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Bounds on the Number of Slicing, Mosaic, and
General Floorplans

Zion Cien Shen, Student Member, IEEE,and Chris C. N. Chu, Member, IEEE

Abstract—A floorplan can be defined as a rectangular dissec-
tion of the floorplan region. Simple and tight asymptotic bounds
on the number of floorplans for different dissection structures
help us to evaluate the size of the solution space of different
floorplan representation. They are also interesting theoretically.
However, only loose bounds exist in the literature. In this paper,
we derive tighter asymptotic bounds on the number of slicing,
mosaic and general floorplans. Consider the floorplanning of
blocks. For slicing floorplan, we prove that the exact number is
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and

the tight bound is �( !22 543 1 5) [9]. For mosaic floorplan,
we prove that the tight bound is �( !23 4). For general
floorplan, we prove a tighter lower bound of 
( !23 4) and
a tighter upper bound of ( !25 4 5).

Index Terms—Asymptotic bounds, general floorplan, mosaic
floorplan, slicing floorplan.

I. INTRODUCTION

F LOORPLANNING is a major step in the physical design
cycle of VLSI circuits. It is the step to plan the positions

and the shapes of the top-level blocks of a hierarchical design.
With circuit sizes keep on increasing, floorplanning becomes
more and more critical in determining the quality of a layout.

Floorplanningcanbeviewedas theproblemofplacing flexible
blocks, that is, blocks with fixed area but unknown dimensions.
There are many variations in the problem formulation [1]–[3].
Unfortunately, all practical floorplanning formulations are NP-
complete [1], [2]. As a result, many floorplanners adopt simu-
latedannealing [4]orotherstochastic techniques.Acode,calleda
floorplan representation, is usually used to represent the geomet-
rical relationshipamong theblocks.Thecode isperturbed repeat-
edly by the stochastic techniques to search for a good floorplan.
The run time and the quality of the solutions depend strongly on
the size of the solution space, i.e., the number of possible codes.

The geometrical relationship among the blocks is commonly
specified by a rectangular dissection of the floorplan region. The
floorplan region is first dissected into rectangular rooms and
each block is then mapped to a different room. In order to re-
strict the size of the solution space, three different ways of dis-
section are proposed. The corresponding floorplanning struc-
tures are called slicing [5], mosaic [6] and general floorplan [7].
Slicing floorplan is a special case of mosaic floorplan, and mo-
saic floorplan is a special case of general floorplan. The rela-
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Fig. 1. Relationship among the solution spaces of slicing, mosaic and general
floorplans.

Fig. 2. Structures that cannot be represented in mosaic floorplan. Floorplan
(a) with empty room and (b) with crossing cut.

tionship among the solution spaces of slicing, mosaic and gen-
eral floorplans is illustrated in Fig. 1. However, only very loose
lower and upper bounds on the size of these three sets are avail-
able. The details are discussed below.

Slicing floorplan is a rectangular dissection that can be ob-
tained by recursively cutting a rectangle horizontally or verti-
cally into two smaller rectangles. In [8], Otten first proposed
to represent slicing floorplan using a binary tree representation
called slicing tree. Each leaf of the slicing tree corresponds to
a block and each internal node represents a vertical or hori-
zontal merge operation on the two descendents. Note that one
slicing floorplan may correspond to more than one slicing tree.
Later, the redundancy was identified by Wong and Liu in [5],
where Normalized Polish Expression (NPE) was proposed to
represent any slicing structure without redundancy. An upper
bound on the number of NPEs, which is also an upper bound on
the number of slicing floorplans, is 1 . The best
lower bound on the number of slicing floorplans is given by the
number of binary trees without labels on internal nodes, which
is [9].

Mosaic floorplan was proposed by Honget al. in [6]. In mo-
saic floorplan, nonslicing structures (e.g., a wheel structure) are
allowed. However, the floorplan region is dissected into exactly

rooms so that each room is occupied by one and only one
block. In addition, there is no crossing cut in the mosaic floor-
plan. See Fig. 2 for some structures that cannot be represented
in mosaic floorplan. Corner block list (CBL) was proposed in

1In this paper, we letn be the number of blocks in the floorplanning problem.
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TABLE I
A SUMMARY OF RESULTS

[6] to represent mosaic floorplan. The size of the solution space
for CBL is . Notice that some CBLs do not correspond
to any floorplan. At about the same time, Sakanushiet al. [10]
introduced the Quarter-State Sequence (Q-Sequence) represen-
tation for mosaic floorplan. Q-Sequence is a concatenation of
room names and two kinds of positional symbols, with the total
length equals 3n. It is a nonredundant representation of mosaic
floorplan. An upper bound on the size of the solution space for
Q-sequence is . There is no previously available result
in literature on the lower bound on the number of mosaic floor-
plans. So the best lower bound is the same as the one for slicing
floorplan.

General floorplan is similar to mosaic floorplan in that non-
slicing structures are allowed. However, the floorplan region
can be dissected into more thanrooms such that some rooms
are not occupied by any block. Many representations have been
proposed during the 1990s [11]. In, Onodera used Branch-and-
Bound algorithm to solve the general floorplan problem. An
upper bound on the size of the solution space for this approach is

, which is extremely huge. In [12], Murataet al. in-
troduced the sequence pair (SP) representation for general floor-
plan. SP is one of the most elegant representations for general
floorplan and has been widely used. Unfortunately, redundancy
still exists in this representation. The number of different SP is

. In [13], Nakatake,et al.proposed the bounded-slice-
line grid (BSG) representation. In BSG,blocks are randomly
placed in a special n-by-n grid. The corresponding size of the
solution space is , which is even larger than that
of SP. The huge solution spaces of SP and BSG restrict the ap-
plicability of these representations in large floorplan problems.
Later, O-tree [14] and -tree [15] were proposed to represent
a compacted version of general floorplan. Compared to SP and
BSG, these two representations have a much smaller solution
space of . However, they represent only partial
topological information, and the dimensions of all blocks are
required in order to describe an exact floorplan. In addition,
not all possible rectangular dissections can be represented by

-tree and -tree. For the lower bound on the number of gen-
eral floorplans, there is no previously available result in litera-
ture. So the best lower bound is again the same as the one for
slicing floorplan.

Recently, several representations have been proposed to con-
struct general floorplans by inserting empty rooms into mo-
saic floorplans. They make use of mosaic floorplan as an in-
termediate step to represent nonslicing structures. In such ap-
proach, the number of empty rooms is crucial because it changes
the size of the solution space significantly. In [16], Zhouet al.
proved that empty rooms are enough to produce all gen-
eral floorplans. As a result, the size of the solution space is as
huge as . In [17], Zhuanget al.proved that

empty rooms are enough to generate all general
floorplans. But the size of the solution space of
is still quite large. Recently, Younget al.introduced Twin Binary
Sequences (TBS) [18]. TBS is a nonredundant mosaic floor-
plan representation in which the exact positions for irreducible
empty room insertion can be found in linear time. So, by upper-
bounding the number of ways to insert empty rooms into each
TBS, we can derive an upper bound on the number of general
floorplans. We use this idea to derive the bound in Section V.

In [19], Yao et al. showed that the exact number of slicing
floorplans is given by the Super Catalan number and the exact
number of mosaic floorplans is given by the Baxter number.
However, Super Catalan number is given as a recurrence relation
and Baxter number is given as a very complicated summation.
The growth rate of those numbers are hard to comprehend. The
asymptotic bounds derived in this paper give us a better under-
standing on those numbers as well as on the number of slicing
and mosaic floorplans.

II. CONTRIBUTIONS

Although many representations of these three types of
floorplan have been studied intensively and several upper
bounds on the number of combinations of those representations
have been reported, it is still theoretically interesting and
practically useful to find the tight bounds on the number
of slicing, mosaic and general floorplans. In this paper,
we show that the exact number of the slicing floorplans

is .

Also we prove that the tight bound on this number is
. For the number

of mosaic floorplans, based on the Baxter number, we show
that the tight bound is . For the number of general
floorplans, based on the idea of inserting the empty rooms into
TBS, we derive a tighter upper bound of . Based
on the bound for mosaic floorplan, we also get a tighter lower
bound of on the number of general floorplans.
The results are summarized in Table I.

These bounds give us a better understanding on the relative
sizes of these three types of floorplan. In addition, these bounds
could be utilized as a criterion to evaluate the size of the solution
space of different floorplan representation.

The organization of this paper is as follows. In Section III,
we will show the detailed proof of the exact number and the
tight asymptotic bound on the number of slicing floorplans. In
Section IV, we will present the tight bound on the number of
mosaic floorplans. In Section V, a tighter upper bound on the
number of general floorplans will be derived. In Section VI, we
will conclude the paper.
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(a) (b)

Fig. 3. (a) Slicing floorplan and (b) its corresponding SST.

Fig. 4. A “+”-rooted Skewed Slicing Tree�.

III. T IGHT BOUND FORSLICING FLOORPLAN

In [8], Otten et al. introduced a kind of binary tree called
Slicing Tree (ST) to represent slicing structure. A ST is a hi-
erarchical description of the direction of the cuts (vertical or
horizontal) in a slicing floorplan. However, for a given slicing
floorplan, there may be more than one slicing tree representa-
tion. In order to nonredundantly represent all slicing floorplans,
Wong and Liu [5] proposed a special kind of slicing tree named
Skewed Slicing Tree (SST). A SST is a slicing tree in which no
node and its right child have the same label in (Fig. 3),
where they interpreted the symbolsand as two binary op-
erators between slicing floorplans. They used the postorder tra-
versal of SST called the Normalized Polish Expression as the
floorplan representation. Wong and Liu noted that there is a
one-to-one correspondence between the set of NPEs of length

and the set of SSTs with leaves. Thus, A one-to-one
correspondence also exists between all SSTs withleaves and
all slicing structures with rectangular rooms. Therefore, we
could obtain the number of slicing floorplan configurations with

blocks by counting the number of SSTs withleaves. Before
we explore the tight bound on the number of SSTs, we will first
show how the exact number of SSTs can be obtained in the Sec-
tion III-A.

A. Exact Number of SSTs

Suppose there are overall different SSTs with leaves.
When , obviously

(1)

When , we classify them into two types of SSTs as fol-
lows: “ ”-rooted SSTs with leaves and “ ”-rooted
SSTs with leaves. Then

(2)

Given a “ ”-rooted SST (see Fig. 4), according to the def-
inition of SST, the left subtree L of could be either a SST
(“ ”-rooted or “ ”-rooted) with fewer than leaves or a single
leaf. The right subtree R of could be either a “”-rooted SST

with fewer than leaves or a single leaf. Then the number of
“ ”-rooted SSTs with leaves becomes:

(3)

Similarly, the number of “”-rooted SSTs with leaves is

(4)

According to (2)–(4), the number of SSTs withleaves be-
comes

(5)

In order to solve the recurrence (5) with the initial condition (1),
we define the generating function as

(6)

Then, we have

and so

(7)

Combining (6) and (7) yields

Since , then

(8)

Solving (8) with initial condition yields

Let and . Notice that . Thus

By the definition of generating function (6), for , we get
the coefficient of as

(9)
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The exact number of SSTs thus has the general form

if

if

In Section III-B, we try to get the tight bound on.

B. The Tight Bound on the Number of Slicing Floorplans

In order to obtain the tight bound on , we rewrite
(9) as

where

First, we bound as follows:

then, by Stirling’s approximation2

Second, we will bound For , let

When , it is not difficult to observe that

Therefore, and

2Stirling’s approximation forn! = �(
p
2�n(n=e) ) [9].

Thus, we bound as

Third, we bound as

We thus get the tight bound on as

If we consider the labels of the leaves of SSTs, there are
combinations for labeling of the leaves of SSTs. Thus

the total number of combinations of slicing floorplan is
.

IV. TIGHT BOUND FORMOSAIC FLOORPLAN

In paper [19], Yaoet al.first proved that the number of combi-
nations of mosaic floorplan with blocks is equal to the number
of Baxter permutations on . Then, ,
where is the exact number of combinations of mosaic
floorplans with blocks, and is a Baxter number, which
can be represented as follows:

(10)

In order to get the tight bound on , we first simplify (10)
as follows:

where

Without lost of generality, we assumeis even. Note that for

and for

Therefore, for , will increase with the in-
creasing of ; for , will decrease with the
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Fig. 5. Distribution ofG(k).

increasing of . Thus, the distribution of will be roughly
like Fig. 5.

First, we bound as

Second, we try to bound .
Lemma 1: For ,

when , , where
.

Proof: For , when ,
notice that , . By Stirling’s approximation,
we work out as

(11)

where .
Lemma 2: When ,

.
Proof: Assume

(12)

where . By Lemma 1, we have

Using the limit of function

we simplify as

(13)

Let , by (11) and (13), we get

Noticing that

we thus bound as follows:

Lemma 3: For ,
is bounded by .

Proof: For ,we take
as an continuous function. Thus we bound the summa-

tion of by bounding the integration of continuous function
where . By (11)–(13)

In order to solve the integration , we use the
property of Normal Distribution with the probability density
function as
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for

i.e.,

Then

Notice that when

thus

Then, we have

We thus obtain the tight bound on as

If we consider the labeling of block names, the final tight
bound on the number of mosaic floorplans withblocks is

.

V. UPPERBOUND FORGENERAL FLOORPLAN

In paper [18], a general floorplan can be constructed from
a mosaic floorplan by inserting some irreducible empty rooms
into a mosaic floorplan at right places in. There are two kinds
of empty rooms. One is called reducible empty room which is
resulted from assigning a small block into a big room [see an
example in Fig. 6(a)]. Another kind of empty room is called
irreducible empty rooms which can not be removed by merging
with another room in the packing [see an example in Fig. 6(b)].
In addition, a wheel structure always exists in every irreducible
empty room (see Fig. 7). We discuss this idea in more detail in
the Section V-A.

Fig. 6. Example of reducible and irreducible empty rooms.

Fig. 7. A wheel structure.

Fig. 8. Pair ofT junctions produce a wheel structure.

A. Empty Room Insertion

Observation 1: A wheel structure can be produced from and
only from the following mosaic structure: a pair ofjunctions
share the same channel on each side, respectively. It is shown in
Fig. 8.

Based on the Observation 1, it is not difficult to prove the
following Lemma.

Lemma 4: For a channel with and blocks on each side,
respectively, the maximum number of irreducible empty rooms
which could be inserted along the channel is .

Proof: Without lost of generality, we assume .
Then, from blocks on one side of a channel, we could find
out junctions. Similarly, for blocks along the other
side of the channel, there is junctions. Therefore, at
most we could pick pairs of junctions from each side at one
time. According to the Observation 1, an empty room could
be produced by any pair of junctions with one from each
side of the channel, respectively. We label thesejunctions
as on each side from top to bottom or from
left to right, and then match them one by one according to the
order from to . empty rooms could thus be inserted
along the channel. An example with 4 blocks and 5 blocks
along a channel on each side, respectively, is shown in Fig. 9.
Maximumly, 3 irreducible empty rooms (represented by X) are
inserted in this example.

Lemma 5: For a channel with and blocks on each side,
respectively, the number of ways to insert empty rooms along

the channel is .
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Fig. 9. Example of inserting maximum number of irreducible empty rooms.

Proof: Without lost of generality, we assume . Ac-
cording to Lemma 4, we can insert at most empty rooms
along the channel, which means empty rooms
could possibly inserted along the channel. Similar to the PROOF
of Lemma 4, we pick pairs of junctions from each side of
the channel, and label them from top to bottom or left to right
and then match them one by one according to the order. We can
thus insert empty rooms into those junctions.

Let denote the number of ways to insert empty rooms
along the channel withand blocks on each side, respectively.
We have

by the definition of Combination

In the Section V-B, we will formulate the total number of
ways to insert empty rooms into a mosaic floorplan with
blocks.

B. An Upper Bound on the Number of General Floorplans

Given a mosaic floorplan with blocks, by counting the total
number of ways to insert empty rooms into the mosaic floorplan,
we can obtain the total number of general floorplan generated
from the mosaic floorplan.

For a mosaic floorplan with blocks, it has overall
channels. Without lost of generality, we assume it has

horizontal channels with the uppermost boundary
as the 1st horizontal channel and downmost boundary asth
horizontal channel. In addition, it has vertical channels
with the leftmost boundary as 1st vertical channel and rightmost
boundary as vertical channel.

Let be the number of blocks which
touch the th horizontal channel on the top, be the number
of blocks which touch theth horizontal channel on the bottom.
Let be the number of blocks which
touch the th vertical channel on the left, be the number of
blocks which touch theth vertical channel on the right.

Assuming , we have

We denote as the total number of ways to insert empty
rooms into a mosaic floorplan with blocks, according to
Lemma 5

(14)

In order to get an upper bound on , we notice that

We thus bound (14) as

Since the tight bound on the number of mosaic floorplan with
blocks is , we obtain an upper bound on the

number of general floorplan with blocks as .

VI. CONCLUSION

We have successfully obtained tight bounds of
on the number of slicing floorplans and

on the number of mosaic floorplans. However,
for the number of general floorplans, the lower bound

is still significantly smaller than the upper bound
. We will work on the tight bound on the

number of general floorplans in the future.
Regarding floorplan representations, NPE is a nonredundant

representation for slicing floorplan. Q-sequence and TBS
are two nonredundant representations for mosaic floorplan.
However, there is no nonredundant representation for general
floorplan. Although all general floorplans can be produced by
inserting empty rooms into TBSs, the information describing
which empty room to be inserted is not uniform. Hence TBS
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cannot be easily extended to a succinct representation which
describes a general floorplan completely. We will also work on
the problem of designing an elegant and nonredundant general
floorplan representation in the future.
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