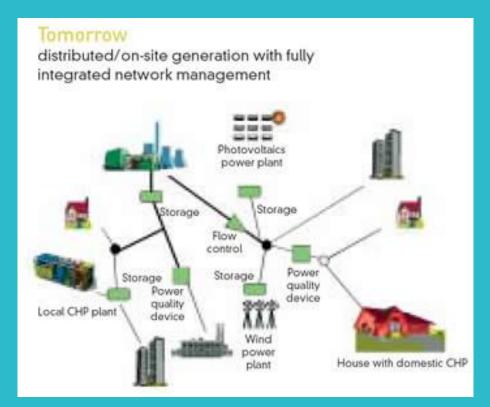
(Unsubsidized)

LAZARD'S LEVELIZED COST OF ENERGY ANALYSIS-VERSION 10.0

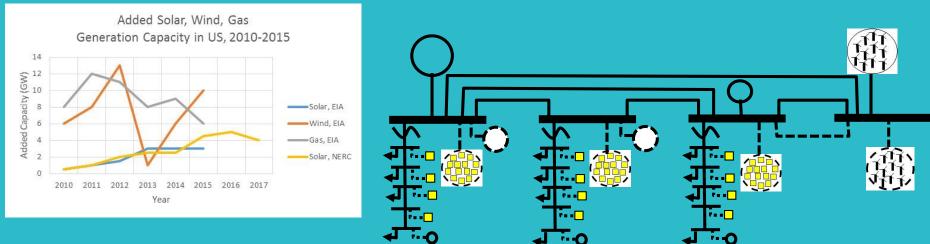
Unsubsidized Levelized Cost of Energy Comparison

Certain Alternative Energy generation technologies are cost-competitive with conventional generation technologies under some scenarios; such observation does not take into account potential social and environmental externalities (e.g., social costs of distributed generation, environmental consequences of certain conventional generation technologies, etc.), reliability or intermittency-related considerations (e.g., transmission and back-up generation costs associated with certain Alternative Energy technologies)

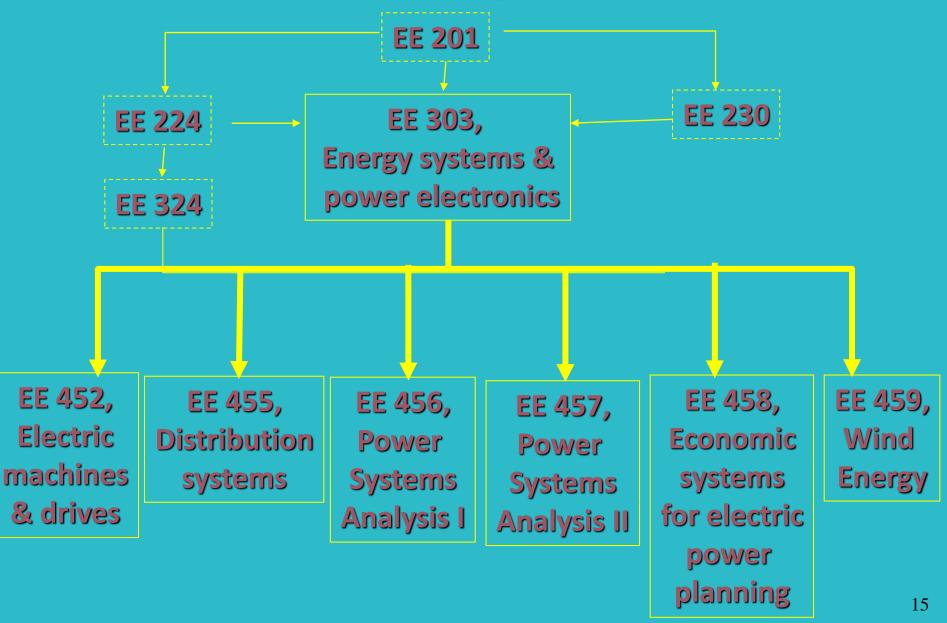



📮 🛍 📴 🧀 😕 🖬

Lazard's levelized cost of energy analysis- Version 10.0, December 2016, available https://www.lazard.com/media/438038/levelized-cost-of-energy-v100.pdf


Distributed Generation

Distributed Generation: generation of energy close to the point of use.
DG typically ranges from 1 kilowatt to 5 Megawatts in capacity, contrasting with Central Generation, which is associated with large 500 to 3000 MW generating plants usually located remote end-use location.
DG resources include wind, solar, fuel cells, cogeneration, and microturbines (gas, propane, fuel-oil).



Other infrastructure – distributed resources

- <u>DG benefits</u>: less transmission, loss reduction.
- <u>Investment cost</u>: LCOE \$242 PV-rooftop; \$64 PV-utility, \$55 wind; \$65 NGCC.
- <u>Reliability</u>: It is unclear whether reliability improves (w/, w/o microgrid), and if it does, whether improvement justifies the cost. Check SAIDI & SAIFI.
- <u>O&M</u>: Low for solar, hi for wind. Low for utility scale, high for DG.
- Green people: Can be satisfied with community solar.
- <u>Analysis</u>: Need co-optimization to answer these questions.

The Electric Power + Energy Systems Group has excellent series of courses to prepare you for an exciting career....

For whom might you work? (below - mainstream comp only)

- Investor-owned utilities: 239 (MEC, Alliant, Xcel, Exelon, ...)
- Federally-owned: 10 (TVA, BPA, WAPA, SEPA, APA, SWPA...)
- Public-owned: 2009 (Ames, Cedar Falls, Dairyland, CIPCO...)
- Non-utility power producers: 1934 (Alcoa, DuPont,...)
- Power marketers: 400 (e.g., Cinergy, Mirant, Illinova, Shell Energy, PECO-Power Team, Williams Energy,...)
- Coordination organizations: 10 (ISO-NE, NYISO, PJM, MISO, SPP, ERCOT, CAISO, AESO, NBSO)
- Oversight organizations:
 - Regulatory: 50 state, 1 Fed (FERC)
 - Reliability: 1 National ((NERC), 8 regional entities
- Manufacturers: GE, ABB, Toshiba, Schweitzer, Westinghouse
- Consultants: Black&Veatch, Burns&McDonnell, HD Electric,...
- Vendors: Siemens, Areva, OSI,...
- Govt agencies: DOE, EPA, Labs,...
- Professional & advocacy organizations: IEEE, IWEA, ...