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Abstract—A floorplan can be defined as a rectangular dissec-
tion of the floorplan region. Simple and tight asymptotic bounds
on the number of floorplans for different dissection structures
help us to evaluate the size of the solution space of different
floorplan representation. They are also interesting theoretically.
However, only loose bounds exist in the literature. In this paper,
we derive tighter asymptotic bounds on the number of slicing,
mosaic and general floorplans. Consider the floorplanning ofn
blocks. For slicing floorplan, we prove that the exact number is
n!((=1)"t1/2) Z;::O(3 + \/§)n—2k <1I/62 n1£2k
the tight bound is ®(n!22-543n /p1-5) [9]. For mosaic floorplan,
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Mosaic

General

and
Fig. 1. Relationship among the solution spaces of slicing, mosaic and general

N . fl lans.
we prove that the tight bound is ®(n!23™/n*). For general oorpians
floorplan, we prove a tighter lower bound of 2(n!23"/n%) and
a tighter upper bound of O(n!25™ /n*%). B
A A B
Index Terms—Asymptotic bounds, general floorplan, mosaic
floorplan, slicing floorplan.
c b c D
|. INTRODUCTION @ b)

LOORPLANNING is a major step in the physical desigrig- 2. Structures that cannot be represented in mosaic floorplan. Floorplan
cycle of VLSI circuits. It is the step to plan the positiond? "ith emPty room and (b) with crossing cut.

and the shapes of the top-level blocks of a hierarchical design

With circuit sizes keep on increasing, floorplanning becom |§nsh|p among the SOIUt'On. spaces of slicing, mosaic and gen-
more and more critical in determining the quality of a layout. eral floorplans is illustrated in Fig. 1. However, only very loose

Floorplanning can be viewed as the problem ofplacingflexib| wer and upper bounds on the size of these three sets are avail-

blocks, that is, blocks with fixed area but unknown dimension&! Ie_. The details are discussed belovy. .

There are many variations in the problem formulation [1]_[31_ _Sllcmg roorpIa_m is a re_ctangular dlssectlo_n that can be o_b-
Unfortunately, all practical floorplanning formulations are N -a'”e‘?' by recursively cutting a rectangle horlzontally or verti-
complete [1], [2]. As a result, many floorplanners adopt simL‘f’-"j‘IIy Into two _S'”_”a"er rectangle_s. In [2.3]' Otten first propose_d
lated annealing [4]orotherstochastictechniques.Acode,callettf? epres_e_nt slicing floorplan using a t_Jlr_1ary tree representation
floorplan representation, is usually used to represent the geonf@ied slicing tree. Each leaf of the slicing tree corresponds to
rical relationship among the blocks. The codeis perturbed repeaa block and each m_ternal node represents a vertical or hori-
edly by the stochastic techniques to search for a good floorpl&ff"'tal Merge operation on the two descendents. Note that one

The run time and the quality of the solutions depend strongly ching 1;I100rptljan (rjnay correspotljnd :co Ijngre than onedsligin.g tree.
the size of the solution space, i.e., the number of possible code&e": the redundancy was identified by Wong and Liu in [5],

The geometrical relationship among the blocks is commonf§1€ré Normalized Polish Expression (NPE) was proposed to

specified by a rectangular dissection of the floorplan region. TgPresent any slicing structure w@hogt redundancy. An upper
floorplan region is first dissected into rectangular rooms alﬁfl’und onthe ““'_“F’er of NPEs, Wh'Ch 'Sgilsolag upper bound on
each block is then mapped to a different room. In order to rH1e number of slicing floorplans, ©9(n!2°" /n"*)t. The best
strict the size of the solution space, three different ways of di|§’-Wer bound.on the numb.er of slicing roorpIans is given by the
section are proposed. The corresponding floorplanning strlwmber;;f bT?ry trees without labels on internal nodes, which
tures are called slicing [5], mosaic [6] and general floorplan [7 Q(n12%" [n”)[9]. .

Slicing floorplan is a special case of mosaic floorplan, and mo- Mosaic floorplan was proposed by Hoegal. in [6]. In mo-

saic floorplan is a special case of general floorplan. The re aic fioorplan, nonslicing structures.(e.g., "%‘Whee' st.ructure) are
allowed. However, the floorplan region is dissected into exactly

n rooms so that each room is occupied by one and only one

Manuscript received January 9, 2003. This paper was recommended by fisck. |n addition, there is no crossing cut in the mosaic floor-
sociate Editor T. Yoshimura. !
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cnchu@iastate.edu).
Digital Object Identifier 10.1109/TCAD.2003.818136 1n this paper, we let. be the number of blocks in the floorplanning problem.

0278-0070/03$17.00 © 2003 IEEE



SHEN AND CHU: BOUNDS ON THE NUMBER OF SLICING, MOSAIC, AND GENERAL FLOORPLANS 1355

TABLE |
A SUMMARY OF RESULTS
Previous Bounds Our Bounds
Lower Upper Lower Upper
Slicing | Q(n!227/n15)[9] O(n!23"/n1>) [5] O(n!22587 nl3)
Mosaic | Q(n!227/n1®)[9]  O(n!23") [10] O(n!2%"/n%)
General | Q(n!22%/n!-) [9] O((n!)?) [12] Q(n'237/n*)  O(n!25"/n*3)

[6] to represent mosaic floorplan. The size of the solution spage- |/4n — 1] empty rooms are enough to generate all general
for CBL is ©(n!23™). Notice that some CBLs do not correspondloorplans. But the size of the solution space&x®®™ (2n)!/n!)
to any floorplan. At about the same time, Sakanwstal. [10] s still quite large. Recently, Yourg al.introduced Twin Binary
introduced the Quarter-State Sequence (Q-Sequence) repreSeiuences (TBS) [18]. TBS is a nonredundant mosaic floor-
tation for mosaic floorplan. Q-Sequence is a concatenationgifin representation in which the exact positions for irreducible
room names and two kinds of positional symbols, with the totainpty room insertion can be found in linear time. So, by upper-
length equals 3n. It is a nonredundant representation of mosaétinding the number of ways to insert empty rooms into each
floorplan. An upper bound on the size of the solution space fgBS, we can derive an upper bound on the number of general
Q-sequence i®(n!2°"). There is no previously available resulfioorplans. We use this idea to derive the bound in Section V.
in literature on the lower bound on the number of mosaic floor- |n [19], Yao et al. showed that the exact number of slicing
plans. So the best lower bound is the same as the one for slici@rplans is given by the Super Catalan number and the exact
floorplan. number of mosaic floorplans is given by the Baxter number.
General floorplan is similar to mosaic floorplan in that nonHowever, Super Catalan number is given as a recurrence relation
slicing structures are allowed. However, the floorplan regioghd Baxter number is given as a very complicated summation.
can be dissected into more thamooms such that some roomsthe growth rate of those numbers are hard to comprehend. The
are not occupied by any block. Many representations have begfymptotic bounds derived in this paper give us a better under-

proposed during the 1990s [11]. In, Onodera used Branch-asganding on those numbers as well as on the number of slicing
Bound algorithm to solve the general floorplan problem. Agnd mosaic floorplans.

upper bound on the size of the solution space for this approach is
O(2™"+2)), which is extremely huge. In [12], Murat al. in-
troduced the sequence pair (SP) representation for general floor-
plan. SP is one of the most elegant representations for generahlthough many representations of these three types of
floorplan and has been widely used. Unfortunately, redundaritgorplan have been studied intensively and several upper
still exists in this representation. The number of different SP iwunds on the number of combinations of those representations
O((n!)?). In [13], Nakatakeet al. proposed the bounded-slice-have been reported, it is still theoretically interesting and
line grid (BSG) representation. In BS& blocks are randomly practically useful to find the tight bounds on the number
placed in a special n-by-n grid. The corresponding size of tloé slicing, mosaic and general floorplans. In this paper,
solution space i®)(n!C(n?,n)), which is even larger than thatwe show that the exact number of the slicing floorplans
of SP. The huge solution spaces of SP and BSG restrict the gp- nl((—1)"1/2) S (3 4 /By 2k 1/2 1/2 .
plicability of these representations in large floorplan problems. k n—k
Later, O-tree [14] and3*-tree [15] were proposed to represenfIS0 we prove that the tight bound on this number is
a compacted version of general floorplan. Compared to SP &@!(3 + V8)"/n'?) = ©(n!2%7#3" /n15). For the number
BSG, these two representations have a much smaller solutf§rmosaic floorplans, based on the Baxter number, we show
space 0f0(n!22" /n'-5). However, they represent only partiathat the tight bound i®(n!2%" /n*). For the number of general
topological information, and the dimensions of all blocks aréoorplans, based on the idea of inserting the empty rooms into
required in order to describe an exact floorplan. In additiofBS, we derive a tighter upper bound@fn!2°" /n**). Based
not all possible rectangular dissections can be representedopythe bound for mosaic floorplan, we also get a tighter lower
O-tree andB*-tree. For the lower bound on the number of gerPound of Q(n!2" /n*) on the number of general floorplans.
eral floorplans, there is no previously available result in literd-he results are summarized in Table I.
ture. So the best lower bound is again the same as the one fofhese bounds give us a better understanding on the relative
slicing floorplan. sizes of these three types of floorplan. In addition, these bounds
Recently, several representations have been proposed to @id be utilized as a criterion to evaluate the size of the solution
struct general floorplans by inserting empty rooms into mepace of different floorplan representation.
saic floorplans. They make use of mosaic floorplan as an in-The organization of this paper is as follows. In Section Il
termediate step to represent nonslicing structures. In such g will show the detailed proof of the exact number and the
proach, the number of empty rooms is crucial because it changight asymptotic bound on the number of slicing floorplans. In
the size of the solution space significantly. In [16], Zhetual. Section IV, we will present the tight bound on the number of
proved that?2 — n empty rooms are enough to produce all genmosaic floorplans. In Section V, a tighter upper bound on the
eral floorplans. As a result, the size of the solution space is msmber of general floorplans will be derived. In Section VI, we
huge a<0(n!C(n%,n)23""). In [17], Zhuanget al. proved that will conclude the paper.

Il. CONTRIBUTIONS
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* with fewer thamnn leaves or a single leaf. Then the number of
D / \ “+"-rooted SSTs with: leaves becomes:
A * *
C E +/ \C E/\D Gy = t1bp_1 +tobp_o+ - -+ tp_obo +t,_1-1. (3)
B B/ \A Similarly, the number of ¥"-rooted SSTs with leaves is
@) () bp =tian_1+t2an_2+- - +tn 202 +tn_1-1. (4)

Fig. 3. (a) Slicing floorplan and (b) its corresponding SST. ) )
According to (2)—(4), the number of SSTs witheaves be-

comes

+
/ \ tn =t1(an—1+bp—1) +ta(an—2+ bp_2)+

<ot tp_a(ag + b2) + 2t 1
L R =titp—1 + totn_o+ -+ tuooto +tp_1ti +tu_1i.  (5)

In order to solve the recurrence (5) with the initial condition (1),

Fig. 4. A*“+"-rooted Skewed Slicing TreE. A ) ]
we define the generating function as

IIl. TIGHT BOUND FORSLICING FLOORPLAN T(z) =ty 4 toz +t32> + -, (6)

In [8], Otten et al. introduced a kind of binary tree calledThen, we have
Slicing Tree (ST) to represent slicing structure. A ST is a hi-
erarchical description of the direction of the cuts (vertical o ?(z) = 3 + (tita + tot1)z + (tits + toty +t3ty)z> +---.
horizontal) in a slicing floorplan. However, for a given slicing
floorplan, there may be more than one slicing tree represeng@d S0
tion. In order to nonredundantly represent all slicing floorplans,z 2
Wong and Liu [5] proposed a special kind of slicing tree name%d (2) +T(z) = (L + 1) + (t2 + ota + t2)z2
Skewed Slicing Tree (SST). A SST is a slicing tree in which no +(tats + boty + 13ty +13)2" + - (7)
node and its right child have the same labe{in+} (Fig. 3), - .
where they interpreted the symbel&nd + as two binary op- Combining (6) and (7) yields
erators between slicing floorplans. They used the postorder tra- t + [TQ(Z) +T(2)]z = T(2).
versal of SST called the Normalized Polish Expression as the
floorplan representation. Wong and Liu noted that there isSdncet; = 1, then
one-to-one correspondence between the set of NPEs of length
2n — 1 and the set of SSTs with leaves. Thus, A one-to-one 2T(z)° + (2 = DT (z) + 1 =0. ®)
correspondence also exists between all SSTswlgaves and Solving (8) with initial conditionZ’(0) = ¢, = 1 yields
all slicing structures withn rectangular rooms. Therefore, we

could obtain the number of slicing floorplan configurations with T(s) — 1—2—-V22—-62+1
n blocks by counting the number of SSTs witheaves. Before () = 2z )

we explore the tight bound on the number of SSTs, we will first . B . _
show how the exact number of SSTs can be obtained inthe S %t—o‘ =3+ v8andj =3 — V/8. Notice thaia/3 = 1. Thus

tion IlI-A. T(2) l—z—Va—-zyp—=z
z =
2z
A. Exact Number of SSTs 1 P 2
Suppose there are overaj| different SSTs withn leaves. T2z [1 —z-Val V =yt~ 8 ]

Whenn = 1, obviously 1 [ o s 1\

2 £ 06

t =1 @) 2z VAN
oo 1 1 7 )

Whenn > 2, we classify them into two types of SSTs as fol- X Z (3) <7> 2.
lows: a,, “+"-rooted SSTs withn leaves and,, “x"-rooted j=0

SSTs withn leaves. Then By the definition of generating function (6), far > 2, we get

the coefficient ofz” 1 as
tn = a, + by,.

1 n % _1 k % _1 n—k
Given a “+"-rooted SSTI" (see Fig. 4), according to the def- bn = - 2 Z <k) (E) <n — k) (7)
inition of SST, the left subtree L of could be either a SST I::j " L L
(**"-rooted or *+"-rooted) with fewer tham: leaves or a single :¢ Z a2k < 2 > < 2 ) ] 9)
leaf. The right subtree R df could be either a#"-rooted SST 2 =
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The exact number of SSTs thus has the general form
ifn=1

L,
th=1 )" N ok (3 3 - .
o £mn (1) (L), ves

In Section I11-B, we try to get the tight bound ap.

B. The Tight Bound on the Number of Slicing Floorplans

In order to obtain the tight bound ap (n > 2), we rewrite

(9) as

ty = En: F(k)
k=0

where

First, we boundF'(0 ollows:

()

F(0) =
n+1 l 4 (L n
:( 1; a” 2 ) n!(2 + 1) (_1)n
™I x3x---x(2n—3))
2n+1n!
a™(2n)!

22 ()2 (20 — 1)
then, by Stirling’s approximaticn
o ( o\ /2m2n (22 )
22041 (v/2mn )2 ()2 (2n — 1)

aTL
92.543n
=0 ( nls ) :

Second, we will bounQZ;l1

F(k).Fori<k<n-—1,let

Pl kD (k-3)
PTFER-1) T a2n—k-)k
Whenn — oo, it is not difficult to observe that
—0.0147
O<reo>ryg<- -+ <rp_1<1
Tn_1 ~0.1177.
Therefore,F(1) = r1 F(0) < 0 and

S R () =F(1) 4 F(U)ra + F(Urars

= _|_..._|_F(1)»,~2...rn_1

SF(1) 4+ F(1)r, 1+ F(1)r2_,
ok F(1)r22

> 1 f’il)_l

~ — 0.0166F(0).

2stirling’s approximation fom! = ©(v/2xn(n/e)™) [9].

1357

Thus, we bound" '} F(k) as

—0.0166F(0) <

Third, we boundF'(n) as
F(n) = a7 F(0) = o(F(0)).
We thus get the tight bound an as
t, =F(0) — 0.0166F(0) +
=6(F(0))

2.543n
29(2?) :
p.p

o(F(0))

If we consider the labels of the leaves of SSTs, there are

n! combinations for labeling of the leaves of SSTs. Thus
the total number of combinations of slicing floorplan is
@(n!22.543n/n1.5)_

IV. TIGHT BOUND FORMOSAIC FLOORPLAN

In paper [19], Yacet al.first proved that the number of combi-
nations of mosaic floorplan with blocks is equal to the number
of Baxter permutations ofil,...,n}. Then,M(n) = B(n),
where M (n) is the exact number of combinations of mosaic
floorplans withn blocks, andB(n) is a Baxter number, which
can be represented as follows:

o (1) (1) £
() () e

In order to get the tight bound dB(n ), we first simplify (10)
as follows:
B(n):i
(n+1)1?
(k=) (n—k+2)k!(n—k+1D)!(k+1)(n—k)!

2(n!)3(n+1)
n(k—1)E(k+1)!(n—k)!(n—k+1)(n—k+2)!

A
W‘
M=+N
+
\/

2(n!)3(n+1)
n(k—DWENk+D)(n—k)(n—k+1)!(n—k+2)!"
Without lost of generality, we assumsds even. Note that for
1<k<n

G(k) =

G(k) = G(n -k +1)

and for2 < k < n/2

G(k) (mn—k+1)(n—k+2)(n—k+3)

e > 1.
Gk —1) (k—1k(k+1)

Therefore, forl < k < n/2, G(k) will increase with the in-

creasing of; forn/2+1 < k < n, G(k) will decrease with the
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G(k) where0 < ¢ < 1. By Lemma 1, we have

3(n/2—cVnlnn
G(n/2) Vo Ly \/m (n/ )
— — = — 2C _—
3(n/2+cvnlnn)
Inn
X (1 + 2¢y/ —) ) .
n

Using the limit of function

lim,_o(1 £ a:)k/"" = ¢tk

we simplify M as

12 e %_g +1 e - k M =0 (e—(?m\/nlnn—&:2 lnn) . e(3(:\/nlnn+6c2 lnn))
Fig. 5. Distribution ofG(k). =0 (nlch) : (13)
increasing oft. Thus, the distribution of/(%) will be roughly Letc = 1/v12, by (11) and (13), we get
like Fig. 5. no —— 1 n
First, we bound¥(n/2) as < (\/_ nlmﬂ) o) G (2) '
ny 2(n))3(n+1) o -
G (5) T DIEIE + DIEIE + DIE 1 2)! Noticing that
_ (n)*(n + 1) G(1) < G(2) < - . = V/nlun]
B 5+ (G+2) B
(2mn)3/2(2)3n we thus boun(E”/2 v/ mlnnl Gk as follows:
:@ —e
(mn)3(5¢)3n3 n/2—[1/v12Vn o]
by Stirling’s approximation 0< Z G(k) < <2 [\/— Vnln n-|>
23n k=1
B <n ) ' x O(n~E(3)
n
Second, we try to bounil""’% G(k). =0 (G (5)) .
Lemma 1:For n/2 — [Vnlnn] < k < n/2,
whenn — oo, G(k) = G(n/2)/M, where M = Len)ma3 Forn/2 — [1/V12Vnlnn] < k < n/2,
O((2k/n)?*(2 — 2k /n)>(" k). Yk a1y vT3vTa O (k) isbounded b (v/nG(n/2)).
Proof: Forn/2 — [Vnlnn| <k < n/2, whenn — oo, Proof: Forn/2 — [1/v/12v/nInn] < k < n/2,we take
notice thatk — oo, n — k — oo. By Stirling’s approximation, G(k) as an continuous function. Thus we bound the summa-
we work outG (k) as tion of G(k) by bounding the integration of continuous function
(n1)? G(k) wheren/2 — 1//12v/nlnn < k < n/2. By (11)—(13)
6= (i k>!>3> /2
< (27rn)3/2(%)3n ) |_ z\/:_ _|G(k)
3/2 /e h\a(m— k=n/2—|(1/V/12)Vnlnn
2rk) 3/2 3 (2m(n — k)77 (2R )3(=k)p3 n/2
=0 / G(k)dk
n4 5k3k (n—k) n/2—(1/vV12)Vnlnn
0 i
=0 =VnlnnG (E) C) / —n 12 e
45( 2k nk)s(n—m 2 1/v12
(2) 1/V/12
(3) _ n —12¢2
2 (11) _\/nlnnG(2>®</0 n dc).
whereM = O((2k/n)%*(2 — 2k /n)3("—F), [ 2
Lemma 2: \s\(/he/nnlg :( n/2 —/n()l/\/ﬁ)\/m1 G(k) = norder to solve the integratioﬁ)l/‘/ﬁ n~12<dc, we use the
O(n=1)G(n/2). ' property of Normal Distribution with the probability density
Proof: Assume function as
1 2 2
_ E . P _ —x° /20
k= 5 [eVnlnn] (12) (z) Jme
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for0 < z < 30

1 /’30- £E2/20'2
e~ dr ~ 0.5
/ =~
ov2m Jo l:‘ \ i

ie., reducible irreducible
empty room empty room

30
/ (2_’”2/2”2 dr ~ \/Eo.
0 2 (a) (b

Fig. 6. Example of reducible and irreducible empty rooms.

Then

1/V/12 , 1/V/12 ,
/ n—lZc de = / 6—12c lnndc.
0 0

Notice that whem — oo ‘L\—

_1 >3- 71 | ——+—— irreducible
V12 v241lnn empty room
thus

1/V12 R T 1 The four T-junctions at the
/ n~12¢ de ~ 2 . corners of an irreducible empty
0 2+/241nn room form a wheel structure
Then, we have Fig. 7. A wheel structure.
n/2 n
Z G(k‘) = @ (\/'EG (§)> . C C Channel ¢ A B A
k:n/2—|-1/\/172\/n1nn-| A D — AlX| D \ — . ¢cX B
- B B C D D
We thus obtain the tight bound d&(n) as /
Channel ¢
B(n)
n Fig. 8. Pair ofT junctions produce a wheel structure.
=2 Gk
k=1 A. Empty Room Insertion
n/2=[1/V12VnTnn | n/2 Observation 1: A wheel structure can be produced from and
=2 Z G(k) + Z G(k) only from the following mosaic structure: a pair‘dfjunctions
k=1 k=n/2—[1/VI2VnInn share the same channel on each side, respectively. It is shown in
n 1 Fig. 8.
—-2G (5 - L/ﬁ vnlnn -D Based on the Observation 1, it is not difficult to prove the
n n . n following Lemma.
=2 [9 (G (§>) +© (\/EG (§>> - O(n™ )G (5)] Lemma 4: For a channel wittp andg blocks on each side,
_o(/nG n respectively, the maximum number of irreducible empty rooms
o ( " (5)) which could be inserted along the channehisi(p, ¢) — 1.

237 Proof: Without lost of generality, we assume < q.
=0 <F> : Then, fromp blocks on one side of a channel, we could find
h?utp — 1 T junctions. Similarly, forq blocks along the other

side of the channel, there is— 1 T junctions. Therefore, at
most we could piclp pairs of1" junctions from each side at one
time. According to the Observation 1, an empty room could
be produced by any pair ¢f junctions with one from each
side of the channel, respectively. We label th&s@inctions

In paper [18], a general floorplat’ can be constructed fromas 1y, 75, ..., T,_, on each side from top to bottom or from
amosaic floorplad”’ by inserting some irreducible empty roomseft to right, and then match them one by one according to the
into a mosaic floorplan at right places i There are two kinds order fromT} to T,.p — 1 empty rooms could thus be inserted
of empty rooms. One is called reducible empty room which igong the channel. An example with 4 blocks and 5 blocks
resulted from assigning a small block into a big room [see &jflong a channel on each side, respectively, is shown in Fig. 9.
example in Fig. 6(a)]. Another kind of empty room is calledaximumly, 3 irreducible empty rooms (represented by X) are
irreducible empty rooms which can not be removed by mergimgserted in this example. n
with another room in the packing [see an example in Fig. 6(b)]. Lemma 5: For a channel witlp and¢ blocks on each side,

In addition, a wheel structure always exists in every irreducibigspectively, the number of ways to insert empty rooms along

empty room (see Fig. 7). We discuss this idea in more detail jn (p+qg—2
the Section V-A. the channel i i1

If we consider the labeling of block names, the final tig
bound on the number of mosaic floorplans withblocks is
O(n!23" /n?).

V. UPPERBOUND FOR GENERAL FLOORPLAN
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E Empty "°°m% E Assumingh; = hj, = v1 = v}, 5, = 1, we have
A A X r k k n+3—k n+3—k
. . Shi=d= Y w= Y d=ul
X i=1 i=1 =1 j=1
G G
¢ C We denotel.(n) as the total number of ways to insert empty
D H X H rooms into a mosaic floorplan with blocks, according to
Lemma 5
D
I I k n+3—k
~ - AR A
e L(n) =] C(hi,h))- ][ Clvs.v))
i=1 j=1
Fig. 9. Example of inserting maximum number of irreducible empty rooms. k bR — 2 n+3—k v o — 2
— 1 i J j
. | (") I (7007) o9
Proof: Without lost of generality, we assume< ¢. Ac- i=1 j=1

cording to Lemma 4, we can insert at mpst 1 empty rooms |4 order to get an upper bound h(n), we notice that
along the channel, which meap® < j < p — 1 empty rooms g5t €{0,1,2,...,n}

could possibly inserted along the channel. Similartothe PROOF = o

of Lemma 4, we pickj pairs of 1" junctions from each side of (p) ) <S> < (p + 8) )

the channel, and label them from top to bottom or left to right q t) ~\g+t

and then match them one by one according to the order. We &R8 thus bound (14) as

thus inserty empty rooms into thos®@' junctions.

; k n+3—k
LetC(p,q) denote_ the number of ways to m_sertempty rooms S (h + B, — 2) > (v 4, —2)
along the channel with andq blocks on each side, respectively. Ln) < | =1 j=1
We have = k ' n+3-k
> (= 1) X (5= 1)
_ p—1\(ag—-1 = =
C(p7(I)_Z< J )( J > _ 2n 4+ 2 — 2k ) 2n+2—2(n+3—k)
=0 T\ n+1-k n+1—(n+3-k)
-1
—~\p—1-7 J “\n-1
7=0
ptqg—2 - _(2n =D by Stirling imati
=", 1 ) by the definition of Combination T ((n—ynyz e PY SUTING S approXimation
2n—2
_<p+q—2> 27 (2n — 2) (M)
n -1 : =0 i
q 1)\ 22
. (V2r(n - D)2 (#52)
In the Section V-B, we will formulate the total number of 92n
ways to insert empty rooms into a mosaic floorplan with =0 <n0-5)

blocks. ) ) ) )
Since the tight bound on the number of mosaic floorplan with

B. An Upper Bound on the Number of General Floorplans 7 blocks is©(n!2%" /n*), we obtain an upper bound on the

: 195n /, 4.5
Given a mosaic floorplan with blocks, by counting the total number of general floorplan with blocks asO(n!2°" /n®).

number of ways to insert empty rooms into the mosaic floorplan,
we can obtain the total number of general floorplan generated
from the mosaic floorplan. We have successfully obtained tight bounds of
For a mosaic floorplan witm blocks, it has overalh + 3  ©(n!22:543" /p'3) on the number of slicing floorplans and
channels. Without lost of generality, we assume it hg@ < ©(n!2"/n*) on the number of mosaic floorplans. However,
k < n 4+ 1) horizontal channels with the uppermost boundarfpr the number of general floorplans, the lower bound
as the 1st horizontal channel and downmost boundamtias (n!23" /n?) is still significantly smaller than the upper bound
horizontal channel. In addition, it hast- 3 — & vertical channels O(n!2°"/n*?®). We will work on the tight bound on the
with the leftmost boundary as 1st vertical channel and rightmasimber of general floorplans in the future.
boundary agn + 3 — k)" vertical channel. Regarding floorplan representations, NPE is a nonredundant
Let h; (: = 1,2,...,k) be the number of blocks which representation for slicing floorplan. Q-sequence and TBS
touch theith horizontal channel on the top; be the number are two nonredundant representations for mosaic floorplan.
of blocks which touch théth horizontal channel on the bottom.However, there is no nonredundant representation for general
Letv; (1 < j < n+ 3 — k) be the number of blocks which floorplan. Although all general floorplans can be produced by
touch thejth vertical channel on the left;; be the number of inserting empty rooms into TBSs, the information describing
blocks which touch thgth vertical channel on the right. which empty room to be inserted is not uniform. Hence TBS

VI. CONCLUSION
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