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Abstract—In this work, we propose Lagrangian relaxation
based algorithms to optimize both circuit performance and
total wirelength at the global placement stage. We introduce a
general timing-driven global placement problem formulation that
is applicable to three different circuit design styles: synchronous
circuits, synchronous circuits with sequential optimization tech-
niques and asynchronous circuits. Lagrangian relaxation is ap-
plied to handle the timing constraints of the formulated problem.
Based on how the cell spreading constraints are handled, two
different approaches are proposed: One approach handles the
spreading constraints inside the Lagrangian relaxation frame-
work and transforms the timing-driven placement problem into
a series of weighted wirelength minimization problems, which
can be solved by directly leveraging existing wirelength-driven
placers. The other approach handles the spreading constraints
outside the Lagrangian relaxation framework. Thus, only tim-
ing constraints need to be taken care of in the Lagrangian
relaxation framework and better solutions can be expected. In
both approaches, we simplified the Lagrangian relaxation sub-
problem using Karush-Kuhn-Tucker conditions. Our algorithms
are implemented based on a state-of-the-art wirelength-driven
quadratic placer. The experiments demonstrate that the proposed
algorithms are able to achieve significant improvements on circuit
performance compared with a commercial wirelength-driven
placement flow and a commercial asynchronous timing-driven
placement flow.

I. INTRODUCTION

Placement is a critical step in VLSI design flow, as the
placement quality and optimization metrics can greatly af-
fect the performance, routability, heat distribution and power
consumption of a design [1]. In advanced technology, the
importance of placement continues to grow, since it plays an
important role to determine the interconnect delay, which has
been a dominating factor of the circuit delay.

Traditional wirelength-driven placement algorithms only
consider minimizing the total chip wirelength and do not take
into account circuit timing during the optimization process.
As a result, the wirelength-driven placement algorithms are no
longer sufficient to close timing at modern technology nodes,
which often have stricter timing constraints. Therefore, the
quests for timing-driven placement (TDP) algorithms start to
receive closer attention.

Timing-driven placement problem has been extensively
studied for decades. One category of TDP algorithms opti-
mizes the circuit timing by capturing the timing criticality of
each net through net weighting (e.g., [2] [3]) or net constraints

This work is supported in part by NSF award CCF-1219100.
Copyright (c) 2015 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

(e.g.,[4]). These algorithms are often referred to as net based
algorithms. However, net based approaches only estimate the
circuit timing locally and do not have a global view on
the entire timing paths. Another category of TDP algorithms
directly work on a set of critical timing paths and ensure all
considered timing paths meet the constraints. This category
is often referred to as path based algorithms (e.g., [5]). To
avoid explicitly considering all the timing paths, the number
of which can be exponential to the circuit size, timing graph
based approaches embed the timing graph into the formulation
of timing-driven placement problem, and all topological timing
paths can then be implicitly considered [6].

Depending on the specific circuit design style, the corre-
sponding TDP problem can target at optimizing either the
most critical path between registers (as in synchronous cir-
cuits) or the most critical cycle (as in asynchronous circuits
[7][8][9] or synchronous circuits with sequential optimization
techniques [10]). Normally, at the global placement stage, cells
are placed to improve circuit performance based on a rough
timing estimation, with a small amount of cell overlapping
allowed. Next, at the legalization stage, cells are moved to
legal locations with the disturbance of the timing at global
placement stage minimized [10] or performing further timing
improvement by applying certain techniques [11][12].

Lagrangian relaxation (LR) technique has been widely used
for timing-driven placement due to several important reasons:
First, it relaxes the complex timing constraints in the formu-
lated problem and results in an LR subproblem which is much
easier to solve [13]. Second, given the special circuit structure
and the Karush-Kuhn-Tucker (KKT) conditions, we are able to
further simplify the LR subproblem to get rid of its arrival time
and cycle time variables [14]. Finally, Lagrangian relaxation
has great flexibility and is capable of handling various ob-
jectives and complex design constraints. LR-based algorithms
have shown to be successful in handing timing constraints in
many previous works. In [15][16], Lagrangian relaxation is
combined with the wirelength-driven placer GORDIAN [17]
to solve the timing-driven placement problem for synchronous
circuits. The relaxed LR-subproblem is either solved as a
quadratic program [15] or through the resistance network
approach [16]. In [10], Lagrangian relaxation is used as a
refinement step during the global placement stage, in order
to improve the circuit performance for synchronous circuits
with sequential optimization techniques.

Apart from the complex timing constraints of the timing-
driven placement problem, we also need to consider its cell
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spreading constraints, which can be even more difficult to
handle. The reason is that these constraints are often non-
convex, not differentiable, and may even do not have an exact
formulation [18][19]. Thus, it is not straightforward to solve
them mathematically.

In this paper, we apply Lagrangian relaxation to handle
the timing constraints, while also explore different approaches
to incorporate the cell spreading techniques with the LR
framework. In particular, we formulate a general timing-driven
global placement problem which is applicable to synchronous
circuits, synchronous circuits with sequential optimization
techniques, and asynchronous circuits. We propose two dif-
ferent approaches for handling the cell spreading constraints:
One approach handles the spreading constraints inside the
LR framework and the LR subproblem becomes a weighted
wirelength minimization problem, which can be solved effec-
tively using existing wirelength-driven placers with the ability
to handle net weights. The other approach spreads the cells
outside the LR framework and the resulting LR subproblem
becomes an unconstrained optimization problem which can be
solved optimally using standard mathematical techniques.

The proposed approaches are implemented based on the
state-of-art quadratic placer POLAR [19]. We evaluated both
of our approaches on quasi-delay-insensitive (QDI) Pre-
Charged Half Buffer (PCHB) asynchronous designs synthe-
sized using the Proteus asynchronous synthesis flow [20].
The experimental results of both approaches are compared
with a commercial wirelength-driven placement flow and a
commercial timing-driven placement flow.

The main contributions of this paper are as follows:
• A general problem formulation for the timing-driven

placement problem is proposed which can be applied to
a large variety of design styles.

• Two different approaches of applying Lagrangian relax-
ation to the formulated problem are presented.

• For both approaches, better computational efficiency is
achieved by simplifying the LR subproblem using the
KKT conditions.

• An effective approach to handle timing-driven placement
at the detailed placement stage is proposed.

• Promising experimental results are presented.
The rest of this paper is organized as follows. Section II

presents the problem formulations for various design styles.
Section III elaborates two different approaches we used to
apply Lagrangian relaxation framework to the formulated
timing-driven placement problem. Section IV presents the de-
tailed implementation of the proposed approaches. Section V
shows our experimental results compared with other placement
approaches. Finally, Section VI concludes the paper.

II. PROBLEM FORMULATIONS

In Section II-A, we will first discuss the problem for-
mulation for the pure wirelength-driven placement problem.
Next, in Section II-B, we introduce three different design
styles: synchronous circuits, synchronous circuits with sequen-
tial optimization techniques, and asynchronous circuits. Their

corresponding formulations for the timing-driven placement
problem will also be presented. Finally, in Section II-C, we
summarize all the design styles and propose a general problem
formulation covering all of them.

A circuit can be represented by a hypergraph G = (V,E)
where V =

{
v1, v2, . . . , v|V |

}
corresponds to the set of cells,

and E =
{
e1, e2, . . . , e|E|

}
corresponds to the set of nets. In

addition, we use vector x =
(
x1, x2, · · · , x|V |

)
to denote the

x-coordinates of the cells and vector y =
(
y1, y2, · · · , y|V |

)
to

denote the y-coordinates of the cells.
The wirelength of a hyperedge e depends on the locations

of the cells associated to it. Thus, we use WLe(x, y) to
denote the wirelength of a hyperedge e. The definition of
this wirelength function is ignored at this point to make
our problem formulation general. In practice, the wirelength
function can be modeled as HPWL, quadratic, Log-Sum-Exp
function, etc. [1].

Some notations used in this paper are shown in Table I.

Table I. The key notations used in this paper.

WDP wirelength-driven placement
T DP timing-driven placement
ST DP synchronous timing-driven placement

ST DPS synchronous timing-driven placement
with sequential optimization techniques

AT DP asynchronous timing-driven placement
GT DP general timing-driven placement
LRS Lagrangian relaxation subproblem

LRS-S simplified Lagrangian relaxation subproblem
LDP Lagrangian dual problem
ai arrival time variable at node i
Dij delay value associated with edge (i, j)
λij Lagrange multiplier associated with edge (i, j)
τ cycletime variable

q(λ) optimal value of LRS for a given vector λ
Lλ(x, y, a, τ) objective function of LRS

Lλ(x, y) objective function of LRS-S

A. Wirelength-driven Placement Problem (WDP)

The wirelength-driven global placement tries to minimize
the total chip wirelength by assigning cells to locations on
the chip, while keeping the cells spread out. Therefore, the
wirelength-driven placement problem can be formulated as:

WDP : Minimize
∑
e∈E

WLe(x, y)

Subject to cell spreading constraints

Here, we also skip the details about the cell spreading con-
straints to make our problem formulation general. Various
techniques can be practically used to implement the cell
spreading constraints, such as the center-of-gravity (COG)
constraints [17], spreading forces [3], density penalty functions
[21], etc.

B. Timing-driven Placement Problems

To further capture the timing information of the circuit, we
introduce a timing graph G′ = (V,E′), where E′ denotes the
set of timing edges. In particular, we use VI to denote the set
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of vertices representing the starting points of timing paths, i.e.,
the output pins of registers or the primary inputs. Similarly,
we use VO to denote the set of vertices representing the timing
path end points, which are the input pins of registers or the
primary outputs. In addition, let AT =

{
a1, a2, . . . , a|V |

}
be

the set of arrival time variables associated with each node.
Let τ denotes the minimum cycle time to ensure hazard-free
operation of the circuit. Also, we denote the delay associated
with the edge between node vi and vj in the timing graph as
Dij , whose value depends on the interconnection between vi
and vj and hence depends on the placement.

1) Synchronous timing-driven placement (ST DP):
The cycle time for synchronous circuits is bounded by the

delay of its longest timing path. However, the total number
of timing paths is exponential to the circuit size. Therefore,
instead of explicitly considering all timing paths, we capture
the circuit timing using the set of worst case arrival times,
which can be calculated by propagating the largest arrival time
at each node:

ai +Dij ≤ aj ∀(i, j) ∈ E′

Then, the synchronous timing-driven placement problem,
which simultaneously minimizes the total wirelength and cycle
time can be formulated as:

ST DP : Minimize
∑
e∈E

WLe(x, y) + ατ

Subject to ai +Dij ≤ aj ∀(i, j) ∈ E′ (1)
ak ≤ τ ∀k ∈ VO (2)
ak ≥Wk ∀k ∈ VI (3)
cell spreading constraints

Here, α is a constant value which we can use to adjust
the effort between optimizing wirelength and cycle time. Wk

denotes the constant delay value that signal arrives at the
primary inputs or the output of registers. Please note that we
ignore the hold time violations in the formulation of ST DP ,
as designers normally only consider the longest timing paths
at the global placement stage. The shortest paths causing hold
time violations are fixed at a later stage, i.e., after detailed
placement and routing.

2) Synchronous timing-driven placement with sequential
optimization techniques (ST DPS):

Retiming [22] [23] and clock skew scheduling [24] are
two commonly used sequential optimization methods. Retim-
ing improves the circuit performance through changing the
structural location of registers. Instead, clock skew scheduling
preserves the circuit structure, while intentionally introduces
skews to registers to improve the performance of a circuit.

Let c denote a timing loop composed by a set of timing path
segments. The basic idea for both of the above two sequential
optimization methods is to perform a coarse balancing on
the timing budgets of the path segments along the timing
loop. Therefore, the optimization potential of these methods is

bounded by the maximum mean delay over all timing loops:

τ ≥ max
c⊂G′

{ ∑
(i,j)∈cDij

# of registers in c

}
Instead of enumerating all the timing loops whose number

is exponential to circuit size, we can simply obtain the cycle
time by solving the following linear program [25]:

Minimize τ

Subject to ai +Dij −mijτ ≤ aj ∀(i, j) ∈ E′

where mij = 1 if the corresponding edge is a fanout edge of
node v ∈ VI , and mij = 0 otherwise.

Accordingly, to increase the optimization potential of such
sequential methods, we should target improving the maximum
mean cycle delay during the placement stage. Thus, the
synchronous timing-driven placement problem with sequential
optimization techniques is formulated as:

ST DPS : Minimize
∑
e∈E

WLe(x, y) + ατ

Subject to ai +Dij −mijτ ≤ aj ∀(i, j) ∈ E′

cell spreading constraints

3) Asynchronous timing-driven placement (AT DP):
Instead of governing the circuit using global clock sig-

nals, an asynchronous circuit only synchronizes neighbor-
ing stages through the handshaking signals [26]. Similar to
synchronous circuits with sequential optimization techniques,
the performance of asynchronous circuits is also bounded
by the maximum mean cycle delay, while the difference is
that the average-case performance for asynchronous circuits
is achieved naturally without needing extra optimization tech-
niques.

Depending on the timing assumptions made by the specific
logic implementation style, different types of timing con-
straints need to be satisfied for asynchronous circuits. Except
for delay-insensitive (DI) designs [27] which are premised
on the fact that they will function correctly regardless of the
delays of the gates and the wires, timing constraints for other
asynchronous designs fall into two categories [26].

First are explicit timing constraints in the form of minimum
and maximum bounded delay values for gates and wires in
the circuit. An example is the bounded-delay asynchronous
circuits in [28].

Let Uij be the maximum bounded delay and Lij be the
minimum bounded delay between nodes vi and vj . Let Ee be
the set of node pairs which we need to enforce explicit delay
bounds. The explicit timing constraints can be written as:

Lij ≤ aj − ai ≤ Uij ∀(i, j) ∈ Ee (4)

Second are relative timing constraints, referred to as
relative timing [29], which dictate the relative delay of two
paths that stem from a common point of divergence. Example
design styles that have relative timing constraints include the
quasi-delay-insensitive (QDI) design style, such as WCHB,
PCHB and the Multi-Level Domino (MLD) template [26].
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For a relative timing constraint from a node vk and forking
into two nodes vi and vj , constraints can be written as:

|(ai − ak)− (aj − ak)| ≤ Iij ∀(i, j) ∈ Er (5)

This bounds the maximum difference in time that the signals
arrive at the two end-points of the fork. This type of constraint
captures the notion of an isochronic fork [26], a common
type of constraint in quasi-delay-insensitive designs. Here Iij
is the delay bound for isochronic fork. Er is the set of node
pairs which have relative timing constraints.

Combining everything together, the asynchronous timing-
driven placement problem, which minimizes both total wire-
length and cycle time subject to timing constraints (4), (5) can
be formulated directly as:

AT DP :

Minimize
∑
e∈E

WLe(x, y) + ατ

Subject to ai +Dij −mijτ ≤ aj ∀(i, j) ∈ E′ (6)
Lij ≤ aj − ai ≤ Uij ∀(i, j) ∈ Ee (7)
|(ai − ak)− (aj − ak)| ≤ Iij

∀(i, j) ∈ Er (8)
cell spreading constraints

where mij = 1 if the corresponding edge is a fanout edge of
a token buffer, and mij = 0 otherwise.

C. A General Timing-driven Placement Problem (GT DP)

In this section, we show that all the three different types of
problems we presented in Sec. II-B can be generalized to the
timing-driven placement problem shown as follows:

GT DP : Minimize
∑
e∈E

WLe(x, y) + ατ

Subject to ai + D̂ij − m̂ijτ ≤ aj ∀(i, j) (9)
cell spreading constraints

Here, D̂ij captures the wire delay after we combine everything
together. For ST DP , m̂ij is always equal to 0. For ST DPS
or AT DP , m̂ij = 1 when the corresponding edge is a fanout
edge of a register or a token buffer, and m̂ij = 0 otherwise.

It is obvious that ST DPS is directly equivalent to the
formulation of GT DP . Next, we show how ST DP and
AT DP can also be reduced to this form.

1) Transform ST DP to GT DP:
We add two new nodes into the timing graph: vs and vt

and let their corresponding arrival times to be as and at.
In addition, we add the set of edges (s, vi) ∀vi ∈ VI and
(vj , t) ∀vj ∈ VO into the timing graph, with the edge delay
Dsvi = Wi and Dvjt = 0. Finally, we add edge (vt, vs) into
the timing graph with Dvtvs

= −τ . The new timing graph
after this modification is shown in Fig. 1.

Fig. 1: Modified timing graph for ST DP .

After this graph transformation, timing constraints (2) and
(3) can be rewritten as follows:

as +Wi ≤ ai ∀i ∈ VI (10)
aj + 0 ≤ at ∀j ∈ VO (11)
at − τ ≤ as (12)

The new constraints (10) (11) (12) can easily fit into the
constraints (9) of GT DP . Then, ST DP can be transformed
to GT DP by combining constraints (1) (10) (11) (12) into
constraints (9).

2) Transform AT DP to GT DP:
We can rewrite the timing constraints in Equations (7) and

(8) into the same form as Equation (9) as follows:

(ai + Lij ≤ aj) ∧ (aj − Uij ≤ ai) (13)
(aj − Iij ≤ ai) ∧ (ai − Iij ≤ aj) (14)

Then, combining Equation (6) with the reformulated Equa-
tions (13) and (14), we can easily transform AT DP to
GT DP .

III. OUR PROPOSED APPROACHES ON SOLVING GT DP
It is difficult to directly solve GT DP , due to its complex

timing constraints (9) and cell spreading constraints. In this
section, we discuss how we handle the GT DP problem and
propose two different approaches which can solve GT DP
effectively. For both approaches, we use Lagrangian relaxation
to relax the timing constraints of GT DP , while the difference
is how we handle the spreading constraints. In particular, one
approach, as we will present in Section III-A, handles the
spreading constraints inside the LR framework during the LR
subproblem. We refer this approach as the spreading-inside
approach. The other approach, which we will present in Sec-
tion III-B, handles the cell spreading outside the Lagrangian
relaxation framework, while only takes care of the timing
constraints within the LR framework. We refer this approach
as the spreading-outside approach.

A. Spreading-inside Approach

The spreading-inside approach extends one of our previ-
ous works in [7][30]. An overview of the spreading-inside
approach is shown in Fig. 2(a). To make things clear, we
highlighted the cell spreading step, which is inside the LR
framework denoted as the red dotted box. In the beginning,
we relax all the timing constraints of GT DP and initialize
a vector of λ satisfying the KKT conditions. The relaxed
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LR subproblem is denoted as LRS, which still contains
the spreading constraints. Next, at each iteration, instead of
directly solving LRS, we explore the special structure of
GT DP and solve an equvalent yet simpler version LRS-S
of the subproblem. In particular, LRS-S is a weighted
wirelength minimization problem that can be solved by a
standard wirelength-driven placer. Typically, the wirelength-
driven placer incorporates the spreading constraints into the
objective function of LRS-S and solve it as an unconstrained
optimization problem. After the LRS-S is solved, we update
the vector of λ using any standard method1. The Lagrangian
relaxation loop terminates when there is no improvement in
the objective function or the runtime limit is exceeded.

1) Lagrangian Relaxation Subproblem (LRS):
We relax the timing constraints of GT DP following the

Lagrangian relaxation procedure and introduce a nonnegative
Lagrange multiplier λij for each timing constraint. Let λ be
a vector of all the Lagrange multipliers.

Let Lλ(x, y, a, τ) =
∑
e∈E

WLe(x, y) + ατ

+
∑
∀(i,j)

λij(ai + D̂ij − m̂ijτ − aj)

Then the LR subproblem, which gives a lower bound for
GT DP for any λ ≥ 0 [13], can be formulated as:

LRS : Mimimize Lλ(x, y, a, τ)

Subject to cell spreading constraints

Please note that the cell spreading constraints are not relaxed
in our spreading-inside approach.

2) Simplified LR Subproblem (LRS-S):
Inspired by [14], we rearrange the terms here and the

Lagrangian function L(x, y, a, τ) can be rewritten as:

L =
∑
e∈E

WLe(x, y) + (α−
∑
∀(i,j)

λijm̂ij)τ

+
∑
k∈V

(
∑
∀(k,j)

λkj −
∑
∀(i,k)

λik)ak

+
∑
∀(i,j)

λijD̂ij

Here, we heuristically limit our search of λ by the KKT
conditions, which imply ∂L/∂ai = 0 for 1 ≤ i ≤ |V | and
∂L/∂τ = 0 at the optimal solution of the primal problem.
Then the optimality conditions K on λ can be obtained as:

K : α =
∑
∀(i,j)

λijm̂ij∑
∀(k,j)

λkj =
∑
∀(i,k)

λik ∀k ∈ V

1Detailed methods we used to update λ is presented in Section IV-C.

Apply the optimality conditions into LRS, we can obtain
a simplified Lagrangian relaxation subproblem LRS-S:

LRS-S :

Minimize Lλ(x, y) =
∑
e∈E

WLe(x, y) +
∑
∀(i,j)

λijD̂ij

Subject to cell spreading constraints

It can be seen that when the given λ satisfies the KKT
conditions, solving LRS is equivalent to solving LRS-S.

3) Lagrangian Dual Problem (LDP):
Let the function q(λ) be the optimal value of the problem
LRS. We are interested in finding the values for the Lagrange
multipliers λ to give the maximum lower bound of GT DP .
This problem is called the Lagrangian dual problem and is
defined as follows:

LDP : Maximize q(λ)

Subject to the optimality conditions K on λ

Solving LDP will provide a solution to the primal problem.
4) Solving LRS-S:
The detailed timing model is irrelevant to our problem

formulation and transformation presented in the previous sec-
tions, but it is required when we start to discuss how to solve
these problems. Therefore, in this subsection, we first present
the timing model used in this paper.

Since detailed placement and routing are not performed yet,
it will be wasteful and time consuming to use an accurate
delay model during the global placement stage. Thus, as an
approximation, we use a linear delay model which sets the
wire delay D̂ij to be proportional to the wirelength of the
hyperedge e associated with nodes i and j:

D̂ij = di +WLe(x, y) · γe (15)

where di is the intrinsic gate delay and WLe(x, y) · γe is
the total wire load delay. γe is a constant value associated
with each edge and depends on the driver cell, load cells and
electrical characterization for the wires. More details about the
derivation of di and γe is presented in Section IV-A.

Based on the linear delay model proposed above, LRS-S
can be written as:

Minimize Lλ(x, y)

=
∑
e∈E

WLe(x, y) +
∑
∀(i,j)

λij(di +WLe(x, y) · γe)

+ terms independent of x, y

=
∑
e∈E

WLe(x, y) +
∑
∀(i,j)

WLe(x, y) · λijγe

+ terms independent of x, y
Subject to cell spreading constraints

The new objective function only contains x, y as variables.
Therefore, LRS-S becomes a weighted wirelength minimiza-
tion problem for a set of hyperedges, which can be solved
well by existing wirelength-driven placement engine with the
ability to handle net weights.
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(a) The spreading-inside (SI) approach. (b) The spreading-outside (SO) approach.

Fig. 2: The flow chart of two proposed approaches.

5) Solving LDP:
In general, LDP can be solved by solving a sequence of
LRS-S. Many previous works use or modify the subgradient
optimization method to solve LDP (e.g., [14][15]). The basic
idea of the subgradient optimization method is straightforward.
At each iteration, we first update λ based on the criticality of
all timing edges. Then, based on the updated λ, we solve
LRS-S again to generate a new placement. Besides the
subgradient optimization method, we can also use the direction
finding approach [31], which has been shown to have better
convergence in practice.

B. Spreading-outside Approach

The benefit of the spreading-inside approach is that one
can leverage an existing wirelength-driven placer as a black
box to solve GT DP without any modification. However, cell
spreading constraints are non-convex by nature. Besides, they
are usually modeled by non-continuous and non-differentiable
functions in modern placers [18][19]. Thus, this approach
cannot guarantee that an optimal solution of the LDP is also
optimal for the primal problem. To avoid this issue, we propose
another approach to solve GT DP , which we referred to as the
spreading-outside approach.

An overview of the spreading-outside approach is shown in
Fig. 2(b). As implied by the name, we handle the cell spread-
ing constraints outside the LR framework. In the beginning,
similar to typical wirelength-driven placement algorithms, we
convert the cell spreading constraints into a cost which is
incorporated into the objective function of the placement

problem. Different from wirelength-driven placement, the re-
sulting problem still has the timing constraints instead of being
unconstrained. Here, we leverage the LR framework to solve
this problem, since LR has shown to be very effective in
handling the timing constraints. After the LR loop converges,
we will update and convert the cell spreading constraints again
if needed.

We neglect the derivation of the LR subproblem and La-
grangian dual problem for the spreading-outside approach,
as it is similar to what we have presented in Section III-A,
except we do not have the cell spreading constraints this time.
In particular, for this approach, the LRS-S will just be an
unconstrained optimization problem and can be easily solved
using any standard methods.

By tackling the complex and non-differentiable cell spread-
ing constraints outside the LR framework, LR only needs
to handle a problem with timing constraints. The timing
constraints can be relaxed and converted into terms linear to
wirelength in the objective function of LRS-S. Thus, better
solutions can be expected at the LR step. In particular, if
wirelength is modeled as convex function and the spreading
constraints are converted into convex functions, the problem
to be solved by LR is a convex optimization problem. Then,
the strong duality will hold and this convex problem can be
solved optimally using the LR framework. The disadvantage
of the spreading-outside approach is that existing weighted
wirelength minimization placers will no longer be directly
applicable. Instead, we need to either implement the cell
spreading step by ourselves or detach the cell spreading part
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from the wirelength-driven placer in order to use it.

C. Comparing our approaches with previous Lagrangian re-
laxation based T DP algorithms

In this subsection, we discuss in details about the differences
between our approaches and several previous works.

In [15], the proposed LR framework relaxes the cell spread-
ing constraints together with the timing constraints. However,
this framework only works for placers with explicit model-
ing of spreading constraints, i.e., GORDIAN with center-of-
gravity constraints [17]. For some state-of-the-art placers, this
framework might not work, since the spreading constraints are
often handled implicitly using heuristic algorithms [18][19]. In
[16], the spreading constraints are not relaxed, while the path
based approach makes the proposed framework not applicable
for large-scale circuits. In [10], Lagrangian relaxation is only
used as a refinement step after global placement, and the COG
based cell spreading constraints are not updated. Therefore,
the effectiveness of the proposed approach is greatly limited.
In addition, some of the previous works did not simplify the
LR subproblems through exploring the special structure of
the circuit graph. Thus, extra effort is required to calculate
the cycle time and arrival time variables. In addition, more
iterations are required to search for the optimal λ in LDP as
λ is not limited by the optimality conditions K.

Different from previous works, both the spreading-inside
approach and spreading-outside approach proposed by us
simplify the LRS using KKT conditions based on the special
structure of the circuit. In addition, our approaches do not
relax the cell spreading constraints by LR. Thus they are
more compatible with various type of placement techniques,
especially for modern placers with implicit modeling of cell
spreading constraints. Finally, our approaches can be used
to optimize either the critical paths or the critical cycles of
the circuit, and hence are suitable for different circuit design
styles.

IV. DETAILED IMPLEMENTATION

In this section, we talk about the detailed implementa-
tion of the timing-driven placement approaches proposed in
Section III. In particular, our TDP tool, which is referred
to as TD-POLAR here, incorporates the proposed timing-
driven placement approaches with the state-of-the-art quadratic
placer POLAR [19]. In Section IV-A, we first discuss more
details about our linear delay model. Next, in Section IV-
B, we discuss the quadratic placement and rough legalization
techniques which are the core techniques used in the POLAR
algorithm. Finally, in Section IV-C, we will discuss how we
leverage POLAR to solve the GT DP problem using the
proposed approaches.

A. Linear Delay Model

The delay of a net is considered as two parts: cell delay
and interconnect delay. For the cell delay, it is typically
defined using two dimensional lookup tables, as a function of
input slew and output capacitance with a linear interpolation

between the data points. This function is non-differentiable
and therefore not satisfying the requirement of our Lagrangian
relaxation framework. Fig. 3 shows an example about how we
perform a linear approximation for the delay function. The x-
axis denotes the output capacitance (Cl) and the y-axis denotes
the cell delay. In addition, each curve corresponds to a delay
function with different input slew value. First, we choose a
typical slew value (i.e. the blue curve), while ignoring the
other possible slew values (i.e. the gray curves). Next, we use
a linear function µ · Cl + φ to better approximate the middle
portion of the delay function, where delay value normally falls
into. Here, µ and φ denotes the slope and y-intercept of the
linear function separately.

Fig. 3: Linear approximation of the delay function.

The interconnect delay depends on the wire resistance and
wire capacitance. We ignore the wire resistance and calculate
the wire capacitance using: Cwire = WLe(x, y) · Cu. Here,
WLe(x, y) is the HPWL of the net and Cu is the capacitance
per unit wirelength.

Combining everything together, we have the delay written
as Equation 15, with γe = µ ·Cu and di = µ ·Cpin +φ. Here,
Cpin denotes the capacitance of the output pin of the cell.

B. POLAR: a wirelength-driven placer based on quadratic
and rough legalization techniques

1) Quadratic Placement:
Assuming all the nets e ∈ E are two pin nets. The

wirelength for a particular net e can be modeled using the
HPWL, which is given by the Manhattan distance between the
two cells connected by e. Let x, y denote the cell coordinates
similar to what we have defined in Section II. Then, the total
wirelength can be calculated by the total sum of HPWL for
all the nets:

HPWL(x, y) =
∑
e∈E

[max
i∈e

xi −min
i∈e

xi + max
i∈e

yi −min
i∈e

yi]

The function HPWL(x, y) is convex, but it is not dif-
ferentiable. To make the optimization easier, the quadratic
technique approximates the Manhattan distance of the two pin
net by the squared Euclidean distance, also known as quadratic
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wirelength. Let Qx and Qy be the connection matrices. The
objective of the wirelength-driven placement can be defined
as:

Minimize φ =
1

2
xTQxx + cTx x +

1

2
yTQyy + cTy y + const

It can be proved that both Qx and Qy are symmetric positive
definite matrices. Thus, φ is convex and differentiable, and the
minimum solution of φ can be found by setting its derivatives
to 0 and solving the resulting system of linear equations:

Qxx + cx +Qyy + cy = 0 (16)

For more details about the definition of cx, cy and the deriva-
tion of Equation 16, we refer the reader to Chapter 11 of [1].

2) Rough Legalization:
If we consider minimizing φ alone, the cells will not be

spread out and the placement solution will not be legalizable.
Therefore, extra techniques are required to avoid excessive cell
overlapping.

POLAR adopts the rough legalization (RL) [18] approach
to reduce the cell overlapping. At each placement iteration,
RL quickly spreads out the cells and generates an almost
legal placement, as shown in Fig. 4(b). The roughly legalized
placement is used to generate the spreading forces, which
are incorporated into the objective function of the wirelength-
driven placement problem and guide the quadratic placement
on the next iteration, as shown in Fig. 4(c).

(a) (b) (c)

Fig. 4: (a) Cell overlaps after quadratic placement. (b) An
almost legal placement obtained by rough legalization. (c) Use
of the roughly legal placement to guide the spreading force
generation.

C. TD-POLAR: a general timing-driven placement tool

For both the spreading-inside and the spreading-outside
approaches, we use the direction finding approach inspired
by [31] to solve LDP . We are not using the subgradient
optimization method as it requires a projection of λ unto
the optimality conditions K after each iteration to maintain
λ within the feasible region of LDP . For ST DP problem,
projection can be done by simply traversing the circuit in
topological order since the corresponding graph of the circuit
is a directed acyclic graph. For ST DPS or AT DP , it will
not be easy to redistribute λ since the corresponding circuit
structure contains loops.

In particular, the direction finding approach wants to find an
improving feasible direction ∆λ and a step size β such that
at each step we have:

q(λ + β∆λ) > q(λ)

The improving feasible direction ∆λ can be found by
solving the following linear program:

DF : Maximize
∑
∀(i,j)

∆λijD̂ij

Subject to λ ≥ 0, λ ∈ K
max(−u,−λij) ≤ ∆λij ≤ u

where u is used to bound the objective function from going
to infinity, similar to [31].

1) Implementation of the spreading-inside approach:
It is straightforward to incorporate POLAR with our timing-

driven placement flow using the spreading-inside approach.
Since the LRS-S is a weighted wirelength optimization prob-
lem with spreading constraints, we can directly call POLAR
to solve it. To capture the timing of the circuit, we add an
extra pseudo two-pin net for each timing edge to the circuit.
After the λ update step, the weights of the added two-pin nets
should be updated accordingly, while the weights of original
nets are kept the same.

2) Implementation of the spreading-outside approach:
The implementation of the spreading-outside approach re-

quires a tighter integration with the placement engine. We
split POLAR into the quadratic placement step, which we
have presented in Section IV-B 1), and the rough legalization
step, which is done by a heuristic algorithm. Then, for the
spreading-outside approach as shown in Fig. 2(b), the step
of solving the unconstrained LRS-S will be similar to the
quadratic placement step of POLAR, except now there are
weights associated with nets given by the Lagrange multipli-
ers. In addition, the step of converting spreading constraints
into the cost function will be replaced by the rough legalization
step of POLAR. Therefore, for the spreading-outside approach,
we first perform the rough legalization to generate the spread-
ing forces for the current placement. The spreading forces
are then incorporated into the objective function of GT DP
to guide the placement process in the quadratic placement
step. Next, we apply Lagrangian relaxation framework on the
quadratic placement step to handle the timing constraints of
GT DP . The iteration continues until there is no improvement
in the objective function or we exceed the runtime limit.

D. Timing-driven Detailed Placement

Since traditional detailed placement algorithms only target
reducing the total chip wirelength, timing degradation might
happen if we directly use them to optimize the global place-
ment results generated by TD-POLAR. In order to minimize
the disturbance on circuit timing, we developed a timing-
driven detailed placement step to further optimize the global
placement results and also help generating a legalized place-
ment. In particular, we leveraged the existing wirelength-
driven detailed placement engine FastDP [32] and applied
net weights into its cost function. The pseudo nets to capture
timing at global placement are kept. The net weights we used
for the pseudo nets are the same as those at the final round
of the global placement stage. Thus, it reflects the timing
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criticality for each net. By doing this, FastDP is able to respect
the timing criticality at the global placement stage during its
optimization process and the disturbance on timing is greatly
reduced.

V. EXPERIMENTS

The proposed approach is implemented using C++. All
experiments were run on a Liunx PC with 47GB of memory
and Intel Core-i3 3.3GHz CPU.

We first demonstrate our approaches using asynchronous
circuits since it is the most general circuit design style among
the three design styles which we have introduced in Section
II. In particular, the asynchronous circuits we used are based
on the PCHB template [33], which is a QDI template designed
with dual-rail asynchronous channels and 1-of-N handshaking
protocol [26]. Fig. 5 shows a three-stage PCHB pipeline
structure with control circuit (CTRL), C-element (C) and
domino logic (LOGIC) for computation.

Marked lines in Fig. 5 show an example of timing assump-
tions made by PCHB. It requires the input to the domino
block go low before a rising transition on the control signal
‘en’ occurs. This timing assumption is a relaxed interpretation
of the isochronic fork assumption [34] and can easily be
met without special care. We ignore this timing constraint at
global placement stage and leave it to be checked after detailed
placement and routing, similar to [20] and [35].

Fig. 5: PCHB pipeline template.

We are using the Proteus standard cell library [20] which
is based on an implementation of the PCHB template. We
run TD-POLAR on two sets of benchmarks. First is a set of
ISCAS89 benchmark circuits which are converted to uncondi-
tional asynchronous circuits using the front-end synthesis flow
of Proteus. In particular, flip-flops from ISCAS89 are mapped
to token buffers and combinational gates are mapped to logic
cells in PCHB cell library. The second set consists of several
benchmarks synthesized from RTL to netlist using Proteus.
For ALU and Accumulator (ACC) design, we choose different
bit width for the datapath to create a set of benchmarks with
different number of cells.

The statistics of our benchmark circuits are shown in Table
II. The column “# of vertices” shows the total number of
cells in each design. The column “# of edges” shows the total
number of edges, which includes the original nets of the circuit
and the added two-pin timing edges. An estimation of the total
number of variables for the corresponding GT DP problem is
reported in column “# of vars”.

We compare the two approaches implemented in TD-
POLAR with a non-timing-driven placement flow and the

Table II. Statistics of asynchronous circuits

Design # of vertices # of edges # of vars
s444 256 2719 8730
s510 519 5535 17676
s526 307 3366 10792
s526a 297 3284 10520
s641 636 5346 17328
s713 584 4904 15866
s820 681 6952 22268
s832 706 7327 23448
s838 707 7300 23466
s953 931 9805 31422
s1488 1314 15000 47950
s1423 1119 13010 41592
s9234 2108 22118 71058

s13207 5658 56164 181288
s38417 15447 182865 584402
ALU4 413 4239 13666
ALU8 916 10140 32550
ACC32 1187 11605 37252
ACC64 3355 32741 105706
GCD 1505 4901 15664
FU 5304 52023 167212

timing-driven commercial asynchronous optimization flow
Proteus. For the non-timing-driven placement flow, we use the
industrial placer Encounter in the default mode to place the
design without setting any input timing constraint.

The Proteus flow performs both the global and detailed
placement on the input circuits through leveraging syn-
chronous placement tools. In particular, the Proteus flow
breaks the timing loops according to the PCHB template
and add explicit timing constraints on each path segments to
improve the timing. To avoid the changing of input netlist, we
also disable the gate resizing step during the placement stage
of Proteus flow.

For our approaches, we first perform pure wirelength-driven
placement on the asynchronous circuit by running POLAR in
pure wirelength-driven mode, as a good starting placement
with minimized wirelength is necessary in order to achieve
better cycletime in later stage. Next, we perform the timing-
driven placement using TD-POLAR at the global placement
stage. At the detailed placement stage, we use the modified
FastDP [32] presented in Section IV-D as our detailed place-
ment engine. Finally, the placement results are exported to
Encounter to perform routing.

The comparison results for asynchronous circuits are shown
in Table III. The target density is set to be 0.5 for all the flows.
Also, we normalized the total wirelength and cycle time in
the objective function using the initial wirelength and cycle
time. Thus, we set the parameter α = 1 in the objective
function to obtain a balanced effort on optimizing wirelength
and cycle time. The “Routed wirelength” column shows the
final detailed routed wirelength reported by Encounter for all
flows. The “Cycletime” column shows the cycletime calculated
based on our delay model. The “Encounter” column denotes
the non-timing-driven placement performed by Encounter. The
“SI” column denotes the spreading-inside approach. The “SO”
column denotes the spreading-outside approach. Regarding
the total routed wirelength, as expected, all the flows which
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Table III. Comparison on non-timing-driven placement flow and commercial timing-driven placement flow

Design Routed Wirelength x 106 (nm) Cycletime (ns) Runtime (s)
Encounter Proteus SI SO Encounter Proteus SI SO Encounter Proteus SI SO

s444 10.46 11.32 10.35 10.60 6.06 5.72 4.22 4.22 8 245 8 16
s510 32.84 35.38 34.06 32.21 7.25 7.01 5.98 6.31 12 330 15 29
s526 14.24 14.85 13.14 12.92 4.20 4.83 3.37 3.60 8 257 8 18
s526a 12.22 13.79 12.87 13.04 4.89 3.75 3.69 3.30 8 249 8 18
s641 22.02 26.96 23.70 23.86 5.00 4.88 4.39 4.33 10 313 12 25
s713 21.06 24.38 21.78 20.87 6.15 5.71 5.87 5.18 9 228 11 23
s820 43.39 48.53 45.83 44.91 10.40 8.34 6.33 6.22 13 431 17 34
s832 45.84 53.04 45.89 46.48 6.82 7.32 5.79 5.81 15 465 18 37
s838 33.32 37.49 34.73 33.84 5.91 5.58 5.46 4.82 13 337 17 36
s953 61.84 71.85 64.11 63.77 6.12 7.10 7.51 5.63 18 576 24 48

s1488 130.13 137.06 129.38 127.53 12.79 11.35 10.58 10.64 27 771 42 78
s1423 64.48 71.25 61.68 63.59 14.85 8.37 6.91 7.13 20 692 34 64
s9234 119.40 134.48 117.46 120.20 9.83 8.19 7.22 6.58 31 517 56 106
s13207 338.18 386.13 341.98 328.83 13.72 11.86 12.01 10.66 67 1202 156 301
s38417 1253.42 1208.16 1267.24 1245.69 80.43 68.30 45.24 42.66 283 1050 615 997
ALU4 18.01 18.78 23.07 20.99 5.68 5.99 4.38 4.07 10 261 6 22
ALU8 55.03 53.89 76.26 71.44 8.43 5.11 4.65 4.13 16 470 14 52
acc32 49.09 59.87 59.46 58.13 6.45 5.57 4.39 5.10 17 528 15 54
acc64 138.06 145.88 144.53 146.51 10.01 7.37 5.55 5.88 39 757 48 154
GCD 23.32 24.17 27.37 26.50 20.05 20.68 16.35 17.32 21 604 7 16
FU 396.16 453.41 447.56 445.41 16.06 7.81 9.94 8.60 62 958 98 315

Average 1.000 1.051 1.042 1.026 1.000 0.846 0.689 0.660 1.000 15.900 1.739 3.456

Table IV. Comparison on ICCAD 2015 incremental timing-driven placement benchmarks

Design # of # of Wirelength x 106 (um) Cycletime (ns) Runtime (m)
vertices edges INIT SI SO INIT SI SO SI SO

superblue1 1216K 2544K 111.10 106.20 105.40 50.45 50.69 41.67 82.42 250.66
superblue3 1219K 2671K 119.50 115.90 115.30 56.27 55.03 54.41 169.73 146.87
superblue4 802K 1686K 70.94 68.97 69.25 30.06 27.88 24.44 50.83 78.95
superblue5 1091K 2140K 122.80 117.60 118.40 52.63 44.68 46.07 70.17 131.98
superblue7 1938K 4424K 151.90 143.70 144.90 27.21 27.27 21.20 150.57 305.93

superblue10 1888K 3650K 219.90 211.10 210.10 48.85 47.42 46.26 142.31 254.80
superblue16 986K 2006K 93.87 91.14 91.60 23.63 19.05 21.31 70.34 330.69
superblue18 772K 1782K 62.31 60.21 60.19 23.53 21.65 23.29 53.18 86.32

Average 1.000 0.961 0.961 1.000 0.939 0.891 2.801 5.627

Table V. Runtime breakdown of the SO approach on ICCAD 2015 incremental timing-driven placement benchmarks (min)

Design WL Timing-driven Placement TDP Total
driven PCG RL Others total

superblue1 48.47 150.88 50.72 0.57 202.18 250.66
superblue3 26.14 84.15 36.12 0.46 120.72 146.87
superblue4 14.87 49.57 14.20 0.30 64.07 78.95
superblue5 23.52 63.72 44.39 0.35 108.45 131.98
superblue7 57.34 180.42 66.90 1.25 248.57 305.93
superblue10 41.22 155.82 56.97 0.74 213.53 254.80
superblue16 68.39 193.97 67.55 0.77 262.30 330.69
superblue18 14.47 54.82 16.71 0.30 71.83 86.32

Average 0.186 0.588 0.223 0.003 0.814 1.000

perform timing optimization of the circuit have a higher
total wirelength than the non-timing-driven flow Encounter.
Among the timing-driven placement flows, both the spreading-
inside and spreading-outside approach can achieve a shorter
total wirelength compared with the Proteus flow, while the
spreading-outside approach achieves the smallest wirelength.
Regarding the cycletime, the timing-driven placement flows
can achieve much better cycletime than the non-timing-driven
Encounter flow. In particular, the Proteus flow is 15.4%
better than the Encounter flow, while the spreading-inside
approach and spreading-outside approach is 31.1% better and
34% better than the Encounter flow respectively. This shows

the importance of timing-driven placement on optimizing the
timing of the circuits. It also shows our proposed approaches
are more effective in improving the timing of asynchronous
circuits than the Proteus flow. In particular, this is because our
approaches consider all timing loops globally, while Proteus
flow can only focus on some cycles by breaking the loops and
leveraging synchronous EDA tools. Also, since timing loops
are broken in the Proteus flow, time borrowing for neighboring
timing paths along a cycle is not possible, but it is allowed
in our approaches. In addition, on average, the spreading-
outside approach achieves a shorter wirelength and a smaller
cycletime compared with the spreading-inside approach. We



0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2697947, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

(a) (b)

(c) (d)

Fig. 6: (a) The convergence of s38417 by SI. (b) The wirelength and cycltime trend of s38417 by SI. (c) The convergence of
s38417 by SO. (d) The wirelength and cycltime trend of s38417 by SO.

believe this is because the spreading-outside approach uses LR
to handle a problem with timing constraints only, while the cell
spreading constraints are handled separately outside the LR
loop, and hence better solutions can be expected. Regarding
the runtime, the Encounter flow has the shortest runtime, since
it does not perform any optimization on circuit timing. The
Proteus flow has the longest runtime, due to its added explicit
timing constraints which can be exponential to the circuit
size. Both our approaches are shown to be much faster and
scalable in comparison with the Proteus flow. In particular,
the spreading-inside approach is about 2X faster than the
spreading-outside approach. This is because the spreading-
inside approach converges faster and can be stopped earlier.

The convergence sequences of our largest circuit s38417
using the spreading-inside approach and the spreading-outside
approach are shown in Fig. 6(a) and (c) respectively, where

the blue line denotes the objective value of the GT DP and
the red line denotes the objective value of the LRS-S. The
corresponding changes of cycle time and total chip wirelength
at each iteration is shown in Fig. 6(b) and (d) respectively,
where the red line denotes the cycletime and the blue line
denotes the wirelength. It can be seen that both approaches
are very effective in reducing the cycletime of the circuit.
The first iteration in Fig. 6 starts at a pure wirelength-driven
solution. In addition, each iteration of the spreading-inside
approach performs a full run of one iteration of POLAR,
which only includes one step of LR and one step of rough
legalization. Thus, even though the total number of iterations
for the spreading-inside approach is larger than that of the
spreading-outside approach in Fig. 6, it is actually stopped
earlier. However, as shown in the figure, the spreading-
outside approach converges smoother than the spreading-inside
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Table VI. Comparison on DP algorithms using spreading-inside approach

Design Routed Wirelength x 106 (nm) Cycletime (ns) Runtime (s)
FastDP TD-FastDP Legalize FastDP TD-FastDP Legalize FastDP TD-FastDP Legalize

s444 10.27 10.35 10.58 4.46 4.22 4.67 0.07 0.12 2.86
s510 31.99 34.06 33.10 6.67 5.98 6.87 0.13 0.17 3.13
s526 13.00 13.14 13.30 5.96 3.37 3.96 0.11 0.14 2.94
s526a 12.83 12.87 13.34 4.19 3.69 4.14 0.10 0.12 3.00
s641 22.79 23.70 22.83 4.33 4.39 4.41 0.15 0.20 3.39
s713 20.65 21.78 21.42 7.25 5.87 5.72 0.11 0.19 3.20
s820 43.60 45.83 44.30 6.73 6.33 7.10 0.14 0.23 3.11
s832 45.25 45.89 46.15 5.77 5.79 6.19 0.14 0.23 3.36
s838 34.24 34.73 38.65 5.25 5.46 4.88 0.13 0.23 3.26
s953 61.88 64.11 64.01 5.94 7.51 6.90 0.17 0.34 3.43
s1488 126.06 129.38 124.88 11.18 10.58 11.80 0.26 0.41 3.52
s1423 60.02 61.68 63.21 7.84 6.91 8.47 0.43 0.36 3.29
s9234 113.93 117.46 120.19 6.65 7.22 6.76 0.35 0.67 3.65

s13207 332.25 341.98 381.02 12.39 12.01 11.17 0.92 1.68 7.03
s38417 1228.40 1267.24 1310.20 59.35 45.24 42.44 3.59 7.90 7.37
ALU4 22.04 23.07 16.92 8.15 4.38 5.22 0.12 0.14 2.94
ALU8 74.17 76.26 50.31 3.64 4.65 4.44 0.19 0.27 3.17
ACC32 58.53 59.46 65.50 6.28 4.39 5.46 0.23 0.37 3.22
ACC64 141.41 144.53 161.67 6.04 5.55 5.15 0.55 0.83 4.52
GCD 26.31 27.37 23.55 17.06 16.35 18.63 0.11 0.15 3.14
FU 438.13 447.56 435.78 10.49 9.94 9.31 0.85 1.63 4.82

Average 1.000 1.029 1.049 1.000 0.875 0.893 1.000 1.850 8.850

Table VII. Comparison on DP algorithms using spreading-outside approach

Design Routed Wirelength x 106 (nm) Cycletime (ns) Runtime (s)
FastDP TD-FastDP Legalize FastDP TD-FastDP Legalize FastDP TD-FastDP Legalize

s444 10.04 10.60 12.54 4.17 4.22 4.45 0.09 0.14 2.80
s510 30.96 32.21 35.78 5.92 6.31 7.07 0.12 0.19 3.05
s526 12.99 12.92 15.24 3.65 3.60 3.86 0.09 0.12 3.33
s526a 12.61 13.04 14.86 3.38 3.30 3.17 0.09 0.11 3.27
s641 22.45 23.86 25.55 4.60 4.33 4.60 0.13 0.16 3.19
s713 20.53 20.87 23.01 7.35 5.18 5.47 0.12 0.18 3.20
s820 43.70 44.91 51.25 6.52 6.22 7.15 0.14 0.22 3.12
s832 44.52 46.48 53.97 8.03 5.81 6.19 0.18 0.50 2.96
s838 33.81 33.84 40.62 5.31 4.82 4.99 0.17 0.74 3.01
s953 61.21 63.77 74.16 5.52 5.63 6.41 0.23 0.29 3.31
s1488 125.67 127.53 147.69 11.71 10.64 12.08 0.24 0.43 3.26
s1423 60.68 63.59 77.57 7.05 7.13 8.88 0.22 0.40 3.24
s9234 116.52 120.20 135.68 6.83 6.58 6.99 0.37 0.54 3.53

s13207 320.50 328.83 387.80 11.72 10.66 12.85 1.03 1.64 5.55
s38417 1201.03 1245.69 1509.41 63.77 42.66 45.38 3.70 9.25 7.14
ALU4 20.37 20.99 22.70 6.02 4.07 3.48 0.10 0.14 3.17
ALU8 70.43 71.44 76.23 3.46 4.13 6.63 0.39 0.31 3.44
ACC32 56.41 58.13 65.11 5.67 5.10 5.50 0.21 0.37 3.38
ACC64 144.50 146.51 162.78 6.61 5.88 5.90 0.53 1.04 4.11
GCD 24.87 26.50 29.88 10.36 17.32 22.95 0.38 0.19 3.04
FU 435.34 445.41 492.34 18.12 8.60 11.19 0.95 1.62 4.96

Average 1.000 1.023 1.131 1.000 0.475 0.618 1.000 1.957 8.013

approach, due to its more fine-grained optimization at each
step. Therefore, after the detailed placement is performed, the
spreading-outside approach is able to achieve better results.

Next, we compare different detailed placement techniques
in Table VI and VII. For Table VI, the detailed placement
are performed on the global placement results generated by
the spreading-inside approach. For Table VII, the detailed
placement are performed on the global placement results
generated by the spreading-outside approach. For both tables,
the column “FastDP” denotes the flow where we directly
use FastDP to perform wirelength-driven detailed placement
without adding weights. The column “TD-FastDP” denotes the
timing-driven detailed placement, where we add the weight

from the global placement stage into FastDP. The column
“Legalize” denotes the detailed placement flow which only
performs the legalization of the global placement results using
Encounter.

From the experimental results in Table VI and VII, we
can see that directly applying FastDP to perform detailed
placement can achieve a smaller total wirelength, but the
cycletime improvement we achieved at the global placement
stage will be degraded a lot. In comparison, the weighted
FastDP results in a small increase in the total wirelength, but
the final cycletime of the circuit will be much better. Also, the
TD-FastDP approach is better than the legalization approach,
which does not perform any optimization on wirelength and
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timing. As extra computation is required to calculate the cost
based on net weights, the TD-FastDP is slower than FastDP,
but the runtime increase in absolute terms is not significant.

We also demonstrate our approaches using synchronous
benchmarks of ICCAD 2015 incremental timing-driven place-
ment contest [36]. For each benchmark, we first run POLAR
in the pure wirelength-driven placement mode to obtain an
initial global placement solution. Next, the spreading-inside
/ spreading-outside approach is applied on the initial global
placement solution to optimize the worst arrival time (τ ) at VO
of the circuit. Instead of solving DF using the linear program
approach which can have a long runtime, we solve DF as a
maximum cost flow problem using the network flow approach
[31]. In particular, the KKT conditions can be formulated as
flow constraints and the bounds on ∆λij can be formulated
as the flow capacities. The formulated maximum cost flow
problem is solved using the LEMON graph library [37] based
on the cost scaling approach. Finally, we use Encounter to
legalize the design. The reported worst arrival time is obtained
by running UI-Timer [38] provided by the contest organizer.

The comparison results for synchronous circuits are shown
in Table IV. The target density is set based on the requirements
of the contest [36]. In addition, we set the parameter α = 1 in
the normalized objective function. The “Wirelength” column
shows the wirelength reported by Encounter. The “Cycletime”
column shows the worst case arrival time obtained by UI-
Timer. The “INIT” column denotes the initial wirelength-
driven global placement results obtained by POLAR. The
“SI” column denotes the spreading-inside approach. The “SO”
column denotes the spreading-outside approach. For the wire-
length, both the SI and SO approach is 3.9% better than the
initial placement. The reason is that the wirelength of the
initial placement is obtained by running POLAR in pure WL-
driven mode for 75 iterations. Then, using the initial WL-
driven placement result as an input, another 45 iterations of
TD-POLAR is performed for the timing-driven placement.
Since more global placement iterations are performed to
generated the SI and SO wirelength, it is possible for the SI
and SO approaches to have a better wirelength than the ini-
tial WL-driven placement. Compared with the cycletime, the
spreading-inside approach and the spreading-outside approach
can achieve respectively 6.1% and 10.9% improvement on the
initial global placement results.

In the end, the runtime breakdown of the SO approach
on ICCAD 2015 incremental timing-driven placement bench-
marks is shown in Table V. The “WL-driven” column shows
the runtime of running POLAR in pure wirelength driven mode
to generate initial placement solution. The “PCG” column
shows the runtime used for solving Equation 16 by the pre-
conditioned conjugate gradient (PCG) method with incomplete
Cholesky decomposition, as described in Section IV - B 1).
The “RL” column shows the runtime used for performing
rough legalization, as described in Section IV - B 2). The
“TDP total” column shows the total runtime of the timing-
driven placement stage.

VI. CONCLUSION

In this paper, we have formulated a general timing-driven
placement problem which is applicable to various design
styles. The proposed problem is solved through Lagrangian
relaxation technique. We simplified the relaxed problem using
KKT conditions and proposed two different approaches on
incorporating the LR framework to solve the formulated gen-
eral timing-driven placement problem. One approach provides
a quick way to leverage existing wirelength-driven placers
on solving the timing-driven placement problem. The other
approach provides an option to tightly combine the LR frame-
work with the existing wirelength-driven placer, and hence
better results can be achieved. To demonstrate the proposed
approaches, we implemented a placement tool based on a
state-of-the-art wirelength driven quadratic placer. The exper-
imental results shows our approaches can greatly improve the
performance of the given circuits at the placement stage.
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