ISPD: FOARS: FLUTE Based Obstacle-Avoiding
Rectilinear Steiner Tree Construction

Gaurav Ajwani,Student Member, IEEEChris Chu,Senior Member, IEEEand Wai-Kei Mak,Member, IEEE

Abstract—In this paper, we present an algorithm called FOARS To guide the partitioning algorithm, we propose to use
for obstacle-avoiding rectilinear Steiner minimal tree (QARSMT) g sparse spanning graph. In the presence of obstacles, this
construction. FOARS applies a top-down approach which first graph will be an obstacle-avoiding spanning graph (OASG).
partitions the set of pins into several subsets unclutteredby . S .
obstacles. Then an obstacle-avoiding Steiner tree is ger¢ed An O’_A‘SG is used to capture the pro_X|m|ty information amlong
for each subset by an obstacle aware version of the rectilime the pins and corners of obstacles, if any. Three categofies o
Steiner minimal tree (RSMT) algorithm FLUTE. Finally, the graph were used to capture the proximity information during
trees are mergeq and refined to form the OARsMT. To guide the OARSMT construction in the past. [1], [3], [4], [10] all use
partitioning of pins, we propose a novel algorithm to constuct the escape graph. [9] utilizes a Delaunay triangulatioredas

a linear-sized obstacle-avoiding spanning graph (OASG) wbh . .
guarantees to contain a rectilinear minimum spanning tree fi graph. Both the escape graph and Delaunay triangulaticetbas

there is no obstacle. Experimental results show that FOARS graph containO(n?) edges, where: is the total number of
is among the best algorithms in terms of both wirelength and pins and obstacle corners. [2], [5]-[8] are based on various

runtime for testcases both with and without obstacles. forms of obstacle-avoiding spanning graphs. Shen et al. [2]
Index Terms—Physical Design, Routing, Spanning Graph, proposed a form of OASG that only contains a linear number
RSMT of edges which is also adopted in [5]. Later Lin et al. [6]
proposed adding missing “essential edges” to Shen’s OASG.
|. INTRODUCTION Unfortunately, it increases the number of edgesQm?)

With the advent of re-usability using Intellectual Progertin the worst case @(nlogn) in practice) and hence the
(IP) sharing, the chip in today’s design is completely packdime complexity of later steps of OARSMT construction is
with fixed blocks such as IP blocks, macros, etc. Routing ofcreased to a large extent. In view of that, Long et al. [7],
multi-terminal nets in the presence of obstacles has becofgproposed a quadrant approach to generate an OASG with
a guintessential part of the design and has been studiedalnear number of edges. But as we will see later, the OASG
many (e.g., [1]-[13]). As pointed out by Hwang [14], in thegenerated by Long’s approach is not ideal. In this paper, we
absence of obstacles multi-terminal net routing corredpdn present a novel octant approach to generateOdn)-edge
the rectilinear Steiner minimal tree (RSMT) problem whish iOASG with more desirable properties.

NP-complete. The presence of obstacles in the region make®ifferent from [2], [6]-[8] which directly use an OASG to
multi-terminal routing problem even harder. construct an OARSMT, we only use an OASG to guide the
In this work, we develop a new algorithm called FOARS fopartitioning and construct our final OARSMT using FLUTE.
OARSMT and RSMT generation by leveraging FLUTE [15]We note that a shortcoming of the former approach is that the
FLUTE is a very fast and robust tool for RSMT generatiorresulting OARSMT tends to follow obstacle boundaries and
It is widely used in many recent academic physical designakes detours towards obstacle corners. This makes itreasie
tools. FLUTE by its design cannot handle obstacles. A simple lead to congestion when routing many nets in a design.

strategy to generate an OARSMT would be to call FLUTEAdding essential edges as in [6] will help but will result in
once and legalize the edges intersecting with obstacles. Ui(n?) edges as an escape graph.) On the other hand, since
fortunately, the OARSMT obtained can be far from optimal ase only utilize the OASG to guide our partitioning and use
its topology is based on an obstacle-oblivious Steiner. thee FLUTE for local optimization, the OARSMT thus constructed
better strategy is to break the RSMT produced by FLUTE aaill follow an obstacle boundary only when absolutely neces
edges overlapping with obstacles, recursively call FLUBE ftsary. In addition, the OASG generated by our proposed octant
locally optimize the subtrees, and then combine all overlappproach has a linear number of edges like Long’s [7], [8]
free subtrees at the end. However, if the routing region &nd possesses other desirable properties not found in £ong’
severely cluttered with obstacles, the quality of the sotut OASG. For example, our OASG is guaranteed to contain at
produced will degrade because the RSMTs generated lbgst one rectilinear minimum spanning tree in the absefce o
FLUTE may be excessively broken. To tackle this, we proposbstacle while Long’s OASG does not have such a guarantee.
a partitioning algorithm with a global view of the problem at In this paper, we also propose an obstacle tree data steuctur
the top level to divide the problem into smaller unclutteretb accelerate the checking of overlap with obstacles. With t
instances. Even if there is no obstacle, when the numberaifl of the obstacle tree data structure, the runtime of FOARS
pins are more than several tens, the partitioning algorithism reduced by9% as compared with [16].

can improve both the wirelength and runtime of FLUTE as it We compared our results with the state-of-the-art OARSMT
works better than the greedy net breaking heuristics in FEUTand RSMT algorithms. Our results show that FOARS is among

the best in terms of both wirelength and runtime for testease [1l. OASG GENERATION
both with and without obstacles and especially for largg previous Approaches

testcases. .) -
The rest of the paper is organized as follows. We first We first define what we meant by an obstacle-avoiding

provide an overview of the main steps of our OARSMT Cons_pannlng graph.

struction approach in Section 2. Each main step is descitbe
details in Sections 3 to 7. The experimental results arertego
in Section 8. Finally, we give our conclusion in Section 9.

(befinition 1 Given an edgee(u,v) and an obstacleb,
e is completely blocked by if every monotonic Manhattan
path connecting: and v intersects with a boundary @t

[l. OVERVIEW OF FOARS Definition 2 Given a set of m pins and k obstacles, an
. - - . __undirected graphG = (V, E) connecting all pin and corner
) Our algorithm can be distinctly divided into the fOIIOV\”ngvertices is called an OASG if none of its edges is completely
five stages. i)) . blocked by an obstacle
Stage 10ASG Generation First, we obtain the connectiv-

ity information between the pins and obstacle cormner vestic zjiq,gh Definition 2 does not necessitate a linear number
using a novel octant OASG generation algorithm. Section g edges for an OASG, in order to have a fast runtime
describes t.he OASG algorlth.m in detail. it is desired to limit the solution space. In the past, there
Stage 2:0OPMST Generation Based on the OASG, We paye heen a couple of efforts to construct an OASG with a
construct a minimum terminal spanning tree (MTST) usinghear number of edges. Shen et al. [2] suggested a quadrant
the approach mentioned in [17] and then obtain an obstaglg,oach in which each point can connect in four quadrants
penalized minimal spanning tree (OPMST) from the MTST, the plane formed by horizontal and vertical line going

Section 4 talks about OPMST constru.c.tion in de_tail‘ ~ through the point. Shen did not clearly explain their altiori
Stage 3:0AST Generation. We partition the pin vertices i, the paper.

based on the OPMST constructed in the previous step. After ong et al. [7] recently described an(@logn)-time ap-

partitioning, we pass the subproblems to OA-FLUTE whicBroach for OASG generation with a linear number of edges
calls FLUTE recursively to construct an obstacle-awar@®te by considering quadrant partition of the plane. They sutggks
tree (OAST). Section 5 talks about the partitioning and OAScanning alongt45° lines and maintaining aactive vertex
FLUTE in more detail. list, a set of vertices in the graph which are not yet connected
Stage 4:0ARSMT Generation. In this step, we rec- tg their nearest neighbor. After scanning any vertexthey
tilinearize the pin-to-pin connections avoiding obstacte search for its nearest neighbaiin the active vertex list, such
const_ruct an OARSMT. Section 6 discusses OARSMT cOfhat the edge(, v) is not completely blocked by any obstacle
struction. in the graph. This is followed by deletion af from the list
Stage 5:Refinement To further reduce the wirelength, weand addition ofv in the list.
perform V-shape refinement on the OARSMT. Details for it We found that the OASG generation algorithm in [7] has a
can be found in Section 7. few shortcomings. First in their algorithm, the nearesghbir
for any vertex in a quadrant is contingent upon the direction
Fig. 1 depicts the outputs after various stages of thg scanning which means they have to scan along all four
algorithm. quadrants of a vertex in order to capture its connectivity
information. Second, in the absence of obstacles, thew-alg

TN N rithm cannot guarantee the presence of at least one minimum
%\ spanning tree in their spanning graph. Third, their aldonit

N . cannot handle abutting obstacles due to minor mistakesein th
B B inequality conditions.

- T -

T B. Our Approach for OASG

(a) OASG (b) MTST In [18], Zhou et al. proposed an elegant algorithm to
generate a spanning graph with a linear number of edges
i i guaranteed to contain a minimum rectilinear spanning tree
T N on an obstacle-free plane by considering octant partitibn o
- - . the plane. So, we also propose an OASG algorithm based
. - on octant partition. Fig. 2(a) and Fig. 2(b) describe octant
N A g I partition for a pin vertex and an obstacle corner, respeltiv

(c) OPMST (d) OARSMT A property of octant partition is that a contour of equidigta

Fig. 1. Demonstration of the major steps of FOARS using thechmark POINts from any point forms dine segmenin each region.
RCO1 In regionsRy,Rs,R5,Rg, these segments are captured by an
equation of the form: 4y = ¢ for some constant; in regions

point we delete all the points il§(v) from Aguctive (line 8)

R; | Ry and addv to A,cpive (line 18).
R, R, In order to determine if an edge is blocked by an obstacle,
we maintain two active obstacle boundary list§,i;0m fOr

R the bottom boundaries and.;+ for the left boundaries. It is
® Rs R Ry R, R evident that if an edge is blocked by an obstaclein it will
R; | R, R7 R R RZ intersect with either its bottom or its left boundary. Neitt,
GR R 3 “R R 3 our scanned vertex is the bottom left corner of an obstacle,
5 4 5! 4 . . .
its bottom boundary is added and its left bounda
(a) Pin vertex (b) Obstacle corner ry Wyottom ry

is added to4;.f:. It implies that both the left and the bottom

Fig. 2. Octant partition for a pin vertex and an obstacle eorn boundaries of that obstacle become active. When we come
across the top left (bottom right) corner, the correspogdin
boundary is removed from;.; (Apottom) implying that the

Rs,R4,R7,Rg, they are described by the equation- y = ¢ left (bottom) boundary for that obstacle becomes inactive a

for some constant. Now this property can be exploited whenthat point (lines 12 and 15).

we generate an obstacle-avoiding spanning graph. To explain lines 13 to 17, let us refer to Fig. 4 where vertex

The pseudocode for OASG generation foy is provided in b is the bottom right corner of an obstacle. It is easy to see

Fig. 3. AsR; andR; both follow the same sweep sequence wghat if any vertexu lying within the 45 — 45 — 90 triangle

process them together in one pass. It is worth noting that itdhown is still in A,... after scanning, it can be removed

sufficient to sweep foR;, Re, Rz and R4 only. For any point, from Ag.tive. Since in this case all vertices iR; of u are

we only need to sweep twice to determine its connectivigompletely blocked from: by the obstacle.

information once forR;/R> and once forRs/Ry.

Algorithm: OASG Generation for R; ' K

Aactive = Abottorn = Aleft = @
for all v € V' in increasing(z + y) orderdo
Sv)=0
for all u € Agactive Which havev in their Ry do
Add u to S(v)
end for
Connectv to the nearest point* € S(v) such that
e(u*,v) is not completely blocked
by obstacle boundaries iHyottom and Ajey:
8 Delete all points inS(v) from Agctive . e : . :
9 if »is a bottom left comethen E)I/gbgundAarg E/;’rgix within the lightly shaded triangle is coletely blocked
10 Add the bottom boundary containingto Asottom
and the left boundary containingto A;.:

a

1
1
1
1
:
i g
)

u

~NOoO O WN P

.

i
I
i
I
i
I
i
I
i
ks

11 else ifv is a top left cornetthen We have the following lemma that relates our obstacle-

12 Delete the left boundary containingfrom A;.s: avoiding spanning graph generation algorithm to the

13 else ifv is a bottom right cornethen obstacle-free spanning graph generation algorithm in.[18]

14 Determine the bottom boundafy containingv

12 Bg:gig%gﬁlﬁfzﬂ points which are Lemma 1 The algorithm of Zh(_)u et al. [18] is a special case

completely blocked byB of our OASG generation algorithm

17 end if

18 Addv to Aactive Proof: If we consider an instance which has no obstacle, then

19 end for we can simply ignore the blockage check in line 7 and lines

9 to 17 from the algorithm in Fig. 3. The resulting algorithm

Fig. 3. Pseudocode for OASG generation algorithm would be exactly the same as the spanning graph generation

algorithm in [18]. O

For octantsR; and R, we sweep on a list of vertices in
V' which contains both pins as well as obstacle corners wi@orollary 1 In the absence of obstacle, our OASG generation
respect to increasin@: +y). During sweeping we maintain analgorithm generates a spanning graph that contains at least
active vertex listA,.tive. AN active vertex is a vertex whoseone minimum rectilinear spanning tree of the given pins.
nearest neighbor iR, still needs to be discovered.

For the currently scanned vertex while looking in R; Proof: By Lemma 1, our OASG algorithm generates
of v we extract a subsef(v) from Agctive. Any Nnodew in the same result as the obstacle-free spanning graph giemerat
this subsetS(v) hasv in R; (lines 3 to 6). We connect algorithm in [18] when there is no obstacle. Moreover, it has
to its nearest neighbar* in S(v) for which, e(u*,v) is not been proved in [18] that the obstacle-free spanning graph
completely blocked (line 7). After connecting with the nestr generated is guaranteed to contain at least one minimum

spanning tree of the given pins. 0 z<uz,andx —y >z, — y,, and hence has in its R, by
Lemma 2. We use a balanced binary search tree to implement
Aactive In order to haveO(logn) query operation to find the
largestz in Agci0e SUCh thaty < z,,.

In this section we show how to efficiently perform the An edgee(u,v) formed by points(x,,y.) and (x,,y,)
following fundamental operations in the OASG generatiois completely blocked by a bottom obstacle boundaryb)
algorithm: 1) Given a vertexv, find the subset of points in formed by the pointSz,,ys) and (zs,y), if and only if,
Aqctive Which havev in their Ry; 2) given an edge, check if y, < y;, < y,, 24 < 7, andz, > z,. Note that at line 7,
it is completely blocked by any obstacle boundary4in,:.o.. all bottom boundaries satisfying the condition must be @nés
or Ay, and 3) given a bottom boundary of an obstaclein the list Ayy:10m,. We use a balanced binary search tree data
find all points inA..;». Which are completely blocked by thestructure forA,..,, with the y-coordinate of a boundary as
boundary. We address these issues one by one in the following@ey value. If there aré bottom boundaries betweeg and
paragraphs. Yu, it takes takeD(logn + k) time to check if any of them

To find the subset of points il that have a given blocks edge:. Checking if an edge is completely blocked by
point in their R;, we first state and prove two lemmas and a left boundary can be done similarly.
corollary for our OASG generation algorithm. Similar ideas To determine all the completely blocked verticasin
have been outlined in [18]. Aactive Dy @ horizontal boundarfu, b) in line 16, we need to

check ify, < yn, T4 < T, andz, —y, +yn < xp (the lightly
Lemma 2 Point v is in the R; region of point p if shaded region in Fig. 4). Since we already ha\g:.. as a
and only ifz, <z, andz, —yp, > , — Y. sorted list in increasing: we can check all points which lie
betweenz, andz;, and test for the above conditions to see if
Proof: By definition, the R, region of p is the region they are completely blocked.
to the right of the vertical line passing throughand above In [16] we made a claim about runtime complexity of
the line with slope= 1 passing through (see Fig. 2). In other the overall algorithm being)(nlogn). It has been recently
words, pointv is in the R, region ofp if and only if z, <z, brought to our attention that there may exists extreme cases
and % > 1. Rearranging the terms, the necessary aridr which the total time spent by line 7 over all iterations is
sufficient condition isz,, < =, andz, —y, >z, —y,. O O(n?). We concede with the argument but our algorithm is
extremely fast for all practical purposes as indicated by ou
Lemma 3 At any time, no point in the active set carexperimental results and it results in an OASG with a linear
be in theR; region of another point in the set. number of edges which limits the solution space resulting in
better runtime complexity for subsequent stages.

C. An Efficient Implementation

Proof: Before we add a new point to the active set

(line 18), we would delete all points in the active set that IV. OPMST GENERATION

have v in their R, regions (line 8). In addition, any point)

already in the active set cannot be in tRe region of point A MTST Generation

v as we are processing in increasing{ y) order. Hence, After capturing the initial connectivity among pin vertige

no point in the active set can be in tlig region of another the nextlogical step is to extract a minimum terminal spagni

point in the set at any time. O tree (MTST) from the OASG that connects all pin vertices
and avoid obstacles. Shen et al. [2] and Lin et al. [6] both

Corollary 2 For any two pointsp and ¢ in the active use an indirect approach for this step. They first construct a

set, we have;, # x4, and ifz, < z, thenz, —y, < z,—y,. complete graph over all pin vertices where the edge weight is
the shortest path length between the two pin vertices. Gn thi

Proof: Assume pointsp and ¢ are in the active set. complete graph they use either Prim’s or Kruskal's algonith

Then we cannot haver, = =z,, otherwisep would be to obtain a MST. Although it is effective, the approach

in the R; region of ¢ or vice versa by Lemma 2 which described above seems to be an overkill as it is unnecessary

contradicts Lemma 3. And we cannot hawg < =z, and to construct a complete graph when we already have OASG.

Tp —Yp > Tq — Yq, Otherwiseg would be in theR; region of Back in the 80's, Wu et al. [17] suggested a method using

p by Lemma 2 which again contradicts Lemma 3. Hence, thiijkstra’s and Kruskal's algorithms on a graph similar to an

corollary is proved. O OASG to obtain a MTST. Recently, Long et al. [8] adopted
their approach to solve the problem on the OASG.

To facilitate finding the points inA,.... that have a In this paper, we adopt the approach based on the extended

given point in theirR; regions, we keep the points ih,.;ve Dijkstra’s algorithm and the extended Kruskal's algoritlas

in increasing order of their-coordinate. To find the subsetdefined in [8]. For every corner vertex in the OASG, we want

of points which havev in their R, we first find the largest to connect it with the nearest pin vertex. This can be easily

x in Agetive SUCh thatr < z,. We then scand,.;,. in done using Dijkstra’s shortest path algorithm considering

decreasing order of until x — y < z, — y,. Note that by every pin vertex as a source. After running the extended

Corollary 2, decreasing order af automatically implies Dijkstra’s algorithm we are left with a forest of terminal

non-increasing order oft — y. Any point in between has trees,m being the number of pin vertices. The root of every

terminal tree in the forest obtained above is a pin verteA. Partition
In order to connect all disjoint trees we use the extended
Kruskal's algonthm on the forest: A priority queue Q is use jFunction: Partition(")
to store the weights of all possible edges termediadge Input: An OPMSTT
edgesin [8] which can be used for linking the trees. Output: An OAST

Definition 4 [8] An edge e(u,v) is called a bridge % if (3 a completely blocked edge) then

e . : ; /* Refer to Fig. 6%/
edge if its two end vertices belong to different terminaésie e(u,v) is to be routed around obstacle edge, b)

3
o . . 4 LetT =T1 + e(u,v) + T2
From Definition 4, it can be deduced that if each tregs Ty =Ti +e(u, a)
€

was a single vertex in the graph then bridge edges will Ty = Ts + e(u, b)

the edges connecting these vertices and we can use Kruskal's 7" = Partitior(73) U Partition(7%)

algorithm to obtain a MST in such a graph. The extendeqo e'se/fgfg]lefto"”g; ';gl;?SHOLD)then

Kru_skal’s algorithm is _S|mply.an extended. version of the; | Lete(u, v) be the longest edge s.t.

original Kruskal's algorithm tailored to obtain a MST in a T =T + e(u,v) + T with |Ty| > 2 and T3] > 2
forest. It is important to note that in case we do not have anyg2 7’ = Partition(71) U Partition(T%)

obstacle, the extended Dijkstra’s algorithm will not makey a /* Refer to Fig. 7(b)</

13
change in the graph and the extended Kruskal will simppt4 ~ RefineT’ using OA-FLUTE(V™) -
. 15 whereN” is a set of pin vertices around(u, v) in T'
work on a spanning graph.

16 else
, 17 T’ = OA-FLUTE(N)
B. OPMST Construction 18 whereN is set of all vertices irl"

We note that a sparse OASG does not always have dirgép end if
connections between the pin vertices even if one is allowgd® "etum 7
This is due to a neighboring corner vertex being nearer than
the other pin vertex in the same region. These indirect detdtg. 5. Pseudocode for the Partition function
paths are unnecessary and if not taken care of can lead to a
significant loss of quality. We note that the algorithm prepd ~ The input to the Partition function is an OPMST obtained
by [8] failed to address this issue. On the other hand, W&@m the last step and the output is an obstacle-aware $teine
address this problem by constructing an obstacle penaliZége (OAST). An OAST is a Steiner tree in which the Steiner
minimal spanning tree (OPMST) from the MTST by removindgiodes have been placed considering the obstacles present in
all the corner vertices and storing detour information as tfihe routing region to minimize the overall wirelength. The
weight of an edge. following two criteria are set for partitioning pin vertiseThe

To construct an OPMST, we follow a simple strategy. Fdifst criterion is to determine if any edge is completely tied
any corner vertex, we find the nearest neighboring pin verteypy an obstacle. The second criterion is to check if the size of
u. We connect all the pin vertices originally connected witPMST is more than the HIGH THRESHOLD defined.

v to u and deletev. We update their weights as their origina'

T.
weight plus the weight ofe(u,v). This method guarantees T, i T Break Edge |
that in case we have a major detour between two pin vertic 3 g \ \
due to an obstacle, the weight of that edge will corrobora
this fact. In other words we can say that the edge would —]
~—

penalizedfor the obstacles in its path.

V. OAST GENERATION Merging Including

This step differentiates our algorithm from [2], [6]-[8].&V comers
exploit the extremely fast and efficient Steiner tree geti@na Fig. 6. An example illustrating first criterion for partiting
capability of FLUTE [15] for low degree nets. In order to
embed FLUTE in our problem, we designed an obstacle
aware version of FLUTE, OA-FLUTE. As OA-FLUTE is less
effective for high degree nets and dense obstacle region, v
partition a high degree net into subnets guided by the OPM
obtained from the previous step. The subproblems obtaine
after partitioning are passed on to OA-FLUTE for obstacle
aware topology generation. It is termed abstacle-aware
because the nodes of the tree are placed in their appropriate
locations considering obstacles around them. Fig. 7. An example illustrating second criterion for pasiiing

Fig. 5 and Fig. 8 describe the pseudocodes for the Partition
and OA-FLUTE functions. It is evident that both functionear As can be clearly seen in Fig. 6 that for an overlap free
recursive functions. Let us first explain the Partition ftime. solution, we have to route around the obstacle. Therefore, i

Break Edge

= Local Refinement
Region

(a) Partitioning (b) Local refinement

seems logical to break the tree at edgev]. We know that constructs a Steiner tree without considering obstaclés T

OA-FLUTE can efficiently construct a tree when the numbdree can have two kinds of overlap 1) an edge completely

of nodes is less than the HIGH THRESHOLD value. If thelocked by an obstacle, 2) a Steiner node falling on any

size of the tree is still more than the HIGH THRESHOLDbbstacle. We handle both of these cases differently.

after breaking at the blocking obstacles, we need to break th To handle the first case, refer to Fig. 9, we break the Steiner

tree further. In this case, we look for the edge with the latgetree into two subtrees including corner points of the olstac

weight on the tree and delete that edge, refer to Fig. 7(a). as in Fig. 9(b) and make recursive calls to OA-FLUTE. We
Based on the above mentioned criteria, if we break aelectively prune the number of recursive calls based on the

obstacle edge, we simply include corner vertices in the trsize of the tree in order to strike a balance between run-time

and divide the two trees as shown in Fig. 6. Else, if we breand quality.

at the edge with largest weight, we delete that edge and make

sure that it does not contain any leaf of the tree as shown

Fig. 7(a). % s” B

After breaking an edge, we make recursive calls to thi ~
Partition function using two subtrees. When the size of th\ *=X \(/
tree becomes less than the HIGH THRESHOLD, we pass trN &
nodes of the tree to OA-FLUTE function. The OA-FLUTE N, Ty T
function returns an OAST. After returning from OA-FLUTE in (a) Completely blocked Edge (b) Subtrees before merging

Partition, if the partition was performed on an obstacleesdg
we simply merge two Steiner trees using the same obstac
edge. In case the partition was performed on the longest, ed¢
we explore an opportunity to further optimize wirelengthe W *
merge the two trees on the longest edge and then sear
the region around the longest edge to extract neighborig merging excluding cor-

pin vertices, refer to lines 12-15 in Fig. 5 and Fig. 7(byers

This refinement is same as the local refinement proposed,:ig. 9. OA-FLUTE: Handling an edge completely blocked by #stacle
[15]. We pass this set of nodes to OA-FLUTE for further

optimization.

a b

B. OA-FLUTE /\
C. [
. Ne
Function: OA-FLUTE(N) (/
Input: A set of nodesN <5 A [A
Output: An OAST Longestgegment Ts
_ i longestb) Subtrees befor¢c) Merging ex-
1 T' = FLUTE(N) (2) Removing long . .
2 if (3 a completely blocked edge) then segment merging cluding corners
3 e(u,v) is to be routed around obstacle boundafy, b)
4 /+ Refer to Fig. 9x/ Fig. 10. OA-FLUTE: Handling Steiner node falling on an olotta
5 Let N = N1 UN>
6 N1 = N1 U{a} To handle the second case, we devised a special technique.
; :];7,2 _:éVA2 IL:JLE?'E(N) U OA-FLUTE(Na) We pick an obstacle which has a Steiner node on top of it. For
= OA- L . g, .] X . :
9 else if(3 Steiner NodeS that falls on any obstaclghen every boundary of this O?Stagle mter';.se;“.ngl\,\gth thhe &m
10/« Refer to Fig. 10+/ tree, we extract a set of no &8; which inclu es the pin
11 Letai,as, ... ,ap be the intersection points with the vertices in the tree near to that boundary. In Fig. 10(a) we
obstacle ordered in anti-clockwise direction have a single Steiner node inside the obstacle interseating
ié te:N = ng”:ﬁ U... UNI; Uifl} + weicht a1, az and as, with the right, top and left boundary of the
14 fo? ((?2 Z”)toea ?ns:r?twcelgcmiseac;?gesmv(\)’elg obstacle, respectively. We extract three set of pin vestige,
15 N, :UNL-U corner vertices along the path next 2 Ny and N3 from the or_iginal Steine_r tree for the rig_h;, top and
16 end for left boundary, respectively. The poinis, a2 andas divide the
17 7" = OA-FLUTE(N1) U U OA-FLUTE(ND) obstacle outline into three segments as shown in Fig. 10(a).
ig end if T We then find the longest segment (the light shaded segment
retumn (a3, a1) in Fig. 10(a)). We then traverse from one endpoint of

the longest segment to the other endpoint via other segments
Fig. 8. Pseudocode for the OA-FLUTE function in an anti-clockwise direction, for example, from to c; to
as 10 ¢ t0 az in Fig. 10(a). While moving along the other
The purpose of OA-FLUTE function is to form an OAST.segments, we keep adding corner vertices to the correspgndi
It begins by calling FLUTE on the set of input nodes. FLUTEV;’s e.g.c; gets added to botiV; and N, andc, gets added

to both N, and N3 in Fig. 10(b). We then recursively call Function: CreateOBTrea)B, K)

OA-FLUTE for all N;’s thus formed. Input: A set of obstacle©)B = {01,0s,...,0k}
As our goal with OA-FLUTE is to determine befitting Number of obstacleg

locations for Steiner nodes we exclude all corner verticesOutput: An obstacle tre€D BT'ree

when we finally merge the subtrees. Fig. 9(c) and Fig. 10(c

. . . .11 OBTree - OB =0B

show the final Steiner trees after excluding corners while; Spr. 0 0 = 7 ctmost boundary oD B
merging. The reason for not adding corner vertices in thi$3 OpBTree — 2y4x = Rightmost boundary of B
step is twofold. First, it is not desirable to further restri |4 OBTree — yamrn = Bottommost boundary oD B
the solution when we already did once in Partition function|5 OBTree — yarax = Topmost boundary 0B
Second, we want our OA-FLUTE to be a generic function & OBTree — €1 =NULL

.17 OBTree — Cy = NULL
which can preserve the number of pin-vertices provided,to it 8 if (K > 1) then
adding corner vertices would increase them. 9 H=[K/2]

10 if (OBTree — xymax — OBTree — xyminN

> OBTree — ymax — OBTree — yymin) then

C. Fast Implementation with Obstacle Tree Data Structure |, OB, — {first H obstacles in increasing order of

To create an OAST, OA-FLUTE performs two major tasks.| 12 OBr =0B - OB
It tries to remove all completely blocked edges and removes!3 OBTree — C1 = CreateOBTre&(By, H)
all Steiner nodes falling on any obstacle. In order to penfor 1;1 els%BT*ree — O = CreateOBTre® By, K — H)
these tasks, it requires to check each edge and Steiner nade OB = {first H obstacles in increasing order o}
of the tree against all obstacles if we use a naive list datag7 OBr = OB — OBg
structure to represent the obstacles. Our experiments@h [1|18 OBTree — C; = CreateOBTre€)Bg, H)
were performed based upon this simple approach. 19 OBTree — Cy = CreateOBTre€)Br, K — H)
In this paper, we propose an efficient obstacle tree (OBTree 2 endeirf]d i

data structure. An OBTree is a balanced binary tree in whichys ratim O BTree

we bin obstacles in their enclosing regions. We start with

a region which encloses all obstacles. After that, depegpdiaig. 11.

upon the dimensions of the region, we slice the region either

vertically or horizontally into two parts. After dividinght

region into two halves we create two similar problems as Function: CheckSteinerNode()

before. We use recursion to further split these regions! unti Input: Steiner noden; obstacle tree node

there is only one obstacle inside each bin. Output: Set of obstacles under on which « falls
Fig.11 describes the pseudocode used by FOARS to create

an obstacle tree. The procedure CreateOBTree is providid wi

Pseudocode for creating an OBTree

Let R =region enclosed byt
if (o does not lie insideR) then

a list of obstacles. In case the region enclosing the olestacl reun ¢ .
has larger width than height, we divide the obstacles into else 'tf(7T cogtalns a single obstacle) then
two parts based upon the-coordinates of their bottom left else:e um {0}

corners. Otherwise, thg-coordinates of bottom left corners

of obstacles are used. OB; = CheckSteinerNodex, 1)
OBTree is extremely efficient for searching if an edge is OB, = CheckSteinerNoder, m2)

completely blocked by any obstacle or if a Steiner node falls 10 OB =0B1UOB;

on any obstacle. The pseudocode in Fig. 12 and Fig. 13 are E endreiftum oB

recursive procedures to perform above mentioned tasks.

Let m; and w2 be children ofr

OCoO~NOUTWN PP

Fig. 12. Pseudocode for checking if a Steiner node falls gnadostacle
VI. OARSMT GENERATION

The OAST obtained from last step does not guarantee that
rectilinear path for a pin-to-pin connection is obstaclkeefrin the second case, we have no option but to go outside the
this step, we rectilinearize every pin-to-pin connectienid- bounding box and pick the least possible detour.
ing obstacles to generate an OARSMT. For every ManhattanFor the third case, we route inside the bounding box, since
connection between two pins we can have two L-shape pattigere exists a path. We break the edge into two sub problems
On the basis of the obstacles inside the bounding box formed the corner of an obstacle along the blocked L-path. We
by an edge, we can divide all the possible scenarios inecursively solve these sub problems to determine an dbstac
four categories: 1) both L-paths are clean 2) both L-patks aavoiding path. If the wirelength of this path is same as the
blocked by the same obstacle 3) only one L-path is blockdtlnhattan distance between the pins, we accept the salution
4) both L-paths are blocked but not by the same obstacle. \&se we route along the unblocked L-path. It is notewortlay th
discuss these scenarios one by one in the following paragrafdor this case we could have directly accepted the unblocked

For the first case, even though we can rectilinearize usihgpath. In order to create more slant edges, and hence gfurth
any L-path, we instead create a slant edge at this stagestmpe for V-shape refinement, we searched for a route along
leave the scope for improvement in V-shape refinement. Rine blocked L-path avoiding obstacles. For the last caseavhe

Wirelength I Runtime (s)
Function: CheckEdgeq, 7) Benchmark m k _ [FOARS [16]] FOARS || FOARS [16]] FOARS |
Input: Edgee; obstacle tree node Sgg; ég 18 igi?g igi?g 8-88 8-88
Output: Set of obstacles under completely blockinge RO03 =0 10 56030 56030 0.00 0.00
) RC04 70 10 59720 59720 0.00 0.00
1 Let R =region enclosed byt RC05 100 10 75000 75000 0.00 0.00
2 if (e cannot completely blocked by any rectangleRi then Sggg ;88 288 18110272694 18110272:4 8-82 8-82
. . . . : :
[* i.e., e can completely avoidr without detour */ RO08 200 800 116047 | 116047 0.06 0.05
3 retun 9) RC09 200 | 1000 | 115593 | 115593 0.08 0.06
4 else if (r contains a single obstacte) then RC10 500 100 168280 | 168280 0.02 0.02
5 return {O} RC11 1000 | 100 234416 | 234416 0.04 0.03
6 else RC12 1000 | 10000 | 756998 | 756998 2.04 1.19
7 Let 71 andr be children ofr RTOL 10 500 2191 2191 0.01 0.00
_"CheckEd RT02 50 500 48156 48156 0.02 0.02
8 OB: = CheckEdgée, 1) RTO3 100 | 500 8282 8282 0.03 0.03
9 OB, = CheckEdgée, 72) RT04 100 1000 10330 10330 0.07 0.06
10 OB =0B; UOB> RTO5 200 | 2000 54598 54634 0.21 0.15
11 return OB INDI 10 32 604 604 0.00 0.00
; IND2 10 43 9500 9500 0.00 0.00
12 end if IND3 10 59 600 600 0.00 0.00
IND4 25 79 1129 1129 0.00 0.00
Fig. 13. Pseudocode for checking if an edge is completelgkeld INDS 33 71 1364 1364 0.00 0.00
RLOL 5000 | 5000 483027 | 483027 3.13 1.15
RLO2 10000 | 500 637753 | 637753 1.36 1.18
RLO3 10000 | 100 640902 | 640902 1.15 1.13
. RLO4 10000 | 10 697125 | 697125 1.55 1.57
both L_paths are blockgd_ but not by t_he same obstacle, Ve Sl os 10000 | 0 Tooasn | vo8870 T 019
determine obstacle-avoiding routes using the same regursi I I 0999 | @ | 1154059 7250]
approach as mentioned above for both L-paths and pick the TABLE |
shortest one. WIRELENGTH AND RUNTIME COMPARISON BETWEENFOARS [16]AND

CURRENT RESULTS
VIl. REFINEMENT

We perform a final V-shape refinement to improve total
wirelength. This refinement includes movement of Steiner Table | shows our newest results as compared with results
node in order to discard extra segments produced due gablished in [16]. Using OBTree in FOARS we were able
previous steps. The concept of refinement is similar to the cut down the runtime by9% with negligible increase in
one that determines a Steiner node for any three terminhés. Twirelength. The reason for the slight increase in wirelénigt
coordinates of the Steiner node are the median value of tinat we decided to disable the refinement step for instances
x-coordinates and median value of the y-coordinates. Fig. dith no obstacle (RLO5 in Table 1). Based on experiments,
illustrates a potential case for V-shape refinement andututgve determine that if we remove the refinement step for
after refinement. This refinement comes handy in improvingstances with no obstacles, we gain significantly in rustim
the overall wirelength byl % to 2%. with negligible loss in quality (see Table IlI).

Columns 4 and 5 of Table Il show that FOARS outperforms
Lin et al. [6] by 2.3% and Long et al. [8] by2.7%. Columns
6, 7 and 8 indicate that FOARS has similar wirelength results
as compared with Liang et al. [10] and Liu et al. [11] [12].
For the runtime in Table Il, we are no84% faster than Long
et al. [8] on average. We ars times faster than [10] ant23
times faster than [6].Our runtime is slower as compared with
Liu et al. [11] [12].

Fig. 14. V-shape refinement case and refined output

VIIl. EXPERIMENTAL RESULTS

We implemented our algorithm in C. The experimenté RSMT Experimental Results

were performed on a 3GHz AMD Athlon 64 X2 Dual Core])
machine. We requested for binaries from Long et al. [8;, As mentioned before, RSMT can be seen as a special case
Lin et al. [6], Liang et al. [10] Liu et al. [11] [12] and TOT OARSMT. In an effort to construct a single solution for

ran them on our platform. Five industrial testcases (IND1QARSMT and RSMT generation, we performed experiments

INDO5), twelve circuits from [6] (RC01-RC12), five randomly©n Our existing benchmarks after deletilng obstacles. As/sho
generated benchmark circuits (RTO1-RTO05) [6] and five lard@ Table IIl, we compare our results with Long et al. [8] and

benchmark circuits (RLO1-RLO5) generated by [8]. iang et al. [10]._We_ COL_JId not compare our results With [11]
and [12] as their binaries could not run on cases with no

) obstacles. We also compared our results with FLUTE-2.5 [15]
A. OARSMT Experimental Results which is the same version of FLUTE as used inside FOARS.
Table | and Il shows wirelength and runtime comparison on Our result for wirelength is the best among all the al-
benchmarks containing obstacles. We determined expefimgorithms and is2.6% better as compared with FLUTE-2.5.
tally that HIGH THRESHOLD value of 20 works the best. Compared with FLUTE-2.5, which has been demonstrated to

‘ 4 ‘ [Wirelength I Runtime (s) |

Benchmarl m k[Lin[6] [Long [8]] Liang [10]] Liu [11] [Liu [12] [FOARS [[Lin [6] [Long [8]] Liang [10]] Liu [11] [Liu [12] [FOARS]
RCO1 10 10 27790 | 26120 25980 26740 | 26040 | 25980 0.00 0.00 0.01 0.00 0.00 0.00
RC02 30 10 42240 | 41630 42010 42070 | 41570 | 42110 0.00 0.00 0.02 0.00 0.00 0.00
RCO03 50 10 56140 55010 54390 54550 54620 56030 0.00 0.00 0.00 0.00 0.00 0.00
RCO04 70 10 60800 59250 59740 59390 59860 59720 0.00 0.00 0.01 0.00 0.00 0.00
RC05 100 10 76760 | 76240 74650 75440 | 74770 | 75000 0.00 0.00 0.01 0.00 0.00 0.00
RC06 100 500 84193 | 85976 81607 81903 | 81854 | 81229 0.10 0.08 0.50 0.01 0.02 0.03
RC07 200 500 114173 | 116450 | 111542 | 111752 | 110851 | 110764 0.18 0.09 0.60 0.01 0.03 0.03
RCO08 200 800 120492 | 122390 | 115931 118349 | 116132 | 116047 0.31 0.15 1.16 0.02 0.04 0.05
RCO09 200 1000 117647 | 118700 | 113460 | 114928 | 113559 | 115593 0.40 0.22 1.53 0.02 0.05 0.06
RC10 500 100 171519 | 168500 | 167620 | 167540 | 167460 | 168280 0.20 0.03 0.18 0.00 0.01 0.02
RC11 1000 100 237794 | 234650 | 235283 | 234097 | 236018 | 234416 0.74 0.06 0.83 0.01 0.02 0.03
RC12 1000 10000 | 803483 | 832780 | 761606 | 780528 | 762435 | 756998 55.09 3.80 186.3 0.36 1.20 1.19
RTO1 10 500 2289 2379 2231 2259 2193 2191 0.03 0.06 0.19 0.01 0.01 0.00
RTO02 50 500 48858 51274 47297 48684 47488 48156 0.05 0.06 0.55 0.01 0.02 0.02
RTO3 100 500 8508 8554 8187 8347 8231 8282 0.10 0.06 0.21 0.01 0.02 0.03
RT04 100 1000 10459 10534 9914 10221 9893 10330 0.22 0.23 0.37 0.02 0.04 0.06
RTO5 200 2000 54683 55387 52473 53745 52509 54634 0.96 0.66 3.18 0.04 0.12 0.15
IND1 10 32 632 639 619 626 604 604 0.00 0.00 0.00 0.00 0.00 0.00
IND2 10 43 9700 10000 9500 9700 9600 9500 0.00 0.00 0.00 0.00 0.00 0.00
IND3 10 59 632 623 600 600 600 600 0.00 0.00 0.00 0.00 0.00 0.00
IND4 25 79 1121 1130 1096 1095 1092 1129 0.00 0.00 0.00 0.00 0.00 0.00
IND5 33 71 1392 1379 1360 1364 1374 1364 0.00 0.00 0.00 0.00 0.00 0.00
RLO1 5000 5000 492865 | 491855 | 481813 | 483134 | 483199 | 483027 106.66 3.58 27.14 0.27 0.63 1.15
RLO2 10000 500 648508 | 638487 | 638439 | 636097 | 640435 | 637753 159.09 1.27 29.45 0.23 0.37 1.18
RLO3 10000 | 100 652241 | 641769 | 642380 | 640266 | 644276 | 640902 || 153.95 1.08 23.35 0.22 0.32 1.13
RLO4 10000 10 709904 | 697595 | 699502 | 696111 | 700937 | 697125 || 195.25 | 0.97 22.00 0.24 0.29 1.57
RLO5 10000 0 741697 | 728585 | 730857 - - 728670 || 217.88 0.96 33.64 - - 0.12

| [[[[[[[[[891.25] 13.36 | 331.235] 148 | 3.9 | 7.23

[Norm | | 1.024 | 1.027 | 0.995 | 1.004 | 0994 | 1 || 12326| 1.84 | 4581 | 020 | 044 | 1

TABLE Il

WIRELENGTH AND RUNTIME COMPARISON M IS THE NUMBER OF PIN VERTICES ANDk IS THE NUMBER OF OBSTACLES THE VALUES IN THE LAST ROW
ARE NORMALIZED OVER OUR RESULTS FOR BOTH WIRELENGTH AS WELL 8 RUNTIME

‘ ‘ ‘ [Wirelength I Runtime (s) |
Benchmark m k [Cong 8] | Liang [10] [FLUTE-2.5T15] [Ours [[Long [8] [Liang [10] | FLUTE-2.5[15] [FOARS |
RCO1 10 0 25290 25290 25290 25290 0.00 0.00 0.00 0.00
RCO02 30 0 40100 40630 39920 39920 0.00 0.00 0.00 0.00
RCO03 50 0 52560 52440 53400 53050 0.00 0.00 0.00 0.00
RC04 70 0 55850 55720 57020 55380 0.00 0.00 0.00 0.00
RC05 100 0 72820 71820 73370 72170 0.00 0.00 0.00 0.00
RCO06 100 0 77886 78068 80057 77633 0.00 0.00 0.00 0.00
RCO07 200 0 106591 107236 109232 106581 0.01 0.07 0.00 0.00
RCO08 200 0 109625 109059 112787 108928 0.00 0.03 0.00 0.00
RC09 200 0 109105 108101 112460 108106 0.01 0.02 0.00 0.00
RC10 500 0 164940 164450 170270 164130 0.02 0.17 0.00 0.00
RC11 1000 0 233743 235284 245325 233647 0.06 0.70 0.00 0.00
RC12 1000 0 755332 764956 798742 755354 0.04 0.75 0.00 0.00
RTO1 10 0 1817 1817 1817 1817 0.01 0.00 0.00 0.00
RT02 50 0 44930 46109 45291 44416 0.00 0.00 0.00 0.00
RTO3 100 0 7677 7777 7811 7749 0.00 0.00 0.00 0.00
RTO4 100 0 7792 7826 7826 7792 0.00 0.00 0.00 0.00
RTO5 200 0 43335 43586 44809 43026 0.00 0.00 0.00 0.00
IND1 10 0 614 619 604 604 0.00 0.00 0.00 0.00
IND2 10 0 9100 9100 9100 9100 0.00 0.00 0.00 0.00
IND3 10 0 590 590 587 587 0.00 0.00 0.00 0.00
IND4 25 0 1092 1092 1102 1102 0.00 0.00 0.00 0.00
IND5 33 0 1314 1304 1307 1307 0.00 0.00 0.00 0.00
RLO1 5000 0 472392 473905 501480 472818 0.30 11.39 0.05 0.05
RLO2 10000 | O | 637131 641722 674042 636895 0.95 32.45 0.25 0.12
RLO3 10000 | O | 641289 650343 674950 640580 0.95 33.04 0.26 0.12
RLO4 10000 | O 697712 699617 740270 697239 0.99 32.26 0.25 0.13
RLO5 10000 | O 728595 730857 778313 728670 1.05 34.52 0.26 0.12
[[(@.002) [(L005) | (1.026) [(O [452(7.75)[145.37(249)] 1.104(1.89) | 0.58(1) |

TABLE Il

WIRELENGTH AND RUNTIME COMPARISON FOR BENCHMARK WITH NO OBSACLES, |.E. K = 0 FOR ALL CASES

10

be significantly faster than other RSMT heuristics, FOARB1] Chih-Hung Liu, Shih-Yi Yuan, Sy-Yen Kuo, and Yao-Hsirh@. An
are89% faster. FOARS ar&.75 and249 times faster than [8]

and [10] respectively. Again FOARS performs much betteHz]
when we have large number of pin vertices in the benchmark

O(n log n) path-based obstacle-avoiding algorithm forilieear Steiner

tree constructionin Proc. of DAG pages 314-319, 2009.
Chih-Hung Liu, Shih-Yi Yuan, Sy-Yen Kuo, and Jung-Huhgeng.
Obstacle-avoiding rectilinear Steiner tree constructimsed on Steiner

(RC12, RLO1-RLOS). The improvement in wirelength over, point selection.In Proc. of ICCAD pages 26-32, 2009.
FLUTE-2.5 is due to the effective partitioning algorithmr fo

high-degree nets and the application of the local refinement

technique as shown in Fig. 7(b).

In this paper, we have presented FOARS, an efficieﬁ
algorithm to construct OARSMT and RSMT based on ex-

IX. CONCLUSION

tremely fast and high-quality Steiner tree generation tadled

FLUTE. We proposed a novel OASG algorithm with lineaf’!
number of edges. We also proposed an obstacle aware version

Liang Li, Zaichen Qian, and Evangeline F. Y. Young. Gmtien of
optimal obstacle-avoiding rectilinear Steiner minimureetrin Proc. of

ICCAD, pages 21-25, 2009.

[14] F. K. Hwang. On Steiner minimal trees with rectilineastdnce. In
Proc. of SIAM J. Appl. Math30:104-114, 1976.

[15] Chris Chu and Yiu-Chung Wong. FLUTE: Fast lookup tableséd
rectilinear Steiner minimal tree algorithm for VLSI desigrin Proc.
of IEEE Transactions on CAD of Integrated Circuits and Syse

27(1):70-83, 2008.
T6] Gaurav Ajwani, Chris Chu, and Wai-Kei Mak. FOARS: FLUT&sed
obstacle-avoiding rectilinear Steiner tree constructionProc. of ISPD

pages 185-192, 2010.

Y. F. Wu, P. Widmayer, and C. K. Wong. A faster approxiioat
algorithm for the Steiner problems in graphs.n Proc. of Acta
Informatica 23:223-229, 1986.

of FLUTE, which generates OAST. Our top-down partitiofil8] Hai Zhou, Narendra V. Shenoy, and William Nicholls. Eiint min-

approach empowers OA-FLUTE to handle high-degree nets
and dense obstacle region. Our implementation of OBTree

is simple and extremely efficient for checking blockage with
obstacles. Our results indicate that our approach is the bes
tradeoff for quality and runtime for both OARSMT and RSMT
construction. Our experiments prove that FOARS obtainglgoo
quality solution with excellent runtime as compared with it
peers.

ACKNOWLEDGEMENT

We acknowledge Lin et al. [6], Liang et al. [10], Long €
al. [8] and Liu et al. [11] [12] for sending us their binarieg
for comparison and clearing our doubts, if any, with respe|
to the results.

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

El

[20]

REFERENCES

Yu Hu, Zhe Feng, Tong Jing, Xianlong Hong, Yang yang Geaokiong
Hu, and Guiying Yan. FORst: A 3-step heuristic for obstamleiding
rectilinear Steiner minimal tree constructioin Proc. of JICS pages
107-116, 2004.

Zion Shen, Chris C. N. Chu, and Ying-Meng Li. Efficient tiéinear
Steiner tree construction with rectilinear blockagés.Proc. of ICCDQ
pages 38-44, 2005.

Yu Hu, Tong Jing, Xianlong Hong, Zhe Feng, Xiaodong Hujl &uiying
Yan. An-OARSMan: Obstacle-avoiding routing tree congtarc with
good length performancdn Proc. of ASP-DACpages 630-635, 2006.
Yiyu Shi, Paul Mesa, Hao Yao, and Lei He. Circuit simuatibased
obstacle-aware Steiner routintn Proc. of DAG pages 385-388, 2006.
Pei-Ci Wu, Jhih-Rong Gao, and Ting-Chi Wang. A fast arabkt algo-
rithm for obstacle-avoiding rectilinear Steiner minimade construction.
In Proc. of ASP-DACpages 262-267, 2007.

Chung-Wei Lin, Szu-Yu Chen, Chi-Feng Li, Yao-Wen Chaagd Chia-
Lin Yang. Obstacle-avoiding rectilinear Steiner tree ¢orgion based
on spanning graphsn Proc.of IEEE Transactions on CAD of Integrated
Circuits and System£7(4):643-653, 2008.

Jieyi Long, Hai Zhou, and Seda Ogrenci Memik. An O(n logedlge-
based algorithm for obstacle-avoiding rectilinear Steimee construc-
tion. In Proc. of ISPD pages 126-133, 2008.

Jieyi Long, Hai Zhou, and Seda Ogrenci Memik. EBOARST: éffi-
cient edge-based obstacle avoiding-rectilinear Steiregr tonstruction
algorithm. In Proc. of IEEE Transactions on CAD of Integrated Circuits
and Systems27(12), 2008.

Iris Hui-Ru Jiang, Shung-Wei Lin, and Yen-Ting Yu. Uniition of
obstacle-avoiding rectilinear Steiner tree constructionProc. of SoCC
pages 127-130, 2008.

Liang Li and Evangeline F. Y. Young. Obstacle-avoidingrtilinear
Steiner tree constructiorin Proc. of ICCAD pages 523-528, 2008.

PLACE
PHOTO
HERE

ct

imum spanning tree construction without Delaunay triaaioh. In
Proc. of ASP-DACpages 192-197, 2001.

Gaurav Ajwani received his B.S. degree from
Netaji Subhas Institute of Technology, University
of Delhi, India in 2006 and his M.S. degree in
Computer Engineering from lowa State University,
Ames, lowa in 2010.

Since March 2010 he is working as a CAD
Engineer developing flows for Intel at Hillsboro, OR.
Before joining lowa State, he also worked briefly for
Freescale as a Design Engineer.

Mr. Ajwani’s research includes routing for multi-
terminal net in presence of obstacles. His work

titled "FOARS: FLUTE based Obstacle avoiding rectilineateiSer tree
construction” was nominated for best paper award in Intésnal Symposium
for Physical Design in 2010.

PLACE
PHOTO
HERE

Chris Chu Chris Chu received the B.S. degree in
computer science from the University of Hong Kong,
Hong Kong, in 1993. He received the M.S. degree
and the Ph.D. degree in computer science from the
University of Texas at Austin in 1994 and 1999,
respectively.

Dr. Chu is currently an Associate Professor in the
Electrical and Computer Engineering Department at
lowa State University. His area of expertises include
CAD of VLSI physical design, and design and anal-
ysis of algorithms. His recent research interests are

performance-driven interconnect optimization and fastut floorplanning,
placement, and routing algorithms.

He received the IEEE TCAD best paper award at 1999 for his work
in performance-driven interconnect optimization. He @@ another IEEE
TCAD best paper award at 2010 for his work in routing tree tamsion.

He received the ISPD best paper award at 2004 for his work finieft
placement algorithm. He received the Bert Kay Best DistertaAward for
1998-1999 from the Department of Computer Sciences in thigedsity of

Texas at Austin.

PLACE
PHOTO
HERE

Wai-Kei Mak (S98A98MO03) received the B.S. de-
gree from University of Hong Kong, Hong Kong, in
1993 and the M.S. and Ph.D. degrees from Univer-
sity of Texas, Austin, in 1995 and 1998, respectively,
all in computer science.

From 1999 to 2003, he was with the University
of South Florida as an Assistant Professor in the
Department of Computer Science and Engineering.
Since 2003, he has been with the Department of
Computer Science, National Tsing Hua University,
Hsinchu, Taiwan, R.O.C., where he is currently an

Associate Professor. His research interests include eegelscale integration
(VLSI) physical design automation, field-programmablesgatay (FPGA) ar-
chitecture and computer-aided design (CAD), and combiiztoptimization.

11

