
1

POLAR: a high performance mixed-size
wirelengh-driven placer with density constraints

Tao Lin∗, Chris Chu∗, Joseph R. Shinnerl†, Ismail Bustany†, Ivailo Nedelchev†
∗ Iowa State University

† Mentor Graphics Corporation

Abstract—Wirelength is one of the most important metrics
in placement problem. Minimizing wirelength is not only a
beneficial but also fundamental step to optimize other metrics,
such as timing, power and routability. In this paper, we propose
a high performance mixed-size wirelengh-driven placer called
POLAR. POLAR is based on the recent popular look-ahead
legalization idea. The goals of our look-ahead legalization are:
(1) to achieve a roughly legalized placement; (2) to maintain
cells’ relative positions of quadratic placement while minimizing
cell movements. To achieve these goals, in POLAR, look-ahead
legalization is realized in a simple and elegant manner. Firstly,
all placement density hotspots (where placement overflow occurs)
are detected. Secondly, for each hotspot, an appropriate window
is searched to cover it by enumerating many feasible candidates.
Finally, cell-to-bin assignment is performed within each window
by a fast recursive bisection method. The experimental results
verify the efficiency of POLAR over the ISPD 2005 and ISPD
2006 benchmarks.

Keywords—placement, look-ahead legalization, placement density
hotspot, window, recursive bisection.

I. INTRODUCTION

Placement is one of the most fundamental problems in
electronic design automation (EDA). Although it has been
extensively studied and its solution quality has been improved
significantly during the last decade, a high performance placer
is still in urgent need to catch up with the continual increase of
design scale. Besides, considering varieties of new constraints
and objectives introduced due to technology scaling, Alpert et
al. [1] indicates that placement is still a ”hot topic”.

There are many metrics in placement optimization. Wire-
length is one of the most important metrics, since minimizing
wirelength is not only a beneficial but also fundamental
step to optimize other metrics, such as timing, power and
routability. Therefore, [2] points out that designing more
efficient wirelength-driven placer is the key step to conquer
new emerging challenges in placement problem.

To solve placement problem, analytical approach defines a
suitable analytical cost function and minimizes the cost func-
tion through numerical optimization methods. It is considered
the most promising technique. Depending on the cost function,
analytical placers can be subdivided into the following two
categories: (1) nonlinear placer; (2) quadratic placer.

Nonlinear placer approximates half perimeter wirelength
(HPWL) by a nonlinear cost function, e.g., log-sum-exp func-
tion [3]. And the placement density constraints are smoothed
by differentiable nonlinear function, e.g., bell-shaped function

[3] and inverse Laplace transformation [4]. Because solving
nonlinear programming is time consuming, nonlinear placers
usually apply a multilevel approach [5] [6] to reduce runtime.
Examples of nonlinear placers are APlace [7], mPL [4] and
NTUPlace [8].

Different from nonlinear placer, quadratic placer approx-
imates HPWL by a convex quadratic function, which is
also called quadratic wirelength. Quadratic wirelength can be
efficiently minimized by solving linear equations. However,
minimizing just quadratic wirelength would lead to consider-
able cell overlapping. Therefore, many techniques have been
proposed to spread out cells while maintaining quadratic nature
of optimization.

Among cell spreading techniques for quadratic placer, iter-
ative force-directed approach is the most promising one due
to its low runtime and good placement quality. It interprets
placement problem as a classical mechanics problem of find-
ing equilibrium configuration for a spring system. In each
placement iteration, the equilibrium state of the corresponding
spring system is achieved by minimizing the quadratic wire-
length. Then a cell spreading technique is applied to generate
anchors for movable cells. Based on these anchors, additional
spreading forces are added into spring system. This process
gradually spreads out cells until the cell distribution is almost
even and the wirelength is not improved any more. Examples
of quadratic placers which apply force-directed approach are
Kraftwerk2 [9], DPlace [10], mFAR [11], FastPlace [12], RQL
[13], SimPL [14], ComPLx [15] and MAPLE [16].

The main difference among different force-directed
quadratic placers is how they spread out movable cells to
generate their anchors. Kraftwerk2 [9] and DPlace [10] are
based on density gradient. Kraftwerk2 utilizes a Poisson po-
tential by a generic supply and demand system, while DPlace
models the diffusion process by solving a differential equation
relating to cell density. mFAR [11] achieves the spreading
forces by moving cells from those bins with overflow to those
without. FastPlace [12] and RQL [13] move the cells from
high density bins to the low density adjacent bins by cell
shifting. Recently, SimPL [14] proposed a new cell spreading
technique called look-ahead legalization. The key idea of look-
ahead legalization is that almost legal placement is used to
guide the anchor generation. Many placers [14–18] adopt this
idea and produce high quality placements. In SimPL [14], the
look-ahead legalization is implemented by top-down geometric
partitioning and non-linear scaling. In ComPLx [15], the
entire placement process is modelled by subgradient primal-

2

dual Lagrange optimization, whereas look-ahead legalization
is modelled by a feasibility projection. In MAPLE [16], the
look-ahead legalization of SimPL is combined with multilevel
clustering [5] and improvement of iterative local refinement
[12]. Besides, both SimPLR [17] and Ripple [18] extend
SimPL to handle routing congestion.

In this paper, we propose a new force-directed quadratic
placer called POLAR. POLAR also adopts the look-ahead
legalization idea and the look-ahead legalization is realized in a
simple and elegant manner. We notice that while the placement
solution by quadratic based wirelength minimization may have
considerable overlaps, the relative positions of cells can be
trusted in producing a legal placement with good wirelength.
Hence, during look-ahead legalization, our goal is to maintain
relative positions of cells as best as we can while minimizing
cell movements. To achieve this goal, firstly, all placement
density hotspots are detected. Secondly, for each hotspot, an
appropriate window (which is also called expansion region) is
searched to cover it by enumerating many feasible candidates.
Finally, cell-to-bin assignment is performed within each win-
dow by a fast recursive bisection method and then cells within
each bin are spread out.

Comparing with other SimPL-like placers (which adopt
look-ahead legalization such as [14–16], there are two main
differences in POLAR’s look-ahead legalization approach. The
first one is how to find window for placement density hotspot.
POLAR enumerates many feasible windows in order to main-
tain quadratic placement maximally. The second one is how
to perform cell spreading in each window. POLAR formulates
this step into cell-to-bin assignment so that it can have better
control on the placement density of each bin. The experimental
results over ISPD 2005 and ISPD 2006 benchmarks show
that POLAR outperforms other SimPL-like wirelength-driven
placers. Besides, POLAR’s look-ahead legalization approach
can be easily extended to consider routing congestion in
[19], which outperforms all the other academic routability-
driven placers both on runtime and quality over ICCAD 2012
routability-driven placement contest benchmarks [20] so far.

The rest of this paper is organized as follows. Section II
presents the preliminary. Section III elaborates the POLAR’s
algorithm. Section IV presents some implementation details.
Section V shows the experimental results. Finally, the conclu-
sions are made in Section VI.

II. PRELIMINARY

A circuit can be represented by a hypergraph G = (V,E),
where V =

{
v1, v2, . . . , v|V |

}
is the set of cells and E ={

e1, e2, . . . , e|E|
}

is the set of nets. Global placement tries
to determine physical positions of cells without violating
placement density constraints. We denote the x-coordinates of
cells by a vector x =

(
x1, x2, · · · , x|V |

)
, and the y-coordinates

by y =
(
y1, y2, · · · , y|V |

)
, the objective is to minimize the

HPWL, which is measured by Formula (1).

HPWL(x, y) = Σe∈E [max
i∈e

xi−min
i∈e

xi+max
i∈e

yi−min
i∈e

yi] (1)

A. Quadratic optimization
Assuming that all the nets only connect two different cells in

the circuit. For any net, as shown in Formula (1), the HPWL is
given by Manhattan distance between the two connected cells.
In quadratic placer, the Manhattan distance is approximated by
squared Euclidean distance of the two connected cells, so the
cost function φ of global placement can be defined in Formula
(2).

φ =
1

2
xTQxx + cTx x +

1

2
yTQyy + cTy y + const (2)

where the connection matrices Qx and Qy are both sparse
symmetric positive definite. Minimizing φ is equal to solving
the linear system in Eq. (3).

Qxx + cx +Qyy + cy = 0 (3)

In POLAR, preconditioned conjugate gradient (PCG) method
with incomplete Cholesky decomposition [21] is used to solve
Eq. (3).

B. Bound-to-bound net model
In real circuit, lots of nets have more than two pins. To

get the quadratic cost function (2), every multi-pin net should
be decomposed into a set of 2-pin nets by a net model,
e.g., clique model [22], hybrid model [23] or Bound-to-bound
(B2B) model [9]. The net model determines the connection
matrices Qx and Qy , which have big impact on the runtime and
placement quality of quadratic placer. Therefore, it is important
to choose suitable net model. In POLAR, we use B2B net
model, which has been shown to both accurate and efficient
in practice.

X

L1 L2

L3

L4 L5

x1

x2

x3

x4

Fig. 1. B2B net model [9]. In this example, there are four pins in the given
net. The left most pin is x1 and the right most pin is x4. So the quadratic
wirelength of this net in x-direction is wx1,3(x1−x3)2 +wx3,4(x3−x4)2 +
wx1,4(x1−x4)2 +wx1,2(x2−x1)2 +wx2,4(x2−x4)2, where wx1,3 = 1

2L1
,

wx3,4 = 1
2L2

, wx1,4 = 1
2L3

, wx1,2 = 1
2L4

and wx2,4 = 1
2L5

.

The B2B net model is based on the idea of removing all
inner two-pin connections and utilizing only connections to
the boundary pins. With this, the boundary pins span the net,
and the property of the HPWL being the distance between
the boundary pins is emulated. In x-direction, the two-pin

3

connection weight wxp,q of B2B net model is determined in
Formula (4) [9]. In y-direction, the weight is calculated in the
similar way with x-direction. B2B net model should be updated
once cells’ positions are changed in each global placement
iteration. Fig. 1 gives an example of B2B net model.

wxp,q =

{
0 if pin p and q are inner pins

2
P−1

1
|xp−xq| otherwise (4)

where P is the number of pins in the net.
It is proved that (2) based on B2B net model is completely

equal to (1) if the positions of cells are finally converged using
B2B net model in [9].

C. Spreading force realization
To reduce cell overlapping, spreading forces are added to

guide cells toward their anchors (some papers also call them
target positions). [11] proposed a simple way (which is called
fixed-point technique) to add spreading force by pseudo net
connecting cell’s original position to its anchor, as shown in
Fig. 2. Then the connection matrices Qx and Qy are updated
and linear system (3) is solved again. In POLAR, we also use
the fixed-point technique.

anchor

anchor

anchor

anchor

x1

x2
x3

x4

Fig. 2. An example of the fixed-point technique [11]. In this example,
the objective function is formulated as a quadratic penalty function:
ρ
[
(x1 − xanch1)2 + (x2 − xanch2)2 + (x3 − xanch3)2 + (x4 − xanch4)2

]
,

where ρ is the weight of pseudo net. In POLAR, the weight of all pseudo
nets are the same. This penalty function is added to Formula (2).

III. POLAR’S ALGORITHM

A. Algorithm outline
As shown in Fig. 3, POLAR is composed of three stages:

initial placement, density-driven placement and post-global
placement.

In the initial placement stage, a good wirelength-driven seed
placement without considering cell overlapping is generated.
Firstly, the hybrid net model [23] is responsible to the initial
connection matrices, and linear system (3) is solved by PCG to
get the initial placement. Next, the B2B net model updates the
connection matrices to further optimize the wirelength iteration
by iteration. Usually, three iterations are enough.

In the density-driven placement stage, POLAR adopts the
iterative look-ahead legalization framework [14]. In each it-
eration, the look-ahead legalization is used to generate upper
bound wirelength, and the quadratic wirelength achieved by
solving linear system (3) is considered as lower bound wire-
length1. To realize look-ahead legalization, firstly, all place-
ment density hotspots are detected. Secondly, for each hotspot,
a minimal window is searched to cover it by enumerating
the feasible candidates. Finally, the movable cells are evenly
assigned to each bin within the window by a recursive bisection
method and then the cells within each bin are spread out. After
look-ahead legalization is finished, the cells’ new positions
are used as anchors to generate spreading forces and the
connection matrices Qx and Qy are also updated based on
anchors’ positions by B2B net model [9]. The density-driven
placement runs iteratively until it satisfies the convergence
condition, which is defined as that the gap between lower
bound wirelength and upper bound wirelength is less than 8%.

Finally, in the post-global placement stage, look-ahead le-
galization is applied once more. And then legalization and
detailed placement are performed by FastDP [24] (using the
same setting as [24]’s) to get a legal placement.

Hybrid model + PCG

B2B + PCG

of B2B
iterations<3

Hotspot detection

Expansion region
enumeration

Recursive cell
bisection

Converged?
Yes

No

Legalization

Circuit info

Initial placement Density-driven placement

No
Yes

Pseudo nets +
B2B + PCG

Look-ahead legalization
Look-ahead legalization

Post-global placement

Detailed placement

Legal
placement

Spread cells within
bins

Fig. 3. The overview of POLAR.

B. Placement density estimation

One of the goals of look-ahead legalization is to achieve a
roughly legalized placement. To evaluate whether a placement
is roughly legalized, a method to estimate placement density
is necessary.

A popular and widely used approach is to split the placement
region into a set of p × q uniform bins denoted by B =
{b1,1, b1,2, . . . , b1,q, b2,1, b2,2, . . . , bp,q}. To simplify placement
density estimation, we define the following concepts.

1This is not a real lower bound on the wirelength of the placement problem
because spreading forces that are generated by heuristics are added to the
linear system.

4

Definition 1: For any movable cell vi, if its geometric center
is located in bin bx,y , we say that vi is belonged to bx,y . And
the placement density of bin, di,j , is defined as Formula (5),
where oi,j and ai,j are the total area of movable cells belonged
to bi,j and the available area of bi,j respectively. For mixed-
size placement problem, ai,j can be calculated offline, while
oi,j should be calculated online.

di,j =
oi,j
ai,j

(5)

Definition 2: A bin bi,j is considered density overflow if
the following condition (6) is satisfied.

di,j > λ× θ (6)

where λ is set to 1.05 in POLAR and θ is the density target
of the circuit. Otherwise, we call bin bi,j underflow.

The size of bin is determined as follows. Suppose the
average area of standard cell is area and the expected number
of standard cells in a bin is n, then the bin is a square whose
width (height) is calculated by Formula (7). In POLAR, the
default value of n is 30, and the bin size is fixed during the
global placement.

Gridh = Gridw =

√
n× area

θ
(7)

C. Hotspot detection

The first step of look-ahead legalization is to recognize
placement density hotspots. Similar to SimPL [14], the place-
ment density hotspot is defined as a cluster of overflow bins.
Its formal definition is given as follows.

Definition 3: The grid graph for the uniform bin grid is
the graph in which (i) each bin represents a vertex, and (ii)
two vertices are joined by a graph edge if and only if the two
bins for those vertices are directly adjacent, either horizontally
or vertically. That is, referring to a bin by its (row,column)
coordinates in the uniform bin grid, bins (i, j) and (k, l) are
adjacent if and only if |k − i|+ |l − j| = 1.

Definition 4: A placement density hotspot is a spatially
contiguous collection of overflow bins, i.e., a connected sub-
graph of overflow bins in the grid graph. A hotspot is also
called a “clump.” For any pair of bins in the clump, there is
a path in the grid graph connecting them. The edges of the
path can only be vertical or horizontal, and this path cannot
go through the bins outside of the clump.

Fig. 4(a) gives an example of placement density hotspots.
The shadowed bins are overflow, so there are three placement
density hotspots according to our definitions.

The algorithm of hotspot detection is presented in Algorithm
1. Breadth first search (BFS) is used to traverse all overflow
bins. Once the number of overflow bins in currently construct-
ing density hotspot exceeds 3, a new overflow bin is set as
a new start for BFS, the reason is explained in Section III.D.
The time complexity of Algorithm 1 is O(pq), since each bin
is visited at most twice.

(a) Placement density hotspots. (b) Window cover hotspots.

Fig. 4. Placement density hotspots and windows.

(a) Ill-shaped hotspot and corre-
sponding window.

(b) Ill-shaped hotspot decomposi-
tion and windows.

Fig. 5. Ill-shaped hotspot and its decomposition.

D. Window enumeration

To spread out the cells in placement density hotspot, we
define window as follows.

Definition 5: The window of a hotspot is a set of bins which
completely cover the hotspot and has enough available space
to accommodate the movable cells within it while satisfying
the density constraints.

As shown in Fig. 4(b), the three placement density hotspots
in Fig. 4(a) are fully covered by three windows, respectively.
Therefore, if the cells are evenly distributed within all those
windows, a roughly legalized placement is expected.

As mentioned before, one goal of look-ahead legalization is
to maintain the cells’ relative positions of quadratic placement
while minimizing the cell movements. Generally speaking, for
any placement density hotspot, smaller window means less
cell movements so it is preferred. To avoid unnecessarily big
window for ill-shaped hotspot, we simply constrict the number
of overflow bins in each placement density hotspot, as shown
in Algorithm 1. As shown in Fig. 5, if the number of overflow
bins in each hotspot is constricted to 3, the ill-shaped hotspot
is decomposed into three smaller ones.

For any placement density hotspot, there are many can-
didates of window. According to the definition of window,
the number of candidates is O(p2q2). Enumerating all of
the candidates is time consuming. To trade off runtime and
quality, we define τ -enumerated window and the minimal τ -
enumerated window is chosen to spread out placement density
hotspot.

5

Algorithm 1 Placement density hotspot detection
Require: The density of bins are already calculated. The bin grid is

p× q. The number of bins in each hotspot is constricted to 3.
Ensure: The set of placement density hotspots, denoted by Ω.

1: for i = 1→ p do
2: for j = 1→ q do
3: visited[i][j]=0;
4: end for
5: end for
6: for i = 1→ p do
7: for j = 1→ q do
8: if visited[i][j]==1 ‖ di,j ≤ 1.05× θ then
9: continue;

10: end if
11: H = {bi,j}; count = 0; visited[i][j]=1;
12: Initialize an empty queue Q; push bin bi,j into Q;
13: while Q 6= ∅ do
14: pop a bin bx,y from Q;
15: for each bx,y’s adjacent bin bx1,y1 do
16: if visited[x1][y1]=0 && di,j > 1.05× θ then
17: if count > 3 then
18: Ω = Ω ∪ {H}; break;
19: end if
20: H = H ∪ {bx1,y1}; count = count+ 1;
21: visited[x1][y1]=1; push bx1,y1 into Q;
22: end if
23: end for
24: end while
25: end for
26: end for

Definition 6: For any placement density hotspot, a τ -
enumerated window is a rectangular set of bins, whose
geometric center is also the gravity center of corresponding
placement density hotspot. Besides, its aspect ratio is within
the range

[
1
τ , τ
]
.

To calculate the geometric center of window and gravity
center of placement density hotspot, we use the bin coordinate
system. A rectangular-shaped window can be represented
by a quadruple (lx, ly, ux, uy), where (lx, ly) is the coor-
dinate of its lower-left bin, and (ux, uy) is the coordinate
of its upper-right bin. Its geometric center is defined as(
floor(

lx+ly
2), f loor(

ux+uy

2)
)

. The gravity center (gx, gy) of
placement density hotspot H is defined as Formula (8) and (9).

gx = floor(

∑
bi,j∈H oi,j ∗ i∑
bi,j∈H oi,j

) (8)

gy = floor(

∑
bi,j∈H oi,j ∗ j∑
bi,j∈H oi,j

) (9)

For instance, as shown in Fig. 6, the red rectangular-
shaped window is represented by quadruple (1, 2, 3, 4), and
its geometric center is (2, 3). The corresponding placement
density hotspot is composed of three overflow bins, the total
area of movable cells belonged to those bins are 10, 5 and 2
respectively, its gravity center is (2, 3) according to Formula
(8)-(9). Therefore, the red rectangular-shaped window in Fig.
6(a) is a τ -enumerated window, whose aspect ratio τ is equal to

Algorithm 2 Window enumeration for a placement density
hotspot
Require: p × q bins of placement region, a hotspot H , target

utilization θ.
Ensure: window (lx, ly, rx, ry) for hotspot H .

1: Calculate the gravity center (gx, gy) of H according to Formula
(8) and (9);

2: Γ = ∅;
3: found = false;
4: τ = 2.5;
5: while notfound do
6: for radiusx = 1→ max {gx, p− gx} do
7: for radiusy = 1→ max {gy, q − gy} do
8: lx = max {0, gx − radiusx};
9: ly = max {0, gy − radiusy};

10: rx = min {p− 1, gx + radiusx};
11: ry = min {q − 1, gy + radiusy};
12: if window (lx, ly, rx, ry) does not cover H then
13: continue;
14: end if
15: Calculate the space utilization ratio γ =

∑
bi,j∈H oi,j∑
bi,j∈H ai,j

of window (lx, ly, rx, ry);
16: if γ < θ && ry−ly

rx−lx ∈
[
1
τ
, τ

]
then

17: Push window (lx, ly, rx, ry) into Γ;
18: break;
19: end if
20: end for
21: end for
22: if Γ = ∅ then
23: τ+ = 0.5;
24: else
25: found = true;
26: end if
27: end while
28: return the (area) minimal window from Γ;

10 5

2

(0,0)

X

Y

0

1

2

3

4

5

0 1 2 3 4 5

(a) τ -enumerated window.

10 5

2

(0,0)

Y

0

1

2

3

4

5

0 1 2 3 4 5

X

(b) Non τ -enumerated window.

Fig. 6. Bin coordinate system and τ -enumerated window.

1, while the red rectangular-shaped window in Fig. 6(b) is not
a valid τ -enumerated window, since its geometry center is not
the same as the gravity center of the density hotspot. Note that,
by only enumerating τ -enumerated windows, POLAR would
miss some candidates of windows. However, the CPU runtime
consumption is reduced significantly.

A window whose aspect ratio is either excessively high or
excessively low is not beneficial to wirelength. Because the
x-direction wirelength would be sacrificed if using excessively

6

low aspect ratio window, while the y-direction wirelength
would be sacrificed if using excessively high aspect ratio
window. For example, as shown in Fig. 7, suppose that the
total occupied area of each overflow bin is 9 and the total
occupied area of underflow bins are all 0. If the available area
of each bin is 3 and density target θ is 1, the window in Fig.
7(a) is expected to produce better wirelength than the window
in Fig. 7(b). (The y-direction wirelength of Fig. 7(b) may be a
little better than that of Fig. 7(a), but the x-direction wirelength
of Fig. 7(b) may be much worse than that of Fig. 7(a).)

The window enumeration method is presented in Algorithm
2. The initial value of τ is set to 2.5. All the τ -enumerated win-
dows are checked to find the minimal one. If no τ -enumerated
window has enough available area to accommodate the cells
within it while satisfying the density constraint, the value of
τ is gradually increased by 0.5.

Algorithm 2 guarantees to return a window for the given
hotspot. Its time complexity is O(τpq) as line 15 (calculating
the space utilization ratio of window) can be computed in
constant time by a look-up table method, which we will show
next.

In a p× q grid, for any rectangular-shaped window denoted
by (0, 0, x, y) whose lower-left bin is (0, 0) and upper-right
bin is (x, y), its available area is denoted by zx,y . Then the
available area of window (lx, ly, ux, uy) which is denoted by
a (lx, ly, ux, uy), can be calculated according to Formula (10).

a (lx, ly, ux, uy) = zux,uy − zlx,uy − zux,ly + zlx,ly (10)

The same method can be applied to calculate the occupied
area of windows. Therefore, if we maintain two 2-D arrays
to store available area and occupied area, the space utilization
γ of window can be computed in constant time. Besides, this
kind of 2-D array can be constructed and updated by dynamic
programming based on the following recursive relation (11).

zx,y = zx−1,y + zx,y−1 − zx−1,y−1 + ax,y (11)

Only the look-up table of occupied area should be updated
once the placement is changed. Once the cell distribution of
a window denoted by (lx, ly, ux, uy) is changed and the cell
distribution outside of this window is untouched, the occupied
area of three regions should be updated. They are respectively
(1) x ∈ [lx, ux] , y ∈ [ly, uy], (2) x ∈ [ux + 1, p), y ∈ [ly, uy]
and (3) x ∈ [lx, ux] , y ∈ [ly + 1, q). Note that the boundary
conditions (e.g. lx = 0 or ly = 0) and update order should be
taken care of. The update of look-up table for occupied area
is presented in Algorithm 3. Algorithm 3 should be invoked
each time when a window is roughly legalized.

E. Recursive bisection based cell spreading
Once the window for placement density hotspot is de-

termined, the cells (within window) are evenly assigned to
each bin (within window) in order to get a roughly legalized
placement. During this cell-to-bin assignment, it is almost
impossible to maintain the x- and y-directed relative cell
positions simultaneously, due to the irregular distribution of
placement density. To balance the loss of x and y-directed

Algorithm 3 Update of look-up table for occupied area
Require: Cell distribution of a window denoted by (lx, ly, ux, uy)

is changed. The occupied area in bin bi,j is denoted by oi,j . The
grid size is p×q. The occupied area in window (0, 0, x, y) whose
lower-left bin is (0, 0) and upper-right bin is (x, y) is denoted
by Ox,y .

Ensure: Look-up table is update.
1: if lx == 0||ly == 0 then
2: O0,0 = o0,0;
3: for i = 1; i < p; + + i do
4: Oi,0 = Oi−1,0 + oi,0;
5: end for
6: for j = 1; j < q; + + j do
7: O0,j = O0,j−1 + o0,j ;
8: end for
9: end if

10: for i = max {lx, 1} ; i <= ux; + + i do
11: for j = max {ly, 1} ; j <= uy; + + j do
12: Oi,j = Oi−1,j +Oi,j−1 −Oi−1,j−1 + oi,j ;
13: end for
14: end for
15: for i = max {lx, 1} ; i <= ux; + + i do
16: for j = uy + 1; j < q; + + j do
17: Oi,j = Oi−1,j +Oi,j−1 −Oi−1.j−1 + oi,j
18: end for
19: end for
20: for i = max {ux, 1}+ 1; i < p; + + i do
21: for j = max {ly, 1} ; j <= uy; + + j do
22: Oi,j = Oi−1,j +Oi,j−1 −Oi−1,j−1 + oi,j ;
23: end for
24: end for

9 9 9

(a) Reasonable aspect ratio.

9 9 9

(b) Unreasonable aspect ratio.

Fig. 7. τ -enumerated window.

relative positions, the horizontal and vertical cut are applied
alternatively similar to the slicing tree of [25]. When vertical
cut is applied, the cells are sorted by their x positions, and the
cells on left part are assigned to left child, the other cells are
assigned to right child. While the horizontal cut is applied, the
cells are sorted by their y positions, and cells on the bottom
and top part are respectively assigned to left and right child.
We define partition tree as follows.

Definition 7: For each window, its partition tree is a binary
tree. Its node can be represented by four fields: a split line, a
left child, a right child and an associated rectangle. Partition
tree of a window satisfies the following conditions:
• The whole window is the associated rectangle of root.
• For each inner node, the split line should be one of the

7

horizontal/vertical lines that divide the placement region
into uniform bins.

• For each inner node, its associated rectangle is split into
two parts by its split line. If its split line is horizontal,
the above/below part is associated to its left/right child.
Similarly, if its split line is vertical, the left/right part is
associated to its left/right child.

• For each leaf node, its split line is invalid and its
associated rectangle is one-to-one mapped to a bin.

For each inner node, we try to balance the sizes of associated
rectangles of its two children by choosing the split line which is
closest to the middle horizontal or vertical line of its associated
rectangle. A simple implementation of this cell-bin assignment
is presented in Algorithm 4. At the beginning, only the root of
partition tree is in the queue Q. In each iteration, a tree node
is popped from Q and partitioned into two by a horizontal or
vertical cut. During the partition, the space utilization ratios
of its two children’s corresponding rectangles are closed to
each other by properly allocating movable cells. The Algorithm
4 stops until the queue Q is empty, which means that the
partition tree is constructed completely. For example, Fig. 8 is
the partition tree for an 3 × 3 grid window.

Comparing with [25], there are several differences in our
recursive bisection approach. Firstly, cut line should be strictly
one of the split lines that divide placement region into uniform
bins. Secondly, the leaf node should be strictly one-to-one
mapped to a bin in order to control the placement density
of each bin, which means that partition tree may not be a
complete binary tree. Thirdly, the slice tree proposed by [25] is
used to adjust cut line to handle with routing congestion, while
our partition tree is served to achieve roughly legal placement
where placement density of each bin is closed to design target.

Algorithm 4 Cell-to-bin assignment within window
Require: The set of cells S and window F (lx, ly, rx, ry).
Ensure: Each cell is assigned to exactly one bin.

1: respectively get the x and y-directed cell ordering;
2: determine the initial cut type T , it is vertical when rx − lx >
ry − ly , otherwise horizontal;

3: create a root node R, push the quadruple (R, F , T , S) into a
queue Q;

4: while Q is not empty do
5: pop (R, F , T , S) from Q;
6: partition the window and cell set, the results are (F1, S1) and

(F2, S2), where F = F1 ∪ F2 and S = S1 ∪ S2;
7: create two children C1, C2 for inner node R;
8: change cut type T ;
9: if F1 is not a bin and not empty then push (C1, F1, T , S1)

into Q
10: end if
11: if F2 is not a bin and not empty then push (C2, F2, T , S2)

into Q
12: end if
13: end while

1) Speedup technique: The runtime of Algorithm 4 is dom-
inated by line 6 (partition inner tree node). For each inner tree
node, sorting should be performed to partition cells. Therefore,
the time complexity of Algorithm 4 is O(nlog2n), where n

is the number of cells within window. Next, we will show a
clever implementation of Algorithm 4. We can reduce the time
complexity to O((p+q)k+nlog(pq)) for a p×q grid window,
where k is a small constant.

There are two techniques to speedup Algorithm 4. Firstly,
cells are not really moved during the construction of partition
tree. For each cell, a path from the root to the leaf (the bin to
which it is finally assigned) is maintained. So once the partition
tree is constructed, each cell could be assigned to a bin by
going through its path. For the convenience of computation,
a bit sequence is maintained to denote this path. Secondly,
the construction of partition tree is strictly level-by-level. To
generate a new level of partition tree, the whole sorted cell list
of window is just scanned once. Therefore, the total number
of sorting is reduced to 2 [14].

Besides, we can take advantage of that the ranges of x and
y coordinates of cells are known when the window is given. If
we split every bin into k horizontal or vertical stripes like [14],
the x and y-directed sorting can be done by bucket sort only
losing little accuracy. And our experimental results show that
the placement quality is not suffered if k is set to a reasonable
value, which is 100 in POLAR.

1 4 7

0 3 6

0

2 5 8

1 2 3 6

4 5 7 8

Fig. 8. An example of partition tree for 3 × 3 window, the vertical cut line
is first applied.

The detail of our speedup technique is presented in Algo-
rithm 5. The inner nodes that have been partitioned are called
dead nodes, otherwise live nodes. For each window, at the
beginning, there is only one live node. The partition tree is
constructed level by level, and a queue Q is used to maintain
current live nodes. In each level, the same type of cut line
is applied to all the live nodes in lines 8-19. For any sub
window F (lx, ly, ux, uy), it is divided into two subregions L
(left subregion by vertical cut lx+ux

2 , or bottom subregion by
horizontal cut ly+uy

2) and R (right subregion by vertical cut
lx+ux

2 , or top subregion by vertical cut ly+uy

2). The partition
pivot is computed based on Formula (12).

AL
(AL +AR)

×AM (12)

where AL and AR are the available area of L and R respec-

8

tively, AM is the total area of moveable cells within F . There
is a special case during the partition. If the sub window is a
1× 2 (2× 1) grid, the vertical (horizontal) cut line can not be
applied apparently, since each leaf of partition tree is one-to-
one mapped to a bin. Therefore, partition of this sub windows
is delayed to the next level where the cut type is changed, we
call this situation level delay.

C1

C7 C8

C2 C5 C6 C0
C3 C4

Delay a level

C3 C4 C1 C2 C5 C6 C0 C7 C8

C7 C8 C2 C1 C3 C4 C6 C5 C0

C0 C1 C2 C3 C4 C5 C6 C7 C8

1 0 1 0 0 1 1 1 1

1 0 1 1 1 1 1 0 0

1 # 0 0 0 0 1 0 1

1 0 0 1 1 0 # #

#

Level 1

Level 2

Level 3

Level 4

Cells sort by x-order

Cells sort by y-order

F1,3

F2,1 F3,2

F6,2F5,1

F7,1 F8,1F4,1

Fig. 9. An example for recursive bisection based cell spreading with speedup
technique. The value on the right side of tree node is the pivot for partition.

An example is illustrated in Fig. 9. Assuming that the
given window F1 is a 3 × 3 grid, each bin has the
same available space. The nine equal sized cells within
F1 are {C1, C2, · · · , C9}, the area of each cell is 1.
The cells are sorted in ascending order according to their
x- and y-coordinates respectively, the x-directed order is
(C3, C4, C1, C2, C5, C6, C0, C7, C8), while the y-directed or-
der is (C7, C8, C2, C1, C3, C4, C5, C6, C0).

In the first level, the vertical cut line is applied, according
to Formula (12), the pivot is 3. The cell list is scanned in
x-directed order, then C3, C4, C1 should be assigned to left
sub-window, others should be assigned to right sub-window,
the partial path of each cell is updated. In the second level,
the horizontal cut line is applied, the partition pivots for F2

and F3 are respectively 1 and 2. Then the cell list is scanned
in y-directed order. The first one is C7. Its partial path is ”1”,
which means that it should be assigned to F3 in the last level,
and the current pivot of F3 is 2, so it should be assigned to
F5 and its partial path is ”10”. The partial paths of other cells

are updated similarly. In the third level, the vertical cut line is
applied and the cell list is scanned in x-directed order. The first
cell is C3, its current partial path is ”01”. Since the associated
rectangle of the node to which C3 is belonged is F4, and F4

a 1× 2 grid, a level delay happens and we update the partial
path of C3 to ”010”. The next cell is C4. The level delay
happens again and its partial path is updated accordingly. The
next cell is C1 and its partial path is ”00”. Since the associated
rectangle of the node to which C1 is belonged is already a bin,
we do not update its partial path. The next cell is C2 and its
partial path is ”11”. In this case, we fetch the pivot of the
node to which it is belonged and this pivot is 2. Therefore, C2

should be assigned to left child and its partial path is updated
to ”110”. The partial paths of other cells are updated similarly.

Algorithm 5 Speed up technique for cell-to-bin assignment
Require: The set of cells S and window F (lx, ly, rx, ry)
Ensure: Each cell is assigned to exactly one bin.

1: perform x and y-directed cell sorting by bucket sort;
2: determine the initial cut type T , it is vertical when rx − lx >
ry − ly , otherwise horizontal;

3: create a root node R, push the (R, F , pivot) into a queue Q;
4: while true do
5: Φ = ∅; . Φ stores the next level sub windows
6: if Q is empty then break; . all the leaf nodes have been

generated
7: end if
8: while Q is not empty do
9: pop (R, F , pivot) from Q;

10: if F is a 1 × 2 (2 × 1) grid && the cut is vertical
(horizontal) then

11: Φ = Φ ∪ F ;
12: else if F is not bin then
13: partition F into F1 and F2 based on pivot;
14: create two children C1 and C2 for R;
15: calculate the pivot for F1 and F2, denoted by pivot1,

pivot2;
16: Φ = Φ ∪ {(C1, F1, pivot1), (C2, F2, pivot2)};
17: update the bit sequence for each cell;
18: end if
19: end while
20: change the cut type T ;
21: push each element of Φ into Q;
22: end while
23: for each cell in S do
24: cur node := root of partition tree;
25: for each bit in the bit sequence of the cell do
26: if current bit is 0 then
27: cur node: = cur node’s left child;
28: else
29: cur node: = cur node’s right child;
30: end if
31: end for
32: assign this cell to the bin associated to cur node;
33: end for

For any cell, once we know its path from root to leaf
in partition tree, the bin which it is finally assigned to can
be determined according to line 24-32 in Algorithm 5. For
example, as shown in Fig. 9, the path of C8 is ”101” and
cur node in Algorithm 5 is set to root (represented by F1)

9

initially. The first bit of the path is ”1”, so cur node is set to
F3 which is the right child of F1. The second bit is ”0”, so
cur node is set to F5 which is the left child of F3. Finally, the
last bit is ”1”, so it should be assigned to bin 6 in Fig. 8.

We analyze the time complexity of Algorithm 5 as follows.
Line 1 needs O((p + q)k + n). The level of partition tree is
the same as its height, which is O(log(pq)). In each level,
the whole cell list is scanned once by either x-directed or
y-directed order, so the line 4-22 needs O(nlog(pq)). For
each cell, O(log(pq)) is needed to scan its path (bit se-
quence). Therefore, the total time complexity of Algorithm
5 is O((p+ q)k + nlog(pq)).

F. Cell spreading within bins
After recursive bisection based cell spreading, the informa-

tion that which cell belongs to which bin is known. However,
the concrete positions of cells in each bin are still undeter-
mined. Here, similar with [14], we use a scaling method [24]
to handle with this issue. To calculate x-coordinates of the cells
within a bin, these cells are sorted in ascending order according
to their original x-coordinates before look-ahead legalization.
Then all these cells are put side by side in x-direction based on
the above ordering. Since the total cell width may be longer
than the width of bin, the x-coordinates of cells are scaled to
make sure the centers of all the cells are between bin’s left
boundary and right boundary. Similarly, y-coordinates of the
cells within a bin can be calculated. The details are presented
in Algorithm 6.

Algorithm 6 Cell spreading in a bin
Require: The cells belong to the bin.
Ensure: The positions of cells.

1: Get the coordinate of bin’s lower-left corner, denoted by
(binx, biny) ;

2: Sort the cells in ascending order based on original x-coordinates
before look-ahead legalization

3: total width = 0;
4: for each cell v do
5: total width+ = v’s width;
6: end for
7: cur posx = 0;
8: for each cell v do
9: v’s x-coordinate = binx + cur posx

total width
;

10: cur posx+ = v’s width;
11: end for
12: Calculate the y-coordinate of each cell by similar method;

G. Complete algorithm of look-ahead legalization
Algorithm 7 combines all the above together. The input

could be any uneven placement. Firstly, the density estimation
of given placement is performed to update the loop-up table
mentioned in section III.D. Then Algorithm 1 is applied to
find all the density hotspots. Density hotspots are sequen-
tially handled according to their density. For each hotspot
H , Algorithm 2 is used to find its window, within which
Algorithm 5 finishes the cell-to-bin assignment. Since some

Algorithm 7 Look-ahead legalization of POLAR
Require: A placement and target utilization θ.
Ensure: The density of each bin is closed to θ.

1: Build up the look-up table (see III.D formula (10)).
2: Placement density hotspot detection (see Algorithm 1).
3: Sort all the density hotspots in descending order of density (the

ratio of cell area and available area within hotspot).
4: for each density hotspot H do
5: In H , subtract the bins that have been covered by previous

windows.
6: Find an expansion window F for H (see Algorithm 2).
7: Cell-to-bin assignment within F (see Algorithm 5).
8: Update the look-up table because the cell distribution of F is

changed (see Algorithm 3).
9: end for

10: Spread the cells within bins (see Algorithm 6).

bins of hotspot H may have been already covered by previous
windows and are not overflow any more, they are subtracted
from H . Note that the cell distribution of placement is changed
after applying Algorithm 5, so the look-up table should be
updated by Algorithm 3. At the end, cells within each bin
are simply spread out by Algorithm 6. To illustrate our look-
ahead legalization, placement migration of circuit adaptec1 is
shown in Fig. 10, where both lower bound and upper bound
placement are presented.

H. Force modulation
After all the anchors of cells are determined, the linear

system (3) is updated and solved again. Firstly, the B2B net
model is refreshed based on anchor positions of cells. Then,
for each movable cell, a two-pin pseudo net connecting it to
its anchor is added into the spring system. The weight ρ of
pseudo net is calculated according to Formula (13), where i
means the ith iteration of density driven placement.

ρ =

 ε if i = 0
ε ∗ αi−1 if 1 ≤ i ≤ 20
ε ∗ α19 ∗ βi−20 if i > 20

(13)

It is a two-stage force modulation, where ε is a small value
and β > α. At the early stage, ρ is small in order to avoid
significant change of placement. While at the latter stage, ρ is
increased more quickly to speedup the convergence. For ISPD
2005 and 2006 benchmark suites, the default value of ε, α, β
are respectively 1e-5, 1.05, 1.15.

I. Handling with movable macros
To handle with movable macros, there are many existent

methods such as [15, 26–29]. We used a light-weight approach
which can be easily integrated into Algorithm 7 as shown in
Algorithm 8.

The idea originates from [26] and [15]. Each movable macro
is sliced into a set of equal-sized pieces. Similar with [15],
these sliced pieces share the same central position as the
movable macro which they are from just before look-ahead
legalization. Different from [26], these sliced pieces are not

10

(a) The lower bound placement in the
5th iteration.

(b) The upper bound placement in the
5th iteration.

(c) The lower bound placement in the
15th iteration.

(d) The upper bound placement in the
15th iteration.

(e) The lower bound placement in the
30th iteration.

(f) The upper bound placement in the
30th iteration.

(g) The lower bound placement in the
last iteration.

(h) The upper bound placement in the
last iteration.

Fig. 10. Placement migration of circuit adaptec1.

connected by fake nets, so this approach does not touch matrix
generation. In other words, exactly the same as standard cell,
each movable macro is treated as an entity rather than a set of
sliced pieces during matrix generation. The size of each piece
is about the average size of standard cells. Since POLAR tries
to maintain the relative positions of cells, most of the sliced
pieces belonged to the same macro would be very close to each
other. And the position of movable macro is the gravity center
of its sliced pieces just after look-ahead legalization. Therefore,
even few of its sliced pieces maybe a little far away from the

majority of others, it has little impact on the final position of
movable macro.

Algorithm 8 Handle with movable macros
1: Shredding moveable macros into slices;
2: Apply Algorithm 7;
3: Resembling the slices into macros;

IV. EXPERIMENTAL RESULTS

POLAR is implemented in C++. The binaries of several
modern academic placers such as NTUPlacer3[8], mPL6 [4],
FastPlace3 [12], SimPL [14] and ComPLx [15] are also
obtained. However, MAPLE [16] is not available since it is
a commercial tool. All results (excepts those of MAPLE) are
generated in the same platform, which is a Linux PC with
16GB of memory and Intel Core-i3 3.3GHz CPU. Note that
some academic placers such as SimPL and ComPLx have
paralleled implementation, while some other do not. To make
the comparison fair, we only allow to use one core for all
placers. The ISPD 2005 benchmark suite [30] and ISPD 2006
benchmark suite [31] are used to verify the efficiency of
POLAR.

A. benchmark characteristics
The characteristics of ISPD 2005 benchmark suite and ISPD

2006 benchmark suite are listed in Table I and Table II. For
the ISPD 2005 benchmark suite, the density target θ is set
to 1, which means that the whitespace in each bin could be
occupied by movable cells completely. However, for the ISPD
2006 benchmark suite, the density target of each benchmark
is fixed by contest organizers. The range of number of cells
(including both movable cells and fixed macros/pins) in those
benchmarks is from 0.2 millions to 2.5 millions.

TABLE I. CHARACTERISTICS OF ISPD 2005 BENCHMARK SUITE.

benchmark # of V # of E design utility density target

adaptec1 211447 221142 57.34% 100%
adaptec2 255023 266009 44.32% 100%
adaptec3 451650 466758 33.52% 100%
adaptec4 496045 515951 27.14% 100%
bigblue1 278164 284479 44.67% 100%
bigblue2 557866 577235 37.78% 100%
bigblue3 1096812 1123170 56.48% 100%
bigblue4 2177353 2229886 42.29% 100%

TABLE II. CHARACTERISTICS OF ISPD 2006 BENCHMARK SUITE.

benchmark # of V # of E design utility density target

adaptec5 843128 867798 49.97% 50%
newblue1 330474 338901 83.20% 80%
newblue2 441516 465219 61.66% 90%
newblue3 494011 552199 26.30% 80%
newblue4 646139 637051 46.45% 50%
newblue5 1233058 1284251 49.55% 50%
newblue6 1255039 1288443 38.78% 80%
newblue7 2507954 2636820 49.31% 80%

11

B. Comparison on ISPD2005 benchmark suite

For the ISPD 2005 benchmark suite, the quality of place-
ment is measured by wirelength. The experimental results are
presented in Table III. On average, POLAR achieves the best
quality (respectively improve the wirelength by 7.87%, 2.68%,
6.67%, 2.32%, 1.30% and 0.14% compared with NTUPlacer3,
mPL6, FastPlace3, SimPL, ComPLx and MAPLE) and it
is also very fast. Comparing with SimPL which is fastest
one, POLAR improves the wirelengh by 2.32% at the cost
of 6% increase in the runtime. Comparing with MAPLE
which produces similar wirelength with POLAR, we get 6.73×
speedup 2.

C. Comparison on ISPD2006 benchmark suite

In the ISPD 2006 benchmark suite, the circuit newblue1 has
several movable macros. The quality of placement is measured
by scaled wirelength. The scaled wirelength is composed of
two parts: wirelength and the penalty of overflow. The contest
official script [31] is used to calculate the scaled wirelength,
and the experimental results are presented in Table IV and
Table V. On average, POLAR achieves improvement of 3.54%,
5.74%, 11.68%, 0.79% and 0.44% on scaled wirelength versus
NTUPlace3, mPL6, FastPlace3, ComPLx and MAPLE. We
do not have the results of SimPL, since it currently does not
support to run on ISPD 2006 benchmark suite. For the runtime,
on average, POLAR is 2.59×, 8.91×, 1.00×, 1.05× faster than
NTUPlacer3, mPL6, FastPlace3 and ComPLx. The runtime of
MAPLE on ISPD 2006 benchmark suite was not reported in
[16], so we cannot compare POLAR with it either directly or
indirectly.

D. Runtime analysis

The runtime breakdown of POLAR is shown in Table
VI. It is divided into three components: global placement
legalization, and detailed placement. The runtime of global
placement is further divided into three parts: PCG, look-
ahead legalization (which includes hotspot detection, window
enumeration and recursive bisection based cell spreading) and
others (e.g. B2B net model update, wirelength calculation and
I/O).

On average, global placement takes about 76% of total
runtime, while legalization and detailed placement respectively
take about 7% and 17% of total runtime. In global placement
stage, PCG takes about 50% of total runtime, look-ahead
legalization takes 14% (window enumeration uses 2% and
recursive bisection based cell spreading uses 9%) and others
take 12% of total runtime.

V. CONCLUSIONS

In this paper, we have proposed a high performance mixed-
size wirelength-driven placer called POLAR. It adopts the
popular framework of legalization. An elegant and effective

2The binary of MAPLE is not released, so MAPLE’s runtime is scaled
according to [16] which show that it is 7.14 × slower than SimPL

TABLE V. RUNTIME COMPARISON ON ISPD 2006 BENCHMARK SUITE.

benchmark NTUPlace3 mPL6 FastPlace3 ComPLx POLAR

adaptec5 45.2 118.2 16.6 15.0 13.7
newblue1 8.9 27.1 4.2 3.6 6.9
newblue2 17.4 66.4 6.7 8.6 6.9
newblue3 15.1 102.4 8.6 7.7 7.1
newblue4 26.4 89.1 9.2 9.6 9.0
newblue5 58.1 161.8 21.4 23.6 21.5
newblue6 50.0 133.9 21.1 19.1 17.8
newblue7 120.3 377.1 33.2 47.4 38.5

Norm. 2.59× 8.91× 1.00× 1.05× 1.00×

algorithm for look-ahead legalization is proposed. The experi-
mental results on ISPD 2005 benchmark suite and ISPD 2006
benchmark suite verify that our placer is very comparable
to the state-of-the-art placers in both runtime and placement
quality.

REFERENCES

[1] C. Alpert, Z. Li, G.-J. Nam, C. N. Sze, N. Viswanathan,
and S. I. Ward, “Placement: hot or not?,” ICCAD ’12,
pp. 283–290.

[2] I. L. Markov, J. Hu, and M.-C. Kim, “Progress and
challenges in VLSI placement research,” ICCAD ’12,
pp. 275–282.

[3] W. Naylor, R. Donelly, and L. Sha, “Non-linear opti-
mization system and method for wire length and delay
optimization for an automatic electric circuit placer,”
U.S.Patent 6 301 693, 2001.

[4] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze, and
M. Xie, “mPL6: enhanced multilevel mixed-size place-
ment,” ISPD ’06, pp. 212–214.

[5] G.-J. Nam, S. Reda, C. J. Alpert, P. G. Villarrubia, and
A. B. Kahng, “A fast hierarchical quadratic placement
algorithm,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 25, no. 4, pp. 678–
691, 2006.

[6] J. Z. Yan, C. Chu, and W.-K. Mak, “SafeChoice: a novel
clustering algorithm for wirelength-driven placement,”
ISPD ’10, pp. 185–192.

[7] A. B. Kahng and Q. Wang, “A faster implementation of
aplace,” ISPD ’06, pp. 218–220.

[8] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and
Y.-W. Chang, “NTUPlace3: An analytical placer for
large-scale mixed-size designs with preplaced blocks and
density constraints,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and System, vol. 27, no. 7,
pp. 1228–1240, 2008.

[9] P. Spindler, U. Schilichtmann, and F. M. Johannes,
“Kraftwerk2 - a fast force-directed quadratic placement
approach using an accurate net model,” IEEE Trans.
on Computer-Aided Design of Integrated Circuits and
System, vol. 27, no. 8, pp. 1398–1411, 2008.

[10] T. Luo and D. Z. Pan, “DPlace2.0: a stable and efficient
analytical placement based on diffusion,” ASP-DAC ’08,
pp. 346–351.

[11] B. Hu, Y. Zeng, and M. Marek-Sadowska, “mFAR: fixed-

12

TABLE III. COMPARISON ON ISPD 2005 BENCHMARK SUITE.

benchmark NTUPlace3 mPL6 FastPlace SimPL ComPLx MAPLE POLAR
HPWL runtime HPWL runtime HPWL runtime HPWL runtime HPWL runtime HPWL runtime HPWL runtime

adaptec1 79.83 5.11 77.29 19.3 78.66 2.61 77.53 2.43 77.79 2.64 76.36 19.3 76.54 2.43
adaptec2 90.08 6.73 90.02 20.1 94.06 3.57 91.11 3.50 88.97 3.27 88.97 24.2 86.57 3.37
adaptec3 232.72 13.5 207.0 62.7 214.13 8.10 203.79 6.75 203.57 7.58 209.78 50.7 202.8 7.17
adaptec4 215 16.4 188.87 59.2 197.5 7.43 184.75 5.18 183.22 6.65 179.91 49.2 182.93 7.13
bigblue1 96.94 9.72 96.18 24.4 96.67 3.73 95.59 4.46 95.3 5.20 93.74 24.7 94.36 3.40
bigblue2 158.26 24.2 148.91 68.1 155.74 6.50 145.87 5.61 145.39 7.03 144.45 43.8 143.89 8.13
bigblue3 343.57 27.8 335.53 93.2 365.16 18.8 351.65 17.7 337.96 18.1 323.05 89.5 323.05 16.5
bigblue4 825.48 81.0 814.13 212 836.2 34.7 791.29 26.9 788.8 35.8 775.71 231 791.27 34.9
Norm. +7.87% 2.26× +2.68% 7.28× +6.67% 1.04× +2.32% 0.94× +1.30% 1.07× +0.14% 6.73× +0.00% 1.00×

TABLE IV. PLACEMENT QUALITY COMPARISON ON ISPD 2006 BENCHMARK SUITE.

benchmark NTUPlace3 mPL6 FastPlace3 ComPLx MAPLE POLAR
sWL overflow sWL overflow sWL overflow sWL overflow sWL overflow sWL overflow

adaptec5 444.41 28.51 428.31 1.03 472.72 8.17 415.77 1.93 407.33 4.76 411.91 6.42
newblue1 61.01 0.70 72.62 9.02 74.11 1.04 64.75 1.02 69.25 1.05 67.2 1.11
newblue2 194.8 1.82 201.91 1.44 206.04 1.00 193.06 1.05 191.66 1.01 192.8 1.18
newblue3 275.08 0.05 285.26 0.66 297.46 0.55 274.64 0.93 268.07 0.77 270.58 1.01
newblue4 296.62 13.6 298.2 1.70 308.35 4.22 292.82 1.45 282.49 5.86 282.67 3.31
newblue5 537.92 20.3 535.8 1.47 621.47 7.21 507.74 1.76 515.04 4.05 502.96 5.36
newblue6 534.96 0.28 523.47 1.41 549.87 1.02 501.05 1.14 494.82 1.08 497.86 1.39
newblue7 1096.16 2.01 1085.68 1.19 1105.43 1.30 1041.21 1.40 1032.6 1.70 1025.4 1.01

Norm. +3.54% 2.07 +5.74% 1.62 +11.68% 1.01 +0.79% 0.73 +0.44% 1.01 +0.00% 1.00

TABLE VI. RUNTIME BREAKDOWN OF POLAR.

benchmark global placement legalization DP total runtime

PCG LAL others
window enumeration cell spreading others

adaptec1 66 3 11 5 22 7 32 146
adaptec2 86 3 15 7 25 7 59 202
adaptec3 208 14 29 9 42 21 107 430
adaptec4 203 8 35 11 41 19 111 428
bigblue1 95 3 16 6 27 6 51 204
bigblue2 279 9 30 13 49 32 76 488
bigblue3 436 12 102 29 87 61 261 988
bigblue4 1072 46 187 50 215 122 400 2092
adaptec5 431 15 91 26 90 103 63 819
newblue1 260 1 52 7 55 23 19 417
newblue2 196 5 42 10 43 89 27 412
newblue3 175 29 31 28 40 26 98 427
newblue4 273 7 55 18 58 48 82 541
newblue5 630 20 173 27 127 94 217 1288
newblue6 610 15 120 41 127 64 92 1069
newblue7 1253 129 242 80 245 232 128 2309
Normalize 0.50 0.02 0.09 0.03 0.12 0.07 0.17 1.00

points-addition-based VLSI placement algorithm,” ISPD
’05, pp. 239–241.

[12] N. Viswanathan, M. Pan, and C. Chu, “FastPlace 3.0:
A fast multilevel quadratic placement algorithm with
placement congestion control,” ASP-DAC ’07, pp. 135–
140.

[13] N. Viswanathan, G.-J. Nam, C. J. Alpert, P. Villarrubia,
H. Ren, and C. Chu, “RQL: global placement via re-
laxed quadratic spreading and linearization,” DAC ’07,
pp. 453–458.

[14] M.-C. Kim, D. Lee, and I. L. Markov, “SimPL: An
effective placement algorithm,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 31, no. 1, pp. 50–60,
2012.

[15] M.-C. Kim and I. L. Markov, “ComPLx: A competitive
primal-dual lagrange optimization for global placement,”

DAC ’12, pp. 747–752.
[16] M.-C. Kim, N. Viswanathan, C. J. Alpert, I. L. Markov,

and S. Ramji, “MAPLE: multilevel adaptive placement
for mixed-size designs,” ISPD ’12, pp. 193–200.

[17] M.-C. Kim, J. Hu, D.-J. Lee, and I. L. Markov, “A Sim-
PLR method for routability-driven placement,” ICCAD
’11, pp. 67–73.

[18] X. He, T. Huang, L. Xiao, H. Tian, G. Cui, and E. F. Y.
Young, “Ripple: an effective routability-driven placer by
iterative cell movement,” ICCAD ’11, pp. 74–79.

[19] T. Lin and C. Chu, “POLAR 2.0: An effective routability-
driven placer,” in Proceedings of the The 51st Annual
Design Automation Conference on Design Automation
Conference, DAC ’14, pp. 123:1–123:6, 2014.

[20] N. Viswanathan, C. Alpert, C. Sze, Z. Li, and Y. Wei,
“ICCAD-2012 CAD contest in design hierarchy aware

13

routability-driven placement and benchmark suite,” IC-
CAD ’12, pp. 345–348.

[21] Y. Saad, Iterative Methods for Sparse Linear Systems.
Philadelphia, PA, USA: Society for Industrial and Ap-
plied Mathematics, 2nd ed., 2003.

[22] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J.
Antreich, “GORDIAN: VLSI placement by quadratic
programming and slicing optimization,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 10, no. 3, pp. 356–365, 1991.

[23] N. Viswanathan, M. Pan, and C. C.-N. Chu, “FastPlace:
An analytical placer for mixed-mode designs,” ISPD ’05,
pp. 221–223.

[24] M. Pan, N. Viswanathan, and C. Chu, “An efficient
and effective detailed placement algorithm,” ICCAD ’05,
pp. 48–55.

[25] C. Li, M. Xie, C.-K. Koh, J. Cong, and P. H. Madden,
“Routability-driven placement and white space alloca-
tion,” ICCAD ’04, pp. 394–401.

[26] S. N. Adya and I. L. Markov, “Consistent placement
of macro-blocks using floorplanning and standard-cell
placement,” ISPD ’02, pp. 12–17.

[27] H.-C. Chen, Y.-L. Chuang, Y.-W. Chang, and Y.-
C. Chang, “Constraint graph-based macro placement
for modern mixed-size circuit designs,” ICCAD ’08,
pp. 218–223, 2008.

[28] T.-C. Chen, P.-H. Yuh, Y.-W. Chang, F.-J. Huang, and
D. Liu, “Mp-trees: A packing-based macro placement
algorithm for mixed-size designs,” DAC ’07, pp. 447–
452, 2007.

[29] J. Z. Yan, N. Viswanathan, and C. Chu, “Handling com-
plexities in modern large-scale mixed-size placement,”
DAC ’09, pp. 436–441, 2009.

[30] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter, and
M. Yildiz, “The ISPD2005 placement contest and bench-
mark suite,” ISPD ’05, pp. 216–220.

[31] G.-J. Nam, C. J. Alpert, and P. Villarrubia, “The
ISPD2006 placement contest and benchmark suite,” ISPD
’06, pp. 216–220.

