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Abstract: In this paper, we propose a new data structure called dual sequences to 
represent SOC test schedules. Dual sequences are used together with a 
simulated annealing based procedure to optimize the SOC test application time 
and tester resources. The problems we consider are generation of optimal test 
schedules for SOCs and minimizing tester memory and test channels. Results 
of experiments conducted on ITC’02 benchmark SOCs show the effectiveness 
of the proposed method.  

1. INTRODUCTION 

 As SOC (system on a chip) design moves toward mainstream use, the 
problem of effectively testing the IP blocks (called cores) within the SOC 
needs to be addressed. SOC test requires considering the following issues: 
test access mechanism (TAM) design, core wrapper design, test scheduling, 
tester memory and tester channels.  

TAM is the hardware infrastructure, which transports the test data 
between the SOC pins and the core wrappers. The core wrapper primarily 
consists of scan chains placed around the core to isolate the core from its 
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surrounding logic and serves as an interface between the TAM and the core. 
A number of approaches 1-6, 11 have been proposed for the core wrapper 
design. 

SOC test scheduling is the procedure of deciding the test start time of 
every core so as to obtain a minimum test application time for the SOC 
under certain constraints, such as TAM width (i.e. the number of SOC pins), 
power dissipation during test, etc.. Since test scheduling depends on the SOC 
TAM design and the core wrapper design, SOC test requires co-optimization 
of the TAM, the core wrapper design and the test schedule. Recently a 
number of works proposed solutions to this problem. Marinissen et al.3 

presented several methods to design TAMs. Larsson and Peng 7, 8 considered 
co-optimization of SOC test time and the number of SOC pins under the 
assumption that a wrapper for each core is given. Chakrabarty 9 developed 
an integer linear programming model for minimizing test application time by 
co-optimization of bandwidth distribution and test bus assignment. Huang et 
al.10 formulated the co-optimization problem as a rectangle packing problem 
and solved it by using a best-fit heuristic algorithm. To solve the co-
optimization problem, a SOC test schedule representation called sequence 
pair was used together with simulated annealing or heuristics. 6, 16 Other 
works 11-15 have investigated the same problem using specialized heuristic 
procedures.                    

It was shown that test application time for benchmark SOCs using a 
simulated annealing algorithm was most often shorter than all earlier 
proposed heuristic solutions and also shorter than an ILP based procedure 
when the run time of the ILP procedure was limited (to several hours).6 The 
SOC schedules were represented in the simulated annealing by what are 
called sequence pairs 19. 

In this paper, we introduce a simple and effective data structure called 
Dual Sequences (DS) to represent SOC test schedules and use this to obtain 
optimal SOC test schedules using simulated annealing. Experimental results 
show that test schedules obtained using DS with simulated annealing are as 
good as or better than those obtained using sequence pairs while the run time 
of the simulated annealing procedure is greatly reduced. Another problem 
we consider is minimization of tester memory and tester channels, again 
using DS to represent test schedules together with simulated annealing.    

2.  THE FEATURES OF SOC TEST TIME 

The core wrapper is the interface between the core and the SOC TAM. It 
provides several kinds of operation modes, such as normal function, 
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interconnect test, bypass test, etc. The test time for a core is derived by the 
following formula.1 

T = {1+max (Si, So)} * P + min (Si, So)               (1) 
where P is the number of test patterns, and Si (So) denotes the length of 

the longest wrapper scan input (output) chain for the core. The core test time 
T is decided by the length of the longest wrapper scan chain. So one goal of 
the core wrapper design is to shorten the longest wrapper scan chain. For this 
purpose, balanced wrapper design 1, 11 was proposed, which partitions the 
wrapper scan elements among the wrapper chains to make the length of the 
wrapper chains as equal as possible. 

Next we consider the relationship between the core test time and the core 
wrapper width.  It is known that the test time for a core is a staircase function, 
which means that there are only some wrapper width values where the core 
test time changes. These points are called pareto-optimal points.11 If the core 
wrapper is represented by a rectangle with the width representing the 
wrapper width and the height representing the core test time, there is a set of 
candidate rectangles for every core corresponding to the pareto-optimal core 
wrapper widths. In co-optimizing wrapper design and SOC test time, one of 
these rectangles is chosen for each core. 

The problem of SOC test scheduling we are considering is stated below. 
Given are a SOC with N pins and Nc cores. Each core Ci (1≤ i ≤Nc) has a 

set of Ni permissible wrapper configurations. Each wrapper configuration is 
represented by a pair (Wij, T(Wij)),  where Wij stands for the width of the j-th 
wrapper configuration for core Ci and  T(Wij) stands for the test time of  core 
Ci with wrapper width Wij. The objective is to pick one wrapper design for 
each core, determine the mapping from the SOC pins to the core wrapper 
pins, and set the test start time for each core such that the SOC test 
application time is minimized. 

This problem can be transformed into the well-known two-dimensional 
bin packing problem, in which the SOC is represented by a bin with width N 
and the set of Ni SOC wrappers for every core is represented by a set of Ui 
rectangles with width Wij and height T(Wij).10 The objective is to choose a 
rectangle for every core Ci and pack all the rectangles in the bin, such that 
height of the bin is minimum. 

3. DUAL SEQUENCES 

In Fig. 1, we illustrate a test schedule for a SOC with six cores. The 
vertical axis is time and the horizontal axis represents SOC pins. In this 
schedule, testing of Core 1, Core 2 and Core 3 starts simultaneously at time  
t = 0. Testing of Core 4 is initiated at t = t3. Testing of Cores 5 and 6 is 
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initiated at t = t4. The two parts of Core 5, denoted 5_1 and 5_2, indicate that 
Core 5 is tested through two non-consecutive subsets of TAM pins. Testing 
of the SOC is completed at t6. As seen from Fig. 1, every test schedule 
corresponds to a rectangle placement in the bin representing the SOC.  

In this section, a new representation called Dual Sequences (DS) is 
introduced to express the rectangle placement.  

The DS for a placement of a set of n rectangles (cores) is a pair of 
sequences (R, W), in which R is a sequence of the names of the n rectangles 
and W is a sequence of the widths of the n rectangles listed in R. For example, 
(< R3 R1 R2 R4 >, < 4 2 1 5 >) is a DS from which we can see that the 
placement is composed of four rectangles with widths 4, 2, 1 and 5, 
respectively. Next we discuss how to represent a rectangle placement by a 
DS and how to obtain the rectangle placement corresponding to a DS. 
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Figure 1. SOC test schedule 

3.1 DS extraction from rectangle placement    

Given a placement of rectangles, the corresponding DS can be obtained 
by visiting every rectangle in the placement from bottom to top and from left 
to right. During the visitation, the rectangles we encounter are recorded in R 
in the order of visiting them and the width corresponding to the discovered 
rectangles are recorded in W. If a rectangle is split into several sub-rectangles 
in the placement, the sub-rectangles are merged into one rectangle for 
representation in (R, W) and its position in R is decided by the first sub 
rectangle and the width in W is the sum of the widths of the sub-rectangles. 
A rectangle placement corresponding to a SOC test schedule may have split 
a rectangle corresponding to a core since its wrapper pins are connected to 
non-consecutive SOC pins. For example consider the rectangle placement in 
Fig.1, which has six rectangles R1, R2, R3, R4, R5, R6 corresponding to the 



OPTIMIZING SOC TEST RESOURCES USING DUAL SEQUENCES 5
 
six cores with widths, say Φ1, Φ2, Φ3, Φ4, Φ5, and Φ6, respectively. The 
rectangle R5 is divided into two sub-rectangles R5_1 and R5_2. As 
explained next, by visiting each rectangle within the placement and merging 
the sub-rectangles, we obtain the Dual Sequences (<R1 R2 R3 R4 R5 R6>, < 
Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 >). Since testing of R1, R2 and R3 are all scheduled at 
time zero, they are visited before R4 which is scheduled for testing at t3. 
Within the set of rectangles R1, R2, and R3, R1 is visited first since it is left 
of R2, followed by R2 and then R3. Next R4 is visited. After visiting R4, R5 
and R6 are visited but R5 is visited before R6.     

3.2  Mapping from DS to placement of rectangles 

 

Layer 3 

H2 

W5W3 

     (a) 
0

H3 

H2 

H1 

W3

R1 

R3 

W1 W2 

Layer 1 

Layer 2 

 R2 

Layer 3 

Layer 0 

H3 

H1 

0 
R 1 

R 3

W1 W2 

R2 

R 4_1 R4_2 

Layer 4 

Layer 2 

Layer 1 

L
ay

er
 0

 

W4(b) 
 

Figure 2.  The changes in the layers during bin packing 

To obtain a placement from a DS, a greedy algorithm based on two 
dimensional bin packing is used.  The basic idea of this algorithm is that 
given the sequence R and the width sequence W, we pick rectangles from R 
one at a time in the order of their appearance in R and pack a selected 
rectangle at a position which is as low as possible (i.e., we schedule the start 
of the test of the core corresponding to the rectangle as early as possible). It 
is important to point out the distinction between dual sequences and 
sequence pairs 6, 16 to represent a bin packing. Given a sequence pairs the 
corresponding bin packing is uniquely defined and is obtained by a longest 
path procedure run over two graphs derived from the sequence pairs. The bin 
packing corresponding to a given DS is not unique. The sequence R 
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determines the order in which the rectangles are considered and W restricts 
the choice of the width (i.e. wrappers) of the rectangle corresponding to the 
core being packed. Any procedure to pack the rectangles in the order given 
by R can be used.   

In the proposed method to obtain a rectangle placement from a given DS, 
a data structure called a layer is used, which corresponds to a position where 
a yet unplaced rectangle can be placed. A layer has two attributes: starting 
time and width. The starting time is the height of the layer in the bin and the 
width indicates the space available at this height. For example, in Fig. 2(a), 
we have four layers, layer 0 to layer 3, which are indicated by the thick dark 
lines. The start time and the width of the layer can be seen from Fig. 2(a). 
For example, the start time of layer1 is H1 and the width is (W2-W1). 
Before we describe the procedure to obtain the rectangle placement from a 
DS, we show how the layers change when a new rectangle is added into an 
existing partial placement. 

Given the partial placement in Fig. 2(a), suppose a new rectangle, say R4 
with width (W2+W4-W3) is placed on layer 2.  As shown in Fig. 2(b), R4 
occupies layer 1, layer 2 and part of layer 0. Widths of layer 1 and layer 2 
are changed to 0 and the width of layer 0 is changed to (W5-W4). A new 
layer 4 with width (W2+W4-W3) is added. Layer 4 is split into two sub-
layers as can be seen in Fig. 2(b). 

Next we introduce the greedy algorithm for obtaining a rectangle 
placement from a DS. At the start, there is only one layer whose width is 
equal to the total TAM width (the number of SOC pins). We pick a rectangle 
from sequence R from left to right, whose width is decided by the 
corresponding entry in sequence W, and place that rectangle on a layer L, 
which satisfies the following requirement: 

The sum of the width of L and the widths of the layers with non-zero 
widths whose start time is less than or equal to the start time of layer L is 
greater than or equal to the width of the rectangle being placed. 

The start time of layer L is the lowest among all layers that satisfy the 
above requirement. 

If there is a power constraint, the core placed at that layer should not 
violate this constraint. 

Following the placement of the rectangle, a new layer with width equal to 
the width of the just placed rectangle is added to the placement and the 
widths of the other layers are updated. This procedure is repeated until all 
the rectangles in sequence R are packed. It should be pointed out that the 
procedure proposed above is sub-optimal. One reason for this sub-optimality 
is that when the width of a layer is reduced it may preclude the use of some 
packing space. For example the shaded area in Fig. 2(b) is not available for 
future packing after rectangle R4 is placed.  
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Compared to test schedule representation using sequence pairs for 
obtaining SOC test schedules, the search space for DS is of size  )!(

1
∏
=

×
Nc

i
KiNc , 

while for the sequence pairs representation the search space is of size 
))!((

1

2 ∏
=

×
Nc

i
KiNc , where Nc is the number of cores in the SOC and Ki is the 

number of wrapper configurations for core i. The size of the search spaces 
given above is obtained by computing the number of distinct dual sequences 
and sequence pairs, respectively. Since the search space using DS 
representation of rectangle placement is smaller, it leads to a much lower run 
time for test schedule optimization using simulated annealing. As the 
experiments on ITC’02 benchmarks reported later show, the optimality of 
the obtained SOC test schedule is indeed not affected by using dual 
sequences instead of sequence pairs. 
 

4. SIMULATED ANNEALING   

Simulated annealing (SA) is a global stochastic optimization algorithm 
that was first introduced by Kirkpatric et al.17. The algorithm begins with an 
initial solution, and then a neighboring solution is created by perturbing the 
current solution.  If the cost of the neighboring solution is less than that of 
the current solution, the neighboring solution is accepted; else it is accepted 
or rejected with some probability. The probability of accepting an inferior 
solution is a function of a parameter called the temperature. The probability 
function used is: 

                              T
C

ep
∆

−
=    ,   

where ∆C is the change in the cost between the neighboring solution and 
the current solution and T is the current temperature. The procedure we used 
to implement the simulated annealing algorithm for finding an optimal SOC 
test schedule that minimizes the expected test completion time is given 
below. 

Objective: Find an optimal solution Sopt, which makes the cost function 
C(Sopt) minimum. 

Procedure: 
1. Construct an initial solution Sinit; 
2. Let the current solution be Scur: = Sinit;       
3. Set the initial temperature to T: = Tinit; 
4. Set Counter: = 1; 
5. While the stopping criteria is not met do begin 
6. While T >Tfinal do begin 
7. For i: = 1 to Niter do begin 
8. Generate a neighboring solution Sn from the current solution Scur; 
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9. Compute the change in the cost function 
∆C = C(Sn) - C(Scur); 

10. If ∆C ≤ 0 then Scur : =  Sn; 
11. Else begin 
12. q =  random(0,1); 
13. If q < T

C

e
∆−   then Scur : = Sn ;  

14. End 
15. End 
16. Set new temperature T: = K * T; 
17. End 
18. Set T: = Tnew; 
19. Counter: = Counter+1; 
20. End 
We use the SA algorithm described above to implement the SOC test 

scheduling based on dual sequences by specifying the parameters of the SA 
algorithm as follows. 

Cost function C: The height of the bin where the rectangles are placed is 
defined as the cost function.  

Neighboring solution Sn: A neighboring solution is defined by two types 
of moves over the dual sequences, given below. 

M1: Exchange the position of two randomly chosen rectangles in the first 
sequence R (note that W is also changed to reflect the exchange in R). 

M2: Change the width (and hence the height) of a rectangle in the 
sequence W to another allowed width of the rectangle.  

During the process of optimization, the probabilities of moves M1 and 
M2 are set to 0.5 each.  

Initial solution: The initial solution Sinit can be set randomly. In order to 
accelerate the convergence of SA, the test schedule obtained by the heuristic 
procedure 14 is used as the initial solution in the experiment reported later.  

Initial temperature: The initial temperature Tinit is set to 4000. At the end 
of each outer loop, temperature T is reset to Tnew   = 4000 + 1000 * Counter. 

Other parameters: These parameters include the final temperature Tfinal, 
the number of iterations Niter at every temperature, the stopping criteria and 
the temperature reduction multiplier K. In our implementation, these 
parameters are set as follows. 

(1) Tfinal = 10;  
(2)The number of iterations Niter at each temperature is set to 400*Nc 

where Nc is the number of rectangles. 
(3)The stopping criteria can be decided by the user. In our experiment, if 

Counter is larger than 10, the procedure is stopped. 
(4) The temperature reduction multiplier K is set to 0.98 when T < 10000; 

otherwise K = 0.93. 
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5.  REDUCING ATE RESOURCES  

Automatic Test Equipment (ATE) used in SOC test provides the ability 
to perform multi-site testing, which allows several copies of a SOC to be 
tested concurrently. When the number of ATE channels is given, to test a 
maximum number of SOCs at the same time requires minimization of  the 
TAM width of the SOC while not violating the ATE memory depth 
constraint (decreasing the TAM width of the SOC will increase the test 
application time and hence the ATE memory depth requirement). In this 
section we discuss how the proposed method using DS representation of the 
test schedules can be used to minimize SOC TAM width as well as the ATE 
buffer memory depth for a given SOC TAM width. 

When an SOC is tested by an ATE, the test channel memory depth 
required for the SOC is decided by the test data volume. The depth of the 
test channel memory can be approximated by the SOC test application time 
(the number of clock cycles). 20 Therefore, the problem of multi-site SOC 
test under ATE memory depth constraints can be considered as a problem of 
reducing the SOC TAM width while the total test application time is fixed. 
This allows testing of a maximum number of SOCs using a given number of 
test channels and their buffer memory depth. The SOC multi-site test 
problem can be solved using the two dimensional bin packing procedure 
with the width of the bin representing the memory depth constraint and the 
height of the bin representing the TAM width. We should point out that in 
the bin packing problem for multi-site testing, a rectangle cannot be divided 
into several sub-rectangles, which is different from the bin packing problem 
we discussed before. Dividing rectangles was permitted in the earlier 
problem since it is not necessary to connect the wrapper pins of a core to 
adjacent SOC pins. However, in multi-site testing, breaking a rectangle 
represents interruption of the test of a core, which may not be permitted. A 
simple way to accommodate the requirement that core tests cannot be 
interrupted is to require that the new rectangle to be packed must occupy 
contiguous layers only, thus avoiding division of rectangles.  

Another issue that needs to be considered is illustrated by the rectangle 
packing shown in Fig. 3(a). Fig. 3(a) shows the case where the ATE test 
channels 1 and 2 are used to test core 2 and ATE test channel 3 is used to 
test core 1. Tests for core 1 occupy M1 bits of memory buffer for tester 
channel 3 and tests for core 2 occupy M2 bits of memory buffer for channels 
1 and 2. Tests for core 3 use all three test channels and hence can only be 
started after completing the test of core 2. It should be pointed out that the 
tests are loaded into the buffer and shifted out to the inputs of the device 
under test. If the tester architecture is such that all test channel buffers are 
shifted at the same time and each channel has dedicated memory buffer then 
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the buffer bits of channel 3 are don’t cares from M1 to M2.  However if the 
tester architecture is such that each test channel is individually controlled, 
then test channel 3 can be idled after testing core 1 until core 3 test is 
initiated. In this case the size of the buffer for test channel 3 need only be 
(M3-M2+M1). The packing shown in Fig. 3(b) for the same cores as in Fig. 
3(a) illustrates the situation where the memory buffer contents for test 
channel 3 is such that don’t cares occur only at the end. In this case after the 
testing of core 1 is complete test channel 3 can be idled. In general, if the 
packing is such that all the test channel buffers have don’t cares only at the 
end the ATE memory management is simpler. 20, 21 Finally, in some ATE 
architectures the entire buffer memory can be configured as a single pool of 
memory that can be dynamically assigned to test channels. 21, 22 For such 
architectures the total memory requirements for a SOC test is important. 
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Figure 3. Rectangle packing to optimize ATE resources 

For finding SOC test schedules to minimize the number of ATE test 
channels given the maximum depth of test channel buffers, we used two 
different procedures to obtain rectangle packings from dual sequences. The 
first one is a modified version of the procedure 20 to obtain rectangle 
packings such that all the don’t cares in the memory buffers are at the end. 
The second procedure is the one described in the last section with the 
additional constraint that rectangles are not divided during packing. 

6. EXPERIMENTAL RESULTS 

The proposed simulated annealing based algorithm is implemented in 
C++ and executed on a PC with a Pentium IV 1.4GHZ processor and a 512 
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MB memory. The implemented procedure was applied to ITC’02 benchmark 
SOCs 18 under the assumption of no power constraint.  

 
Table 1. Run times for the proposed method and method of ref. 6 

No.SOC pins Benchmark Method 32 48 64 80 96 112 128 
DS 43.8  43.5  43.0  42.8 41.8  41.7  40.7  D695 6 52.3  54.2  56.1  56.9 58.9  61.3  67.7  
DS 320.7  320.9  320.3  322.8 322.9 323.1 323.9 P22810 6 559.1  580.1  616.3  642.0 642.4 686.3 678.2 
DS 148.6  148.0  146.2  142.2 140.0 137.7 136.1 P34392 6 233.1  261.2  279.2  305.1 324.6 335.5 342.0 
DS 433.2  439.0  439.2  441.9 443.4 444.2 446.2 P93791 6 686.3  732.4  756.2  782.6 774.4 781.7 783.9 
DS 77.6  76.8  76.0  73.7 71.8  70.3  69.1  G1023 6 122.9  128.0  135.2  143.1 149.0 153.6 156.2 
DS 26.6  27.5  26.9  26.8 26.4  26.2  26.0  U226 6 33.3  32.2  33.3  33.7 34.4  35.3  35.4  
DS 12.6  11.8  11.4  11.4 11.4  11.4  11.4  F2126 6 16.1  17.2  17.5  17.4 17.4  17.4  17.4  
DS 330.2  357.6  354.7  359.0 362.2 356.7 348.2 T512505 6 743.5  943.9  782.0  963.4 1023.2 1038.7 1043.4 
DS 24.1  23.6  23.5  23.3 23.9  22.8  23.6  A586710 6 24.4  25.2  26.4  26.1 26.2  25.7  27.4  
DS 12.3  12.3  12.3  12.3 12.3  12.3  12.3  Q12710 6 17.5  17.5  17.5  17.5 17.5  17.5  17.5  
DS 27.9  27.4  26.8  26.3 25.9  25.4  25.2  D281 6 37.0  39.5  41.3  42.8 44.3  45.1  45.4  
DS 28.5  27.1  26.3  25.9 25.9  25.8  25.8  H953 6 49.4  52.5  53.3  53.6 53.5  53.2  53.3  

 
The results of applying the proposed method to SOC test scheduling 

together with the results reported by earlier methods are reported in Table 2. 
The proposed simulated annealing based procedure was run for ten iterations 
and the best schedule obtained is reported. The method used is indicated in 
column 2, where DS indicates the proposed method and the other methods 
are indicated by the number of the corresponding reference. The remaining 
columns give the SOC test application time for the number of SOC pins 
shown as the heading for the column. The entry for the method(s) achieving 
the best test application time is shown in bold. The method in ref. 6 also used 
a simulated annealing algorithm with test schedules represented by sequence 
pairs and had achieved better schedules than a heuristic method 16 that also 
used sequence pairs. For this method also we report the schedule obtained 
from ten iterations of the procedure. It can be seen that for all the benchmark 
SOCs, the proposed method achieves better or equal SOC test application 
time compared to ref. 6. It can also be observed that the proposed method 
achieves the same or better test application time than all other methods, 
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except in the cases of P93791 with 80 SOC pins and A586710 with 32 SOC 
pins. 

The run times for the proposed simulated annealing based procedure and 
the earlier procedure 6 using simulated annealing together with sequence pair 
are given in Table 1. The run times reported for both procedures are for a 
total of ten iterations of the procedures. From Table 1 it can be seen that 
using dual sequences instead of sequence pairs to represent rectangle 
placements improves the run time of simulated annealing based procedures. 
A 2X to 3X improvement in run time is obtained for most designs. 

In Tables 3-6 we report the results on ATE tester channels and buffer 
memory for four circuits for which data of the earlier work 20 is available. In 
the first column we show the maximum memory allowed per test channel. In 
the next three columns we show the number of tester channels required to 
deliver the tests using the two procedures described in the last section and 
the method of ref. 20, respectively. Procedure DS1 is the proposed simulated 
annealing based procedure when the don’t care bits in the buffer memory of 
the test channels are all at the end and DS is the procedure where the don’t 
care bits are allowed to be anywhere in the buffer memory. In the next four 
columns we give the total ATE memory required to store the test input data. 
For method DS we report two entries. Under DSg we report total memory 
including the don’t cares portion and under DS we report the total memory 
ignoring the don’t care portion. For the other two procedures the don’t care 
portions are not included in the totals reported. 

From Tables 3-6 it can be seen that the simulated annealing based 
procedures require the same or smaller number of test channels compared to 
the heuristic procedure of ref. 20 for all the SOCs considered. It can also be 
seen that the total memory required is also smaller for the simulated 
annealing based procedures.   

As an example of how reducing the number of ATE test channels helps 
reduce the cost of SOC test using multi-site testers, consider a tester with 
128 test channels. Note that all SOCs under test can receive the test data 
simultaneously from the same tester channels. However the test responses 
from each SOC under test require separate test channels. From Table 4 for 
SOC p22810 with test channel buffer size limited to 640K, we note that 
using methods DS1, DS and of ref. 20, the number of test channels needed to 
apply tests to all SOCs under test is 12, 11 and 13, respectively. However 
each tested SOC needs the same number of separate test channels to obtain 
test responses.  Thus in this case, the number of SOCs that can be 
simultaneously tested using a tester with 128 test channels will be 8 using 
the procedure of ref. 20, 9 using procedure DS1 and 10 if procedure DS is 
used. Thus by using procedure DS the number of SOCs tested per unit of 
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time increases by 25% over the number tested if the procedure from ref. 20 is 
used.  

7.  CONCLUSIONS 

A new data structure called dual sequences to represent rectangle 
packings is introduced. Using dual sequences together with simulated 
annealing procedures to obtain optimal SOC test schedules and to reduce 
ATE test resources were presented. Experimental results on ITC ’02 SOC 
benchmarks showed that the proposed procedures yield better results than 
procedures proposed earlier. 
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  Table 2. Test Application Times for ITC’02 SOC Benchmarks 

No. SOC pins    Benchmark Method 
32 48 64 80 96 112 128 

DS 41654 28161 21025 16962 14310 12134 10723 
6 41899 28165 21258 17101 14310 12134 10760 
11 41949 28327 21423 17210 16403 13023 12327 
12 43723 30317 23021 18459 15698 13415 11604 

D695 

15 44307 28576 21518 17617 14608 12462 11033 
DS 433403 289332 219019 178402 147944 128887 110940 
6 438619 293019 219923 180004 151886 132812 112515 
12 452639 307780 246150 197293 167256 145417 136941 

P22810 

15 458068 299718 222471 190995 160221 145417 133405 
DS 960230 655607 544579 544579 544579 544579 544579 
6 965252 657561 544579 544579 544579 544579 544579 
12 1023820 759427 544579 544579 544579 544579 544579 

P34392 

15 1010821 680411 551778 544579 544579 544579 544579 
DS 1763528 1175756 887619 710211 594054 509845 445270 
6 1765797 1178397 893892 718005 597182 510516 451472 
11 1775099 1192980 899807 705164 602613 521806 463707 
12 1851135 1248795 975016 794020 627934 568436 511286 

P93791 

15 1791638 1185434 912233 718005 601450 528925 455738 
DS 30958 21233 16048 14794 14794 14794 14794 
6 31398 21365 16067 14794 14794 14794 14794 G1023 
15 34459 22821 16855 14794 14794 14794 14794 
DS 13416 10750 6746 5332 5332 4080 4080 
6 13416 10750 6746 5332 5332 4080 4080 U226 
15 18663 13331 10665 8084 7999 7999 7999 
DS 357088 335334 335334 335334 335334 335334 335334 
6 357088 335334 335334 335334 335334 335334 335334 F2126 
15 372125 335334 335334 335334 335334 335334 335334 
DS 10530995 10453470 5268868 5228420 5228420 5228420 5228420 
6 10530995 10453470 5268868 5228420 5228420 5228420 5228420 T512505 
15 10530995 10453470 5268868 5228420 5228420 5228420 5228420 
DS 42198943 27785885 21343768 19041307 15031300 13401034 11486601
6 42198943 27785885 21735555 19041307 15071700 14709449 12754585A586710 
15 41523868 28716501 22475033 19048835 15315476 13401034 12700205
DS 2222349 2222349 2222349 2222349 2222349 2222349 2222349 
6 2222349 2222349 2222349 2222349 2222349 2222349 2222349 Q12710 
15 2222349 2222349 2222349 2222349 2222349 2222349 2222349 
DS 7881 5329 4070 3926 3926 3926 3926 
6 7946 5485 4070 3926 3926 3926 3926 D281 
15 8444 6408 5084 3964 3926 3926 3926 
DS 119357 119357 119357 119357 119357 119357 119357 
6 119357 119357 119357 119357 119357 119357 119357 H953 
15 119357 119357 119357 119357 119357 119357 119357 
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Table 3. SOC g1023: TAM width and ATE memory           

TAM width Total ATE memory  
Memory  

DS1 DS 20 DS1 DSg DS 20 

32K 16 16 18 495679 496080 495639 511464 
40K 13 13 15 495736 493047 492948 505107 
48K 11 11 13 493358 494391 493717 507696 
56K 9 9 11 492936 493713 492087 515956 
64K 8 8 10 493475 493404 493124 514380 
72K 7 7 9 490096 490086 488965 516732 
80K 7 7 8 488759 488922 488910 514538 
88K 6 6 7 489263 490291 490020 506660 
96K 6 6 6 488639 490363 489495 507849 
104K 5 5 5 490060 489592 489142 501840 
112K 5 5 5 488244 490029 488886 500262 
120K 5 4 5 487714 489018 487870 500209 
128K 4 4 4 488271 488740 488740 497167 
 
 

Table 4. SOC p22810: TAM width and ATE memory 
TAM width Total ATE memory  

Memory  
DS1 DS 20 DS1 DSg DS 20 

256K 30 28 30 7099492 7095609 6993356 7404961
320K 23 22 25 7027732 7003552 6967561 7134483

384K 19 19 21 6996904 7023324 6955179 7255983
448K 17 16 18 7086139 6994720 6913817 7326446
512K 14 14 16 6926695 7096052 7008133 7350768
576K 13 12 14 6862197 6955836 6935482 7390568

640K 12 11 13 6971280 6915493 6833044 7441084
704K 11 10 11 6804771 6886110 6820335 7234211
768K 10 9 11 6865817 6892560 6832015 7564350
832K 9 9 10 6839742 6917345 6835019 7601117

896K 9 8 10 6797761 6932763 6823407 7784192
960K 8 8 9 6837474 6940258 6843692 7642819
1M 7 7 8 6935563 6897983 6810674 7245774
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Table 5. SOC p93791: TAM width and ATE memory 

TAM width Total ATE memory  Memory  
DS1 DS 20 DS1 DSg DS 20 

1.00M 29 29 30 28801632 29165376 28701704 30569666 
1.256M 23 23 23 28365553 28977417 28673994 28853177 

1.512M 19 19 20 28416635 28749065 28485192 29587103 
1.768M 16 16 17 28350143 28881393 28598386 30209460 
2.000M 14 14 15 28448141 28576775 28221882 30570183 
2.256M 13 13 13 28235620 28732954 28267254 29108758 

2.512M 12 12 12 28304322 28902346 28223225 30385045 
2.768M 11 11 11 28184680 28196995 28026911 29499548 
3.000M 10 10 10 28157723 28665927 28160766 29635431 
3.256M 9 9 9 28227717 28570811 28100678 29121214 

3.512M 8 8 8 28056204 28417779 28194724 28853489 
3.768M 8 8 8 28211308 28699383 28096145 29038354 
4.000M 7 7 7 28301285 28420266 28189282 29096196 
 
 

Table 6. SOC p34392: TAM width and ATE memory 
TAM width Total ATE memory  

Memory  
DS1 DS 20 DS1 DSg DS 20 

768K 21 21 23 15499573 15572458 15509657 15975513 
896K 18 18 20 16037390 15381530 15348449 16676762 
1.00M 16 15 16 15506240 15221266 15194202 15645989 
1.128M 14 14 15 15399516 15267172 15213829 16227655 

1.256M 13 12 14 15286752 15224186 15152249 15961051 
1.384M 11 11 13 15336206 15345128 15268571 16713779 
1.512M 11 10 12 15239519 15228804 15179270 15910317 
1.640M 10 10 11 15177894 15304504 15165987 15474763 
1.768M 9 9 10 15132399 15179765 15097375 15890652 

1.896M 8 8 10 15124570 15176594 15127484 16330357 
2.000M 8 8 9 15114833 15180006 15080645 16588577 

 


