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Abstract—In this paper, we present an algorithm called FOARS
for obstacle-avoiding rectilinear Steiner minimal tree (OARSMT)
construction. FOARS applies a top-down approach which first
partitions the set of pins into several subsets unclutteredby
obstacles. Then an obstacle-avoiding Steiner tree is generated
for each subset by an obstacle aware version of the rectilinear
Steiner minimal tree (RSMT) algorithm FLUTE. Finally, the
trees are merged and refined to form the OARSMT. To guide the
partitioning of pins, we propose a novel algorithm to construct
a linear-sized obstacle-avoiding spanning graph (OASG) which
guarantees to contain a rectilinear minimum spanning tree if
there is no obstacle. Experimental results show that FOARS
is among the best algorithms in terms of both wirelength and
runtime for testcases both with and without obstacles.

Index Terms—Physical Design, Routing, Spanning Graph,
RSMT

I. I NTRODUCTION

With the advent of re-usability using Intellectual Property
(IP) sharing, the chip in today’s design is completely packed
with fixed blocks such as IP blocks, macros, etc. Routing of
multi-terminal nets in the presence of obstacles has become
a quintessential part of the design and has been studied by
many (e.g., [1]–[13]). As pointed out by Hwang [14], in the
absence of obstacles multi-terminal net routing corresponds to
the rectilinear Steiner minimal tree (RSMT) problem which is
NP-complete. The presence of obstacles in the region makes
multi-terminal routing problem even harder.

In this work, we develop a new algorithm called FOARS for
OARSMT and RSMT generation by leveraging FLUTE [15].
FLUTE is a very fast and robust tool for RSMT generation.
It is widely used in many recent academic physical design
tools. FLUTE by its design cannot handle obstacles. A simple
strategy to generate an OARSMT would be to call FLUTE
once and legalize the edges intersecting with obstacles. Un-
fortunately, the OARSMT obtained can be far from optimal as
its topology is based on an obstacle-oblivious Steiner tree. A
better strategy is to break the RSMT produced by FLUTE on
edges overlapping with obstacles, recursively call FLUTE to
locally optimize the subtrees, and then combine all overlap-
free subtrees at the end. However, if the routing region is
severely cluttered with obstacles, the quality of the solution
produced will degrade because the RSMTs generated by
FLUTE may be excessively broken. To tackle this, we propose
a partitioning algorithm with a global view of the problem at
the top level to divide the problem into smaller uncluttered
instances. Even if there is no obstacle, when the number of
pins are more than several tens, the partitioning algorithm
can improve both the wirelength and runtime of FLUTE as it
works better than the greedy net breaking heuristics in FLUTE.

To guide the partitioning algorithm, we propose to use
a sparse spanning graph. In the presence of obstacles, this
graph will be an obstacle-avoiding spanning graph (OASG).
An OASG is used to capture the proximity information among
the pins and corners of obstacles, if any. Three categories of
graph were used to capture the proximity information during
OARSMT construction in the past. [1], [3], [4], [10] all use
the escape graph. [9] utilizes a Delaunay triangulation based
graph. Both the escape graph and Delaunay triangulation based
graph containO(n2) edges, wheren is the total number of
pins and obstacle corners. [2], [5]–[8] are based on various
forms of obstacle-avoiding spanning graphs. Shen et al. [2]
proposed a form of OASG that only contains a linear number
of edges which is also adopted in [5]. Later Lin et al. [6]
proposed adding missing “essential edges” to Shen’s OASG.
Unfortunately, it increases the number of edges toO(n2)
in the worst case (O(n log n) in practice) and hence the
time complexity of later steps of OARSMT construction is
increased to a large extent. In view of that, Long et al. [7],
[8] proposed a quadrant approach to generate an OASG with
a linear number of edges. But as we will see later, the OASG
generated by Long’s approach is not ideal. In this paper, we
present a novel octant approach to generate anO(n)-edge
OASG with more desirable properties.

Different from [2], [6]–[8] which directly use an OASG to
construct an OARSMT, we only use an OASG to guide the
partitioning and construct our final OARSMT using FLUTE.
We note that a shortcoming of the former approach is that the
resulting OARSMT tends to follow obstacle boundaries and
makes detours towards obstacle corners. This makes it easier
to lead to congestion when routing many nets in a design.
(Adding essential edges as in [6] will help but will result in
O(n2) edges as an escape graph.) On the other hand, since
we only utilize the OASG to guide our partitioning and use
FLUTE for local optimization, the OARSMT thus constructed
will follow an obstacle boundary only when absolutely neces-
sary. In addition, the OASG generated by our proposed octant
approach has a linear number of edges like Long’s [7], [8]
and possesses other desirable properties not found in Long’s
OASG. For example, our OASG is guaranteed to contain at
least one rectilinear minimum spanning tree in the absence of
obstacle while Long’s OASG does not have such a guarantee.

In this paper, we also propose an obstacle tree data structure
to accelerate the checking of overlap with obstacles. With the
aid of the obstacle tree data structure, the runtime of FOARS
is reduced by59% as compared with [16].

We compared our results with the state-of-the-art OARSMT
and RSMT algorithms. Our results show that FOARS is among
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the best in terms of both wirelength and runtime for testcases
both with and without obstacles and especially for large
testcases.

The rest of the paper is organized as follows. We first
provide an overview of the main steps of our OARSMT con-
struction approach in Section 2. Each main step is describedin
details in Sections 3 to 7. The experimental results are reported
in Section 8. Finally, we give our conclusion in Section 9.

II. OVERVIEW OF FOARS

Our algorithm can be distinctly divided into the following
five stages.

Stage 1:OASG Generation. First, we obtain the connectiv-
ity information between the pins and obstacle corner vertices
using a novel octant OASG generation algorithm. Section 3
describes the OASG algorithm in detail.

Stage 2:OPMST Generation Based on the OASG, we
construct a minimum terminal spanning tree (MTST) using
the approach mentioned in [17] and then obtain an obstacle
penalized minimal spanning tree (OPMST) from the MTST.
Section 4 talks about OPMST construction in detail.

Stage 3:OAST Generation. We partition the pin vertices
based on the OPMST constructed in the previous step. After
partitioning, we pass the subproblems to OA-FLUTE which
calls FLUTE recursively to construct an obstacle-aware Steiner
tree (OAST). Section 5 talks about the partitioning and OA-
FLUTE in more detail.

Stage 4: OARSMT Generation. In this step, we rec-
tilinearize the pin-to-pin connections avoiding obstacles to
construct an OARSMT. Section 6 discusses OARSMT con-
struction.

Stage 5:Refinement. To further reduce the wirelength, we
perform V-shape refinement on the OARSMT. Details for it
can be found in Section 7.

Fig. 1 depicts the outputs after various stages of the
algorithm.
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Fig. 1. Demonstration of the major steps of FOARS using the benchmark
RC01

III. OASG GENERATION

A. Previous Approaches

We first define what we meant by an obstacle-avoiding
spanning graph.

Definition 1 Given an edgee(u, v) and an obstacleb,
e is completely blocked byb if every monotonic Manhattan
path connectingu and v intersects with a boundary ofb.

Definition 2 Given a set of m pins and k obstacles, an
undirected graphG = (V, E) connecting all pin and corner
vertices is called an OASG if none of its edges is completely
blocked by an obstacle.

Although Definition 2 does not necessitate a linear number
of edges for an OASG, in order to have a fast runtime
it is desired to limit the solution space. In the past, there
have been a couple of efforts to construct an OASG with a
linear number of edges. Shen et al. [2] suggested a quadrant
approach in which each point can connect in four quadrants
in the plane formed by horizontal and vertical line going
through the point. Shen did not clearly explain their algorithm
in the paper.

Long et al. [7] recently described an O(n log n)-time ap-
proach for OASG generation with a linear number of edges
by considering quadrant partition of the plane. They suggested
scanning along±45◦ lines and maintaining anactive vertex
list, a set of vertices in the graph which are not yet connected
to their nearest neighbor. After scanning any vertexv, they
search for its nearest neighboru in the active vertex list, such
that the edge (u, v) is not completely blocked by any obstacle
in the graph. This is followed by deletion ofu from the list
and addition ofv in the list.

We found that the OASG generation algorithm in [7] has a
few shortcomings. First in their algorithm, the nearest neighbor
for any vertex in a quadrant is contingent upon the direction
of scanning which means they have to scan along all four
quadrants of a vertex in order to capture its connectivity
information. Second, in the absence of obstacles, their algo-
rithm cannot guarantee the presence of at least one minimum
spanning tree in their spanning graph. Third, their algorithm
cannot handle abutting obstacles due to minor mistakes in the
inequality conditions.

B. Our Approach for OASG

In [18], Zhou et al. proposed an elegant algorithm to
generate a spanning graph with a linear number of edges
guaranteed to contain a minimum rectilinear spanning tree
on an obstacle-free plane by considering octant partition of
the plane. So, we also propose an OASG algorithm based
on octant partition. Fig. 2(a) and Fig. 2(b) describe octant
partition for a pin vertex and an obstacle corner, respectively.

A property of octant partition is that a contour of equidistant
points from any point forms aline segmentin each region.
In regionsR1,R2,R5,R6, these segments are captured by an
equation of the formx+y = c for some constantc; in regions
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(a) Pin vertex (b) Obstacle corner

Fig. 2. Octant partition for a pin vertex and an obstacle corner

R3,R4,R7,R8, they are described by the equationx − y = c

for some constantc. Now this property can be exploited when
we generate an obstacle-avoiding spanning graph.

The pseudocode for OASG generation forR1 is provided in
Fig. 3. AsR1 andR2 both follow the same sweep sequence we
process them together in one pass. It is worth noting that it is
sufficient to sweep forR1, R2, R3 andR4 only. For any point,
we only need to sweep twice to determine its connectivity
information once forR1/R2 and once forR3/R4.

Algorithm: OASG Generation for R1

1 Aactive = Abottom = Aleft = ∅
2 for all v ∈ V in increasing(x + y) order do
3 S(v) = ∅
4 for all u ∈ Aactive which havev in their R1 do
5 Add u to S(v)
6 end for
7 Connectv to the nearest pointu∗ ∈ S(v) such that

e(u∗, v) is not completely blocked
by obstacle boundaries inAbottom andAleft

8 Delete all points inS(v) from Aactive

9 if v is a bottom left cornerthen
10 Add the bottom boundary containingv to Abottom

and the left boundary containingv to Aleft

11 else if v is a top left cornerthen
12 Delete the left boundary containingv from Aleft

13 else if v is a bottom right cornerthen
14 Determine the bottom boundaryB containingv
15 DeleteB from Abottom

16 Delete fromAactive all points which are
completely blocked byB

17 end if
18 Add v to Aactive

19 end for

Fig. 3. Pseudocode for OASG generation algorithm

For octantsR1 and R2, we sweep on a list of vertices in
V which contains both pins as well as obstacle corners with
respect to increasing(x+y). During sweeping we maintain an
active vertex listAactive. An active vertex is a vertex whose
nearest neighbor inR1 still needs to be discovered.

For the currently scanned vertexv, while looking in R5

of v we extract a subsetS(v) from Aactive. Any nodeu in
this subsetS(v) has v in R1 (lines 3 to 6). We connectv
to its nearest neighboru∗ in S(v) for which, e(u∗, v) is not
completely blocked (line 7). After connecting with the nearest

point we delete all the points inS(v) from Aactive (line 8)
and addv to Aactive (line 18).

In order to determine if an edge is blocked by an obstacle,
we maintain two active obstacle boundary lists,Abottom for
the bottom boundaries andAleft for the left boundaries. It is
evident that if an edge is blocked by an obstacle inR1, it will
intersect with either its bottom or its left boundary. Next,if
our scanned vertex is the bottom left corner of an obstacle,
its bottom boundary is added toAbottom and its left boundary
is added toAleft. It implies that both the left and the bottom
boundaries of that obstacle become active. When we come
across the top left (bottom right) corner, the corresponding
boundary is removed fromAleft (Abottom) implying that the
left (bottom) boundary for that obstacle becomes inactive at
that point (lines 12 and 15).

To explain lines 13 to 17, let us refer to Fig. 4 where vertex
b is the bottom right corner of an obstacle. It is easy to see
that if any vertexu lying within the 45 − 45 − 90 triangle
shown is still inAactive after scanningb, it can be removed
from Aactive. Since in this case all vertices inR1 of u are
completely blocked fromu by the obstacle.

Fig. 4. Any vertex within the lightly shaded triangle is completely blocked
by boundary (a,b).

We have the following lemma that relates our obstacle-
avoiding spanning graph generation algorithm to the
obstacle-free spanning graph generation algorithm in [18].

Lemma 1 The algorithm of Zhou et al. [18] is a special case
of our OASG generation algorithm

Proof: If we consider an instance which has no obstacle, then
we can simply ignore the blockage check in line 7 and lines
9 to 17 from the algorithm in Fig. 3. The resulting algorithm
would be exactly the same as the spanning graph generation
algorithm in [18]. �

Corollary 1 In the absence of obstacle, our OASG generation
algorithm generates a spanning graph that contains at least
one minimum rectilinear spanning tree of the given pins.

Proof: By Lemma 1, our OASG algorithm generates
the same result as the obstacle-free spanning graph generation
algorithm in [18] when there is no obstacle. Moreover, it has
been proved in [18] that the obstacle-free spanning graph
generated is guaranteed to contain at least one minimum
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spanning tree of the given pins. �

C. An Efficient Implementation

In this section we show how to efficiently perform the
following fundamental operations in the OASG generation
algorithm: 1) Given a vertexv, find the subset of points in
Aactive which havev in their R1; 2) given an edge, check if
it is completely blocked by any obstacle boundary inAbottom

or Aleft; and 3) given a bottom boundary of an obstacle,
find all points inAactive which are completely blocked by the
boundary. We address these issues one by one in the following
paragraphs.

To find the subset of points inAactive that have a given
point in theirR1, we first state and prove two lemmas and a
corollary for our OASG generation algorithm. Similar ideas
have been outlined in [18].

Lemma 2 Point v is in the R1 region of point p if
and only ifxp ≤ xv and xp − yp ≥ xv − yv.

Proof: By definition, the R1 region of p is the region
to the right of the vertical line passing throughp and above
the line with slope= 1 passing throughp (see Fig. 2). In other
words, pointv is in theR1 region ofp if and only if xp ≤ xv

and yv−yp

xv−xp

≥ 1. Rearranging the terms, the necessary and
sufficient condition isxp ≤ xv andxp − yp ≥ xv − yv. �

Lemma 3 At any time, no point in the active set can
be in theR1 region of another point in the set.

Proof: Before we add a new pointv to the active set
(line 18), we would delete all points in the active set that
have v in their R1 regions (line 8). In addition, any point
already in the active set cannot be in theR1 region of point
v as we are processing in increasing (x + y) order. Hence,
no point in the active set can be in theR1 region of another
point in the set at any time. �

Corollary 2 For any two pointsp and q in the active
set, we havexp 6= xq, and if xp < xq thenxp −yp ≤ xq −yq.

Proof: Assume pointsp and q are in the active set.
Then we cannot havexp = xq , otherwise p would be
in the R1 region of q or vice versa by Lemma 2 which
contradicts Lemma 3. And we cannot havexp < xq and
xp − yp ≥ xq − yq, otherwiseq would be in theR1 region of
p by Lemma 2 which again contradicts Lemma 3. Hence, the
corollary is proved. �

To facilitate finding the points inAactive that have a
given point in theirR1 regions, we keep the points inAactive

in increasing order of theirx-coordinate. To find the subset
of points which havev in their R1, we first find the largest
x in Aactive such thatx ≤ xv. We then scanAactive in
decreasing order ofx until x − y < xv − yv. Note that by
Corollary 2, decreasing order ofx automatically implies
non-increasing order ofx − y. Any point in between has

x ≤ xv andx − y ≥ xv − yv, and hence hasv in its R1 by
Lemma 2. We use a balanced binary search tree to implement
Aactive in order to haveO(log n) query operation to find the
largestx in Aactive such thatx ≤ xv.

An edge e(u, v) formed by points(xu, yu) and (xv , yv)
is completely blocked by a bottom obstacle boundary(a, b)
formed by the points(xa, yh) and (xb, yh), if and only if,
yu < yh < yv, xa < xu, andxb > xv. Note that at line 7,
all bottom boundaries satisfying the condition must be present
in the list Abottom. We use a balanced binary search tree data
structure forAbottom with the y-coordinate of a boundary as
a key value. If there arek bottom boundaries betweenyu and
yv, it takes takesO(log n + k) time to check if any of them
blocks edgee. Checking if an edge is completely blocked by
a left boundary can be done similarly.

To determine all the completely blocked verticesu in
Aactive by a horizontal boundary(a, b) in line 16, we need to
check ifyu < yh, xa < xu andxu−yu +yh ≤ xb (the lightly
shaded region in Fig. 4). Since we already haveAactive as a
sorted list in increasingx we can check all points which lie
betweenxa andxb and test for the above conditions to see if
they are completely blocked.

In [16] we made a claim about runtime complexity of
the overall algorithm beingO(n log n). It has been recently
brought to our attention that there may exists extreme cases
for which the total time spent by line 7 over all iterations is
O(n2). We concede with the argument but our algorithm is
extremely fast for all practical purposes as indicated by our
experimental results and it results in an OASG with a linear
number of edges which limits the solution space resulting in
better runtime complexity for subsequent stages.

IV. OPMST GENERATION

A. MTST Generation

After capturing the initial connectivity among pin vertices,
the next logical step is to extract a minimum terminal spanning
tree (MTST) from the OASG that connects all pin vertices
and avoid obstacles. Shen et al. [2] and Lin et al. [6] both
use an indirect approach for this step. They first construct a
complete graph over all pin vertices where the edge weight is
the shortest path length between the two pin vertices. On this
complete graph they use either Prim’s or Kruskal’s algorithm
to obtain a MST. Although it is effective, the approach
described above seems to be an overkill as it is unnecessary
to construct a complete graph when we already have OASG.
Back in the 80’s, Wu et al. [17] suggested a method using
Dijkstra’s and Kruskal’s algorithms on a graph similar to an
OASG to obtain a MTST. Recently, Long et al. [8] adopted
their approach to solve the problem on the OASG.

In this paper, we adopt the approach based on the extended
Dijkstra’s algorithm and the extended Kruskal’s algorithmas
defined in [8]. For every corner vertex in the OASG, we want
to connect it with the nearest pin vertex. This can be easily
done using Dijkstra’s shortest path algorithm considering
every pin vertex as a source. After running the extended
Dijkstra’s algorithm we are left with a forest ofm terminal
trees,m being the number of pin vertices. The root of every
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terminal tree in the forest obtained above is a pin vertex.
In order to connect all disjoint trees we use the extended
Kruskal’s algorithm on the forest. A priority queue Q is used
to store the weights of all possible edges termed asbridge
edgesin [8] which can be used for linking the trees.

Definition 4 [8] An edge e(u, v) is called a bridge
edge if its two end vertices belong to different terminal trees.

From Definition 4, it can be deduced that if each tree
was a single vertex in the graph then bridge edges will be
the edges connecting these vertices and we can use Kruskal’s
algorithm to obtain a MST in such a graph. The extended
Kruskal’s algorithm is simply an extended version of the
original Kruskal’s algorithm tailored to obtain a MST in a
forest. It is important to note that in case we do not have any
obstacle, the extended Dijkstra’s algorithm will not make any
change in the graph and the extended Kruskal will simply
work on a spanning graph.

B. OPMST Construction

We note that a sparse OASG does not always have direct
connections between the pin vertices even if one is allowed.
This is due to a neighboring corner vertex being nearer than
the other pin vertex in the same region. These indirect detour
paths are unnecessary and if not taken care of can lead to a
significant loss of quality. We note that the algorithm proposed
by [8] failed to address this issue. On the other hand, we
address this problem by constructing an obstacle penalized
minimal spanning tree (OPMST) from the MTST by removing
all the corner vertices and storing detour information as the
weight of an edge.

To construct an OPMST, we follow a simple strategy. For
any corner vertexv, we find the nearest neighboring pin vertex
u. We connect all the pin vertices originally connected with
v to u and deletev. We update their weights as their original
weight plus the weight ofe(u, v). This method guarantees
that in case we have a major detour between two pin vertices
due to an obstacle, the weight of that edge will corroborate
this fact. In other words we can say that the edge would be
penalizedfor the obstacles in its path.

V. OAST GENERATION

This step differentiates our algorithm from [2], [6]–[8]. We
exploit the extremely fast and efficient Steiner tree generation
capability of FLUTE [15] for low degree nets. In order to
embed FLUTE in our problem, we designed an obstacle
aware version of FLUTE, OA-FLUTE. As OA-FLUTE is less
effective for high degree nets and dense obstacle region, we
partition a high degree net into subnets guided by the OPMST
obtained from the previous step. The subproblems obtained
after partitioning are passed on to OA-FLUTE for obstacle
aware topology generation. It is termed asobstacle-aware
because the nodes of the tree are placed in their appropriate
locations considering obstacles around them.

Fig. 5 and Fig. 8 describe the pseudocodes for the Partition
and OA-FLUTE functions. It is evident that both functions are
recursive functions. Let us first explain the Partition function.

A. Partition

Function: Partition(T )
Input: An OPMSTT
Output: An OAST

1 if (∃ a completely blocked edgee) then
2 /∗ Refer to Fig. 6∗/
3 e(u, v) is to be routed around obstacle edgee(a, b)
4 Let T = T1 + e(u, v) + T2

5 T1 = T1 + e(u, a)
6 T2 = T2 + e(u, b)
7 T ′ = Partition(T1) ∪ Partition(T2)
8 else if (|T | > HIGH THRESHOLD)then
10 /∗ Refer to Fig. 7(a)∗/
11 Let e(u, v) be the longest edge s.t.

T = T1 + e(u, v) + T2 with |T1| ≥ 2 and |T2| ≥ 2
12 T ′ = Partition(T1) ∪ Partition(T2)
13 /∗ Refer to Fig. 7(b)∗/
14 RefineT ′ using OA-FLUTE(N”)
15 whereN” is a set of pin vertices arounde(u, v) in T ′

16 else
17 T ′ = OA-FLUTE(N )
18 whereN is set of all vertices inT
19 end if
20 return T ′

Fig. 5. Pseudocode for the Partition function

The input to the Partition function is an OPMST obtained
from the last step and the output is an obstacle-aware Steiner
tree (OAST). An OAST is a Steiner tree in which the Steiner
nodes have been placed considering the obstacles present in
the routing region to minimize the overall wirelength. The
following two criteria are set for partitioning pin vertices. The
first criterion is to determine if any edge is completely blocked
by an obstacle. The second criterion is to check if the size of
OPMST is more than the HIGH THRESHOLD defined.

Fig. 6. An example illustrating first criterion for partitioning

(a) Partitioning (b) Local refinement

Fig. 7. An example illustrating second criterion for partitioning

As can be clearly seen in Fig. 6 that for an overlap free
solution, we have to route around the obstacle. Therefore, it
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seems logical to break the tree at edge (u, v). We know that
OA-FLUTE can efficiently construct a tree when the number
of nodes is less than the HIGH THRESHOLD value. If the
size of the tree is still more than the HIGH THRESHOLD
after breaking at the blocking obstacles, we need to break the
tree further. In this case, we look for the edge with the largest
weight on the tree and delete that edge, refer to Fig. 7(a).

Based on the above mentioned criteria, if we break an
obstacle edge, we simply include corner vertices in the tree
and divide the two trees as shown in Fig. 6. Else, if we break
at the edge with largest weight, we delete that edge and make
sure that it does not contain any leaf of the tree as shown in
Fig. 7(a).

After breaking an edge, we make recursive calls to the
Partition function using two subtrees. When the size of the
tree becomes less than the HIGH THRESHOLD, we pass the
nodes of the tree to OA-FLUTE function. The OA-FLUTE
function returns an OAST. After returning from OA-FLUTE in
Partition, if the partition was performed on an obstacle edge,
we simply merge two Steiner trees using the same obstacle
edge. In case the partition was performed on the longest edge,
we explore an opportunity to further optimize wirelength. We
merge the two trees on the longest edge and then search
the region around the longest edge to extract neighboring
pin vertices, refer to lines 12-15 in Fig. 5 and Fig. 7(b).
This refinement is same as the local refinement proposed in
[15]. We pass this set of nodes to OA-FLUTE for further
optimization.

B. OA-FLUTE

Function: OA-FLUTE(N )
Input: A set of nodesN
Output: An OAST

1 T ′ = FLUTE(N)
2 if (∃ a completely blocked edgee) then
3 e(u, v) is to be routed around obstacle boundarye(a, b)
4 /∗ Refer to Fig. 9∗/
5 Let N = N1 ∪ N2

6 N1 = N1 ∪ {a}
7 N2 = N2 ∪ {b}
8 T ′ = OA-FLUTE(N1) ∪ OA-FLUTE(N2)
9 else if (∃ Steiner NodeS that falls on any obstacle)then
10 /∗ Refer to Fig. 10∗/
11 Let a1, a2, ... , aD be the intersection points with the

obstacle ordered in anti-clockwise direction
12 Let N = N1 ∪ N2 ∪ ... ∪ ND ∪ {S}
13 Let (au, av) be the segment with largest weight
14 for (i = av to au in anti-clockwise order)do
15 Ni = Ni∪ corner vertices along the path next toNi

16 end for
17 T ′ = OA-FLUTE(N1) ∪ ..... ∪ OA-FLUTE(ND)
18 end if
19 return T ′

Fig. 8. Pseudocode for the OA-FLUTE function

The purpose of OA-FLUTE function is to form an OAST.
It begins by calling FLUTE on the set of input nodes. FLUTE

constructs a Steiner tree without considering obstacles. This
tree can have two kinds of overlap 1) an edge completely
blocked by an obstacle, 2) a Steiner node falling on any
obstacle. We handle both of these cases differently.

To handle the first case, refer to Fig. 9, we break the Steiner
tree into two subtrees including corner points of the obstacle
as in Fig. 9(b) and make recursive calls to OA-FLUTE. We
selectively prune the number of recursive calls based on the
size of the tree in order to strike a balance between run-time
and quality.

(a) Completely blocked Edge (b) Subtrees before merging

(c) Merging excluding cor-
ners

Fig. 9. OA-FLUTE: Handling an edge completely blocked by an obstacle

(a) Removing longest
segment

(b) Subtrees before
merging

(c) Merging ex-
cluding corners

Fig. 10. OA-FLUTE: Handling Steiner node falling on an obstacle

To handle the second case, we devised a special technique.
We pick an obstacle which has a Steiner node on top of it. For
every boundary of this obstacle intersecting with the Steiner
tree, we extract a set of nodesNi which includes the pin
vertices in the tree near to that boundary. In Fig. 10(a) we
have a single Steiner node inside the obstacle intersectingat
a1, a2 and a3, with the right, top and left boundary of the
obstacle, respectively. We extract three set of pin vertices N1,
N2 andN3 from the original Steiner tree for the right, top and
left boundary, respectively. The pointsa1, a2 anda3 divide the
obstacle outline into three segments as shown in Fig. 10(a).
We then find the longest segment (the light shaded segment
(a3, a1) in Fig. 10(a)). We then traverse from one endpoint of
the longest segment to the other endpoint via other segments
in an anti-clockwise direction, for example, froma1 to c1 to
a2 to c2 to a3 in Fig. 10(a). While moving along the other
segments, we keep adding corner vertices to the corresponding
Ni’s e.g.c1 gets added to bothN1 andN2 andc2 gets added
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to both N2 and N3 in Fig. 10(b). We then recursively call
OA-FLUTE for all Ni’s thus formed.

As our goal with OA-FLUTE is to determine befitting
locations for Steiner nodes we exclude all corner vertices
when we finally merge the subtrees. Fig. 9(c) and Fig. 10(c),
show the final Steiner trees after excluding corners while
merging. The reason for not adding corner vertices in this
step is twofold. First, it is not desirable to further restrict
the solution when we already did once in Partition function.
Second, we want our OA-FLUTE to be a generic function
which can preserve the number of pin-vertices provided to it,
adding corner vertices would increase them.

C. Fast Implementation with Obstacle Tree Data Structure

To create an OAST, OA-FLUTE performs two major tasks.
It tries to remove all completely blocked edges and removes
all Steiner nodes falling on any obstacle. In order to perform
these tasks, it requires to check each edge and Steiner node
of the tree against all obstacles if we use a naive list data
structure to represent the obstacles. Our experiments in [16]
were performed based upon this simple approach.

In this paper, we propose an efficient obstacle tree (OBTree)
data structure. An OBTree is a balanced binary tree in which
we bin obstacles in their enclosing regions. We start with
a region which encloses all obstacles. After that, depending
upon the dimensions of the region, we slice the region either
vertically or horizontally into two parts. After dividing the
region into two halves we create two similar problems as
before. We use recursion to further split these regions until
there is only one obstacle inside each bin.

Fig.11 describes the pseudocode used by FOARS to create
an obstacle tree. The procedure CreateOBTree is provided with
a list of obstacles. In case the region enclosing the obstacles
has larger width than height, we divide the obstacles into
two parts based upon thex-coordinates of their bottom left
corners. Otherwise, they-coordinates of bottom left corners
of obstacles are used.

OBTree is extremely efficient for searching if an edge is
completely blocked by any obstacle or if a Steiner node falls
on any obstacle. The pseudocode in Fig. 12 and Fig. 13 are
recursive procedures to perform above mentioned tasks.

VI. OARSMT GENERATION

The OAST obtained from last step does not guarantee that
rectilinear path for a pin-to-pin connection is obstacle free. In
this step, we rectilinearize every pin-to-pin connection avoid-
ing obstacles to generate an OARSMT. For every Manhattan
connection between two pins we can have two L-shape paths.
On the basis of the obstacles inside the bounding box formed
by an edge, we can divide all the possible scenarios into
four categories: 1) both L-paths are clean 2) both L-paths are
blocked by the same obstacle 3) only one L-path is blocked
4) both L-paths are blocked but not by the same obstacle. We
discuss these scenarios one by one in the following paragraphs.

For the first case, even though we can rectilinearize using
any L-path, we instead create a slant edge at this stage to
leave the scope for improvement in V-shape refinement. For

Function: CreateOBTree(OB, K)
Input: A set of obstaclesOB = {O1, O2, . . . , OK}

Number of obstaclesK
Output: An obstacle treeOBTree

1 OBTree → OB = OB
2 OBTree → xMIN = Leftmost boundary ofOB
3 OBTree → xMAX = Rightmost boundary ofOB
4 OBTree → yMIN = Bottommost boundary ofOB
5 OBTree → yMAX = Topmost boundary ofOB
6 OBTree → C1 = NULL
7 OBTree → C2 = NULL
8 if (K > 1) then
9 H = ⌈K/2⌉
10 if (OBTree → xMAX − OBTree → xMIN

> OBTree → yMAX − OBTree → yMIN ) then
11 OBL = {first H obstacles in increasing order ofx}
12 OBR = OB − OBL

13 OBTree → C1 = CreateOBTree(OBL, H)
14 OBTree → C2 = CreateOBTree(OBR, K − H)
15 else
16 OBB = {first H obstacles in increasing order ofy}
17 OBT = OB − OBB

18 OBTree → C1 = CreateOBTree(OBB , H)
19 OBTree → C2 = CreateOBTree(OBT , K − H)
20 end if
21 end if
22 return OBTree

Fig. 11. Pseudocode for creating an OBTree

Function: CheckSteinerNode(α, π)
Input: Steiner nodeα; obstacle tree nodeπ
Output: Set of obstacles underπ on whichα falls

1 Let R =region enclosed byπ
2 if (α does not lie insideR) then
3 return ∅
4 else if (π contains a single obstacleO) then
5 return {O}
6 else
7 Let π1 andπ2 be children ofπ
8 OB1 = CheckSteinerNode(α, π1)
9 OB2 = CheckSteinerNode(α, π2)
10 OB = OB1 ∪ OB2

11 return OB
12 end if

Fig. 12. Pseudocode for checking if a Steiner node falls on any obstacle

the second case, we have no option but to go outside the
bounding box and pick the least possible detour.

For the third case, we route inside the bounding box, since
there exists a path. We break the edge into two sub problems
on the corner of an obstacle along the blocked L-path. We
recursively solve these sub problems to determine an obstacle-
avoiding path. If the wirelength of this path is same as the
Manhattan distance between the pins, we accept the solution,
else we route along the unblocked L-path. It is noteworthy that
for this case we could have directly accepted the unblocked
L-path. In order to create more slant edges, and hence, further
scope for V-shape refinement, we searched for a route along
the blocked L-path avoiding obstacles. For the last case where
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Function: CheckEdge(e, π)
Input: Edgee; obstacle tree nodeπ
Output: Set of obstacles underπ completely blockinge

1 Let R =region enclosed byπ
2 if (e cannot completely blocked by any rectangle inR) then

/* i.e., e can completely avoidπ without detour */
3 return ∅
4 else if (π contains a single obstacleO) then
5 return {O}
6 else
7 Let π1 andπ2 be children ofπ
8 OB1 = CheckEdge(e, π1)
9 OB2 = CheckEdge(e, π2)
10 OB = OB1 ∪ OB2

11 return OB
12 end if

Fig. 13. Pseudocode for checking if an edge is completely blocked

both L-paths are blocked but not by the same obstacle, we
determine obstacle-avoiding routes using the same recursive
approach as mentioned above for both L-paths and pick the
shortest one.

VII. REFINEMENT

We perform a final V-shape refinement to improve total
wirelength. This refinement includes movement of Steiner
node in order to discard extra segments produced due to
previous steps. The concept of refinement is similar to the
one that determines a Steiner node for any three terminals. The
coordinates of the Steiner node are the median value of the
x-coordinates and median value of the y-coordinates. Fig. 14
illustrates a potential case for V-shape refinement and output
after refinement. This refinement comes handy in improving
the overall wirelength by1% to 2%.

Fig. 14. V-shape refinement case and refined output

VIII. E XPERIMENTAL RESULTS

We implemented our algorithm in C. The experiments
were performed on a 3GHz AMD Athlon 64 X2 Dual Core
machine. We requested for binaries from Long et al. [8],
Lin et al. [6], Liang et al. [10] Liu et al. [11] [12] and
ran them on our platform. Five industrial testcases (IND1 -
IND05), twelve circuits from [6] (RC01-RC12), five randomly
generated benchmark circuits (RT01-RT05) [6] and five large
benchmark circuits (RL01-RL05) generated by [8].

A. OARSMT Experimental Results

Table I and II shows wirelength and runtime comparison on
benchmarks containing obstacles. We determined experimen-
tally that HIGH THRESHOLD value of 20 works the best.

Wirelength Runtime (s)
Benchmark m k FOARS [16] FOARS FOARS [16] FOARS

RC01 10 10 25980 25980 0.00 0.00
RC02 30 10 42110 42110 0.00 0.00
RC03 50 10 56030 56030 0.00 0.00
RC04 70 10 59720 59720 0.00 0.00
RC05 100 10 75000 75000 0.00 0.00
RC06 100 500 81229 81229 0.03 0.03
RC07 200 500 110764 110764 0.03 0.03
RC08 200 800 116047 116047 0.06 0.05
RC09 200 1000 115593 115593 0.08 0.06
RC10 500 100 168280 168280 0.02 0.02
RC11 1000 100 234416 234416 0.04 0.03
RC12 1000 10000 756998 756998 2.04 1.19

RT01 10 500 2191 2191 0.01 0.00
RT02 50 500 48156 48156 0.02 0.02
RT03 100 500 8282 8282 0.03 0.03
RT04 100 1000 10330 10330 0.07 0.06
RT05 200 2000 54598 54634 0.21 0.15

IND1 10 32 604 604 0.00 0.00
IND2 10 43 9500 9500 0.00 0.00
IND3 10 59 600 600 0.00 0.00
IND4 25 79 1129 1129 0.00 0.00
IND5 33 71 1364 1364 0.00 0.00

RL01 5000 5000 483027 483027 3.13 1.15
RL02 10000 500 637753 637753 1.36 1.18
RL03 10000 100 640902 640902 1.15 1.13
RL04 10000 10 697125 697125 1.55 1.57
RL05 10000 0 728438 728670 1.66 0.12

(0.999) (1) 11.54(1.59) 7.23(1)

TABLE I
WIRELENGTH AND RUNTIME COMPARISON BETWEENFOARS [16]AND

CURRENT RESULTS

Table I shows our newest results as compared with results
published in [16]. Using OBTree in FOARS we were able
to cut down the runtime by59% with negligible increase in
wirelength. The reason for the slight increase in wirelength is
that we decided to disable the refinement step for instances
with no obstacle (RL05 in Table I). Based on experiments,
we determine that if we remove the refinement step for
instances with no obstacles, we gain significantly in runtime
with negligible loss in quality (see Table III).

Columns 4 and 5 of Table II show that FOARS outperforms
Lin et al. [6] by 2.3% and Long et al. [8] by2.7%. Columns
6, 7 and 8 indicate that FOARS has similar wirelength results
as compared with Liang et al. [10] and Liu et al. [11] [12].
For the runtime in Table II, we are now84% faster than Long
et al. [8] on average. We are46 times faster than [10] and123
times faster than [6].Our runtime is slower as compared with
Liu et al. [11] [12].

B. RSMT Experimental Results

As mentioned before, RSMT can be seen as a special case
for OARSMT. In an effort to construct a single solution for
OARSMT and RSMT generation, we performed experiments
on our existing benchmarks after deleting obstacles. As shown
in Table III, we compare our results with Long et al. [8] and
Liang et al. [10]. We could not compare our results with [11]
and [12] as their binaries could not run on cases with no
obstacles. We also compared our results with FLUTE-2.5 [15]
which is the same version of FLUTE as used inside FOARS.

Our result for wirelength is the best among all the al-
gorithms and is2.6% better as compared with FLUTE-2.5.
Compared with FLUTE-2.5, which has been demonstrated to
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Wirelength Runtime (s)
Benchmark m k Lin [6] Long [8] Liang [10] Liu [11] Liu [12] FOARS Lin [6] Long [8] Liang [10] Liu [11] Liu [12] FOARS

RC01 10 10 27790 26120 25980 26740 26040 25980 0.00 0.00 0.01 0.00 0.00 0.00
RC02 30 10 42240 41630 42010 42070 41570 42110 0.00 0.00 0.02 0.00 0.00 0.00
RC03 50 10 56140 55010 54390 54550 54620 56030 0.00 0.00 0.00 0.00 0.00 0.00
RC04 70 10 60800 59250 59740 59390 59860 59720 0.00 0.00 0.01 0.00 0.00 0.00
RC05 100 10 76760 76240 74650 75440 74770 75000 0.00 0.00 0.01 0.00 0.00 0.00
RC06 100 500 84193 85976 81607 81903 81854 81229 0.10 0.08 0.50 0.01 0.02 0.03
RC07 200 500 114173 116450 111542 111752 110851 110764 0.18 0.09 0.60 0.01 0.03 0.03
RC08 200 800 120492 122390 115931 118349 116132 116047 0.31 0.15 1.16 0.02 0.04 0.05
RC09 200 1000 117647 118700 113460 114928 113559 115593 0.40 0.22 1.53 0.02 0.05 0.06
RC10 500 100 171519 168500 167620 167540 167460 168280 0.20 0.03 0.18 0.00 0.01 0.02
RC11 1000 100 237794 234650 235283 234097 236018 234416 0.74 0.06 0.83 0.01 0.02 0.03
RC12 1000 10000 803483 832780 761606 780528 762435 756998 55.09 3.80 186.3 0.36 1.20 1.19

RT01 10 500 2289 2379 2231 2259 2193 2191 0.03 0.06 0.19 0.01 0.01 0.00
RT02 50 500 48858 51274 47297 48684 47488 48156 0.05 0.06 0.55 0.01 0.02 0.02
RT03 100 500 8508 8554 8187 8347 8231 8282 0.10 0.06 0.21 0.01 0.02 0.03
RT04 100 1000 10459 10534 9914 10221 9893 10330 0.22 0.23 0.37 0.02 0.04 0.06
RT05 200 2000 54683 55387 52473 53745 52509 54634 0.96 0.66 3.18 0.04 0.12 0.15

IND1 10 32 632 639 619 626 604 604 0.00 0.00 0.00 0.00 0.00 0.00
IND2 10 43 9700 10000 9500 9700 9600 9500 0.00 0.00 0.00 0.00 0.00 0.00
IND3 10 59 632 623 600 600 600 600 0.00 0.00 0.00 0.00 0.00 0.00
IND4 25 79 1121 1130 1096 1095 1092 1129 0.00 0.00 0.00 0.00 0.00 0.00
IND5 33 71 1392 1379 1360 1364 1374 1364 0.00 0.00 0.00 0.00 0.00 0.00

RL01 5000 5000 492865 491855 481813 483134 483199 483027 106.66 3.58 27.14 0.27 0.63 1.15
RL02 10000 500 648508 638487 638439 636097 640435 637753 159.09 1.27 29.45 0.23 0.37 1.18
RL03 10000 100 652241 641769 642380 640266 644276 640902 153.95 1.08 23.35 0.22 0.32 1.13
RL04 10000 10 709904 697595 699502 696111 700937 697125 195.25 0.97 22.00 0.24 0.29 1.57
RL05 10000 0 741697 728585 730857 - - 728670 217.88 0.96 33.64 - - 0.12

891.25 13.36 331.235 1.48 3.19 7.23
Norm 1.024 1.027 0.995 1.004 0.994 1 123.26 1.84 45.81 0.20 0.44 1

TABLE II
WIRELENGTH AND RUNTIME COMPARISON. m IS THE NUMBER OF PIN VERTICES ANDk IS THE NUMBER OF OBSTACLES. THE VALUES IN THE LAST ROW

ARE NORMALIZED OVER OUR RESULTS FOR BOTH WIRELENGTH AS WELL AS RUNTIME

Wirelength Runtime (s)
Benchmark m k Long [8] Liang [10] FLUTE-2.5 [15] Ours Long [8] Liang [10] FLUTE-2.5 [15] FOARS

RC01 10 0 25290 25290 25290 25290 0.00 0.00 0.00 0.00
RC02 30 0 40100 40630 39920 39920 0.00 0.00 0.00 0.00
RC03 50 0 52560 52440 53400 53050 0.00 0.00 0.00 0.00
RC04 70 0 55850 55720 57020 55380 0.00 0.00 0.00 0.00
RC05 100 0 72820 71820 73370 72170 0.00 0.00 0.00 0.00
RC06 100 0 77886 78068 80057 77633 0.00 0.00 0.00 0.00
RC07 200 0 106591 107236 109232 106581 0.01 0.07 0.00 0.00
RC08 200 0 109625 109059 112787 108928 0.00 0.03 0.00 0.00
RC09 200 0 109105 108101 112460 108106 0.01 0.02 0.00 0.00
RC10 500 0 164940 164450 170270 164130 0.02 0.17 0.00 0.00
RC11 1000 0 233743 235284 245325 233647 0.06 0.70 0.00 0.00
RC12 1000 0 755332 764956 798742 755354 0.04 0.75 0.00 0.00

RT01 10 0 1817 1817 1817 1817 0.01 0.00 0.00 0.00
RT02 50 0 44930 46109 45291 44416 0.00 0.00 0.00 0.00
RT03 100 0 7677 7777 7811 7749 0.00 0.00 0.00 0.00
RT04 100 0 7792 7826 7826 7792 0.00 0.00 0.00 0.00
RT05 200 0 43335 43586 44809 43026 0.00 0.00 0.00 0.00

IND1 10 0 614 619 604 604 0.00 0.00 0.00 0.00
IND2 10 0 9100 9100 9100 9100 0.00 0.00 0.00 0.00
IND3 10 0 590 590 587 587 0.00 0.00 0.00 0.00
IND4 25 0 1092 1092 1102 1102 0.00 0.00 0.00 0.00
IND5 33 0 1314 1304 1307 1307 0.00 0.00 0.00 0.00

RL01 5000 0 472392 473905 501480 472818 0.30 11.39 0.05 0.05
RL02 10000 0 637131 641722 674042 636895 0.95 32.45 0.25 0.12
RL03 10000 0 641289 650343 674950 640580 0.95 33.04 0.26 0.12
RL04 10000 0 697712 699617 740270 697239 0.99 32.26 0.25 0.13
RL05 10000 0 728595 730857 778313 728670 1.05 34.52 0.26 0.12

(1.002) (1.005) (1.026) (1) 4.52(7.75) 145.37(249) 1.104(1.89) 0.58(1)

TABLE III
WIRELENGTH AND RUNTIME COMPARISON FOR BENCHMARK WITH NO OBSTACLES, I .E. k = 0 FOR ALL CASES
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be significantly faster than other RSMT heuristics, FOARS
are89% faster. FOARS are7.75 and249 times faster than [8]
and [10] respectively. Again FOARS performs much better
when we have large number of pin vertices in the benchmark
(RC12, RL01-RL05). The improvement in wirelength over
FLUTE-2.5 is due to the effective partitioning algorithm for
high-degree nets and the application of the local refinement
technique as shown in Fig. 7(b).

IX. CONCLUSION

In this paper, we have presented FOARS, an efficient
algorithm to construct OARSMT and RSMT based on ex-
tremely fast and high-quality Steiner tree generation toolcalled
FLUTE. We proposed a novel OASG algorithm with linear
number of edges. We also proposed an obstacle aware version
of FLUTE, which generates OAST. Our top-down partition
approach empowers OA-FLUTE to handle high-degree nets
and dense obstacle region. Our implementation of OBTree
is simple and extremely efficient for checking blockage with
obstacles. Our results indicate that our approach is the best
tradeoff for quality and runtime for both OARSMT and RSMT
construction. Our experiments prove that FOARS obtains good
quality solution with excellent runtime as compared with its
peers.
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