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Fig. 1. Model of awire segment of lengtiand widthh by ar-typeRCcircuit.
ro IS the unit wire resistance(h) is the wire capacitance per unit length for a

Abstract—We present an algorithm for delay minimization of intercon- segment of widtth. In this paper, we assume thét:) is an increasing function.

nect trees by simultaneous buffer insertion/sizing and wire sizing in this
paper. Both wire widths and buffer sizes are chosen from user-defined dis-

crete sets. Our algorithm integrates the quadratic programming approach £
for handling a wire branch into the dynamic programming (DP) frame- 9 |:>
work. Our experimental results show that our hybrid dynamic/quadratic l

programming algorithm is faster, more accurate, and uses considerably less s dp/rs
memory than the pure DP approach. —VI_

Index Terms—Buffer insertion, interconnect, optimization, performance
optimization, physical design, timing optimization. Fig. 2. Model of a buffer of sizeB by a switch-levelRC circuit. ¢z, 75,
anddp are the input capacitance, output resistance, and the intrinsic delay,
respectively.

|. INTRODUCTION

As feature size becomes smaller and chip area becomes larger iraigorithm was later extended to handle power dissipation and incorpo-
tegrated circuits, the importance of global interconnect delay increagete signal slew into the buffer delay model [2]. In order to obtain an
rapidly with respect with the gate delay. As a result, interconneatcurate solution, the DP algorithms in [2] and [15] divide the wires
delay at the global level has become a critical factor in determininigto short segments, resulting in a large number of wire segments. For
the system performance of the deep submicrometer designs. Nea¢h wire segment, the set of all possible solutions for the whole down-
materials, such as copper and low dielectric constahptnfaterials, Stream subtree must be computed and stored, which takes a lot of time
have been used to improve interconnect performance. However@ad memory. To solve this shortcoming, Alpert and Devgan [11] tried
the global interconnect level, the benefit of material changes alondggreduce the runtime using a wire segmenting technique. The idea was
insufficient to meet overall performance requirements. Even with tfe trade off runtime with solution quality by using a coarser wire seg-
help of copper and low: materials, it is predicted that interconnectmentation. Lai and Wong [16] tried using a recomputation technique to
delay is still likely to dominate the chip performance beyond theeduce the memory needed for the computation. Their idea was to trade
0.181:m technology [3]. Therefore, we can expect the significance sfemory against runtime by recomputing instead of storing values.
interconnect delay to rapidly increase in the near future. The algorithm presented in this paper is accurate, fast, and econom-

In the past, gate delay was the dominant factor in determining cigal in its use of memory. This algorithm combines the DP framework
cuit performance. Therefore, gate sizing and transistor sizing have beéhillis et al.[15] and the QP approach for interconnect optimization
extensively studied in the literature [4]-[6]. As process technology haga wire by Chu and Wong [1]. As shown in [1], the problem of si-
advanced, interconnect delay has played an increasingly important roléltaneous buffer insertion and WS for a wire can be formulated as
in determining the performance of the circuit and, hence, wire sizigconvex quadratic program and the convex quadratic program can be
(WS) has recently become an active research topic [7]-[9]. In additisalved extremely efficiently using the active set method. In this paper,
to sizing gates and wires, buffer insertion and buffer sizing have bewg use an approach similar to [1] to show that each wire branch can
proven effective in reducing delay and so have been extensively studigdhandled as a whole—that is, without being divided into numerous
in the literature [10]-[13]. segments. Therefore, the set of possible solutions of a wire branch can

Since both buffer insertion and WS can optimize the performanbe found in less time and only one set per wire needs to be stored.
of interconnects and their solutions can affect each other, several Te-handle the tree structure (i.e., to combine the sets of solutions of
searchers have studied their simultaneous optimization. Chu and Wadgacent wires together), DP is used. We call our hybrid algorithm dy-
[14] presented a closed form solution to solve the simultaneous buffe@mic/quadratic programming (DQP).
insertion/sizing and WS problem for a single wire segment. However, In addition, we present a constant reusing technigue to more quickly
fringing capacitance and the bounds of wire width were not consigolve the quadratic programs. To process the edges of the tree, a large
ered in their study. Later in [1], they proposed a quadratic programumber of quadratic programs must be solved. These quadratic pro-
ming (QP) approach for the simultaneous buffer insertion/sizing ageiams are the same form, except for differences in some parameters
WS problem. This approach handled fringing capacitance and discreteh as downstream capacitance and wire length. We show that many
sizes of wires and buffers. constant values computed in one quadratic program can be stored and

Lillis et al.[15] presented a dynamic programming (DP) algorithmeused by other quadratic programs. Although this technique moder-
to optimize an interconnect tree. Their algorithm is a generalizati@tely increases the amount of memory used, it dramatically reduces
of the DP algorithm for buffer insertion by van Ginneken [10]. Theuntime.

In this paper, the EImore delay model [17] is used for delay calcula-
tion. A wire segment is modeled asraype model as shown in Fig. 1.
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Fig. 4. WS problem for a single interconnect wire.

Lete; = ¢(h;) for 1 < ¢ < n. For WS, the Elmore dela® for the

. wire is
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Fig. 3. lllustration of the DP approach for an interconnect tree.
quadratic programs. We present the_experimental results in Section V. + roln <"’ffl“ + CL)
We then conclude this paper in Section VI. hi 2
="+ "1+ RO,
1. DYNAMIC PROGRAMMING APPROACH
where
In this section, we outline the DP technique for interconnect tree ’ ,
optimization in [2]. The algorithm adopts a bottom-up DP approach to crro/hy carofhycsrofha oo curo/ln
minimize the maximum delay among all paths from source to sinks. caro/haearof/hz cyrofhz - cnrof/hy
The basic idea of the DP technique is to build a new set of solu- & = | s7o/h1  csro/ha csro/hs -+ cnro/hs

tions for each segment based on the solution sets of its subtrees by

traversing the tree structure in a bottom-up fashion. In the algorithm '
v P g ' ento/h1 enro/he  envo/hs -+ caro/hn

instead of computing a single solution for each subtree, a set of solu-

tions is computed and stored. Each member of the set is a downstream Bper+Crro/hy hL
capacitance and delay time pait ¢). The reason for doing so is that Rpes+ Crro/he Iy
the optimal ¢, ¢) combination for delay minimization cannot be deter- p= Rpes+ Crro/hs and 1= | 1Is
mined without the upstream resistance. An illustration of the DP ap- : :
proach is shown in Fig. 3. Riven + Crro/h I,

If there are two downstream branches for a node, each downstream
branch will have a set ofc(t) pairs. These two sets can be comitwas proved in [1] that the Hessian matdxof the quadratic program
bined into a single set and pruned according to the pair values.idositive definite. Hence, the quadratic program is convex and poly-
the algorithm, the pruned list will have in increasing order and  nomial-time solvable. Therefore, WS can be written as the following
in decreasing order. If there are more than two downstream branclBggvex quadratic program:
for a certain node, the node can be broken into several two-down-

stream-branch nodes with zero length in between. CQP: Minimize 1/21"®1 + p"1
The main drawback of the pure DP approach is that each wire must Subjectto 11+ -+ 1, =L (3.1)
be divided into many small segments in order to achieve a quality so- I; >0for1 <i<n.

lution. This drastically increases runtime and memory usage. . . .
y y g Furthermore, it was also proved in [1] thit ! is tridiagonal. In gen-

eral, convex quadratic programs can be efficiently solved using a clas-
sical technique called active set method [18]. Each iteration of the ac-
This section outlines the QP formulation of interconnect optimizaive set method takes @{) time. By making use of the property that
tion for a single wire in [1]. &~ is tridiagonal, [1] showed that each iteration of active set method
We illustrate the idea by first considering WS alone. The extensidor solving CQP can be done in only @)(time. As a result, [1] pre-
to handle buffers is simple and will be presented afterwards. Chu asehted an optimal algorithm to solve CQP, which runs in®p(ime in
Wong [1] showed that the optimal wire shape could be described pyactice. Since. is usually a small number, the algorithm is extremely
a nonincreasing step function. Therefore, the WS problem can be fefficient in practice.
mulated as follows. Given the wire lengih the driver resistancg, The extension of simultaneous buffer insertion and WS, as shown in
the load capacitanc€?r,, a setH = {hi, ..., h,} of n choices of [1], is straightforward. The corresponding quadratic program has ex-
wire width such that,, > --- > h,, WS is to determine the seg- actly the same form as CQP above. The corresponding Hessian ma-
ment lengthg,, ..., [, such that the delay from source to sink is minirix is a block diagonal matrix; each block is the matfxfor WS
imized. WS is illustrated in Fig. 4. Note that this approach does nabove. Hence, itis positive definite and has a tridiagonal inverse. There-
divide the wire into numerous segments. The number of segmentdase, the corresponding quadratic program can also be solved optimally
equal to the number of choices of segment widlwhich is usually a using an active set method basedh@() time algorithm, wheren is
small number. the number of buffers inserted.

Ill. QP APPROACH
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and the capacitance seen from the upstream node of the hrararie
also given. The objective is to minimize the upstream delay timey
changing the segment lengths ..., /... In other words, given a list
of (ep, tp) pairs at the downstream node, MCQP can be used to find
a list of (¢, ty) pairs at the upstream node. This is similar to the DP
approach.

Consider a particularp, tp) andey combination. Let; = c(h;)
for1 < i < n. The delayt;; for this wire branch is

l gy
fUITL<ﬁ%+02lz+---+cnlvz+0D>

hl
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Fig. 5. lllustration of the DQP approach for an interconnect tree.
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where
ciro/h1  caro/h1 czro/h1 -+ caro/ha
(cu, ty) coro/h1 caro/ha  czro/he -+ curo/ha
P = (337“0/]7,1 C;;’ro/hz (337“0/17,3 e Cnro/h;;
Fig. 6. New wire sizing problem WS’ for a single wire branch in an inter- caro/hi carofha curofhs -+ caro/hn
connect tree. cpro/hy L
epro/ha I
. . . . . — o/ h _
Notice that the driver resistand@p is assumed to be known in = eoro/hs and 1= 1.3
the QP formulation above. Since the upstream resistance is not known :
during the bottom-up DP traversal, it cannot be directly integrated into enro/hn In1
the DP framework. The modification needed is presented in the Sec-
tion IV-B. Therefore, WS’ can be formulated as the following MCQP:
IV. HYBRID DQP ALGORITHM MCQP: Minimize ty =1/207®1+ p "l +1tp

Subjectto l; +---+1, =L
cili +--+culn+cp=cu
I; >0for1 <i<n.

This section introduces our hybrid DQP algorithm. To reduce run-
time and memory usage, we integrated the QP approach into the DP
framework. Instead of humerous small segments, each wire in the in-
terconnect tree is handled as a whole by the QP approach. Fig. 5ill
trates the idea of this hybrid DQP approach.

(4.1)

Kl%_tice that the matrix@ here is the same as the one in CQP. Hence, it

In Section IV-A, we first present a modified QP formulation tha{S positive definite and has a tridiagonal inverse.

can be integrated into the DP formulation. In Section IV-B, we presentAS show_n in the original QP approach in [1], the abpve fqrmulatlon
can be easily extended to handle simultaneous buffer insertion and WS.

the e.u.:tlve set method to solve the QP probllem |.n Section IV'.A' Tq?or fixed p, tp) andey values, each combination of the number of
modified DP framework and the DQP algorithm is presented in Sef):-

tion IV-C. Section IV-D introduces the constant reusing technique ffers and buffer sizes corresponds to one instance of MCQP. How-

. . eQ/er, if buffers of different sizes are considered, many instances of
more quickly solve the quadratic programs.

MCQP need to be solved. Suppose there @uifferent choices of
buffer sizes in the buffer library and buffers are inserted. Then there
areq™ choices of buffer sizes and, hengé&; instances of MCQP to
In this section, we modify the quadratic program CQP in Section Ifolve. The algorithm will be slow ifz is large.
so that it can be integrated into the DP framework. We call the resultingln order to guarantee that only a small number of buffers will be in-
quadratic program the modified convex quadratic program (MCQP).dérted in each wire, we divide each long wire into several wires shorter
is a building block of the DQP algorithm to handle a single wire brancthan a critical length. The critical length is defined as the maximum
The main difference between MCQP and CQP is that we ignore tlemgth such that at most one buffer is needed in the optimal solution
driver resistanceR;) in CQP and we include the upstream capacifl9]. This length depends on the technology parameters and the bounds
tance ¢ /) into our formulation. First, consider the following new WSon wire width and buffer size and can be determined experimentally.
problem (WS’) for a wire branch as shown in Fig. 6. The wire lengtllsing this idea, for fixedd{p, ¢p) andcyy values, onlyl + ¢ instances
L, the load capacitancey, and the seH = {h;, ..., h,} of wire (one instance for no buffer and one instance for each of;theffer
width choices are given as before. In addition, the delay time at thizes) need to be considered. The simultaneous buffer insertion and
downstream nodep (i.e., the delay time of the subtree at this node}VS problem for one buffer of sizB is shown in Fig. 7.

A. Modified Convex Quadratic Program
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Find an initial feasible solution for /.
Set the active set 4 = .
Solve for I’ with respect to A as in CQP.
Calculate d=1'-1.
If (2’ is not feasible)
Calculate oy according to d and I (where o is the step size
Fig. 7. Simultaneous buffer insertion and WS problem. which is selected to be as large as possible to maintain
feasibility).

B. Extended Active Set Method 7. Calculate new I =1+ d oy

. . . . . 8. Add the / el t which gi to A. k .
In this section, we use the idea of active set method to derive a ve9 El .f(’,.ef ¢ ct:llen which gives o to A. Go back to step 3
efficient algorithm to solve MCQP. - Elseif (¢"is feasible)

(cUx tU) (CD' tD)

AN O

If a convex quadratic program consists of equality constraints onljlo' If (d#0)
it is particularly easy to solve. Consider the following program: 1. Update I = {”and go back to step 3.
12. Else if (d = 0) /* local minimal reached */
Minimize 1/217®1+ p"1 4.2) 13. Solve for A.
Subjectto TI1 =1 ' 14. If (A <0) /* check for optimality */
) - o ) ) ~ 15, Drop all the / which correspond to negative A from A.
where® is positive definite and" is of full rank. Consider the associ-
. 16. Go back to step 3.
ated Lagrangian: .
17. Else if (A2 0)
18. Optimal / obtained.

LI, \) = 1/20" ®l+ p" 1+ N (T1 - b). (4.3)
Fig. 8. EASM algorithm.
The Lagrange necessary conditions of optimalityrd, \)/0l; =0
andoL(l, X)/dX; = Oforalli. The conditions can be written in matrix

form as follows: active set method with a feasible initial solution for vedtoFhen, we

iteratively calculate a new solutidh which will be the new direction

to movel. The idea is to mové stepwise toward the optimal solution
and make sure that each step stays within the feasible region. Fig. 8
[1-5=0. (44)  summarizes the algorithm extended active set method (EASM), which

we used to solve MCQP.
Since® is positive definite and' is of full rank, it can be shown that

the conditions can be uniquely solved C. Hybrid Algorithm

PI+TTA+p=0

T —1 1 The DP approach discussed in Section IlI-A is the basic framework
A=—(Ie )" (T p+b) of our DQP algorithm. The DP idea is used to handle the tree structure
I=-37'T'A-37"p. (4.5)  of interconnects (i.e., to combine the set of solutions of adjacent sub-

trees together). We do not divide the wires into a lot of segments and
CQP and MCQP also consist of inequality constraints. It has bettren handle the segments by DP. Instead, with the QP approach, each
shown in [1] that inequality constraints in CQP can be handled ef4re branch is handled as a whole.

ficiently by the active set method, which is a popular and efficient However, since we do not know the upstream resistance at a node

technique for solving QP problems. The idea underlying the active skiring the bottom-up traversal of the DP, we need to consider many

method for solving a general convex quadratic program is to partitialifferentc;; values and calculate the optimal dekay corresponding

the inequality constraints into two groups: active and inactive. In eatheach:s value. In general, except for the leaf nodes (the nodes which

iteration, the active inequality constraints are treated as equality caoennect to sinks), each wire branch can have more thancne ;)

straints and the inactive constraints are essentially ignored. Then, plaér at the downstream node and a set;oft the upstream node. Each
resulting equality constrained program is solved. If the solution is igembination of:; and ¢, t») forms a MCQP problem instance.
feasible with respect to the original program, some inactive constraintd_et N. be a user-defined parameter specifying the number of dif-
are added to the set of constraints. If the solution is feasible but rietentc;r values used at each node. lgdbe the number of choices of
optimal (i.e., some Lagrangian multipliers are negative for the minbuffer sizes. For each wire branch, therelatey cases to consider (one
mization problem), some constraints are removed from the current aase for no buffer and one case for each oftheffer sizes). For each

tive set. The process is repeated until the optimal solution is found. \Mese, the set af;; is chosen by first determining an upper bound and

give a brief outline on using active set method to solve QP in the fa-lower bound on the upstream capacitance. Thghq + 1) discrete

lowing. Readers are encouraged to read [18, Ch. 11] for more detaiddues are selected evenly from the range. For the case without buffer,
of active set method. the upper bound ofi; is the MAX(cp) plus the wire capacitance of
The same idea used in [1] to solve CQP can be applied to MCQRis wire branch with maximum wire width only. The lower bound of

The MCQP problem has an extra equality constrainton So, the ¢, is the MIN(c) plus the wire capacitance of this wire branch with

major difference between solving MCQP and CQP is that at least twanimum wire width only. For the cases with buffer, the upper bound of

wire segments need to be inactive at any time in the active set methagd.is wire capacitance of this wire branch with maximum wire width

This is because we have two equality constraints (i.e., the total wivaly, plus the input capacitance of the buffer (insert the buffer at the

length constraint and the upstream capacitance constraint) that needolwnstream node). The lower boundf is simply the input capac-

be satisfied. To ensure the feasibility of the solution, we need to start itence of the buffer (insert the buffer at the upstream node). Note that
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1. Start from a leaf node. /* the node which connect to a sink */ 1400
2. Append a branch of wire to the upstream of this node. 1380
3. Apply EASM to calculate an upstream delay time ¢, for each 1360 \

selected upstream capacitance cy according to all available 1340 l

downstream delay time ¢p, and capacitance cp. g 1320 \
4. If (current node is the root) E‘ 1300 \
5. Search for the smallest delay according to the driver resistance a ‘

and (¢, f) pair set at the root. 1280 ‘\

6. Construct the solution top-down and then exit the program. 1260 \\
7. Else if (number of children of a node = 2) 1240 ——
8 Merge the two (c, #) lists and prune redundant (c, #) pairs. 1220 ; ; ' T ;
9 Go back to step 2. 0 50 100 150 200 250 300
10. Else if (number of children of a node = 1) Ne
11.  (cp tp) set of the current node = (¢, #y) set of the child of the

Fig. 10. Delay versu®V. for DQP.
current node.

12.  Go back to step 2.

Fig. 9. Hybrid DQP algorithm. \ 1265
\\ 1253
because we are using discrete buffer sizes, theseanges may not \ 1251
overlap each other. \ 1249 -
After the root of the interconnect tree is reached, the interconnect \ 1247 g
optimization solution can be constructed by a top-down traversal. With \ 1245 )
the knowledge of the driver resistance, we can select the begx ( \ 1243 §
pair at the root, which results in minimum delay time. The rest of the \ 1241
solution can be obtained by recursively traversing the tree in atop-down 1239
manner and selecting the best ) pair at each node. \ 1237
The DQP algorithm is summarized in Fig. 9. Section IV-D intro- : : : , \ 1235
duces a constant reusing technique to more quickly solve the MCQP 900 700 500 300 100
instances in Step 3. 1,
D. Constant Reusing Technique Fig. 11. Delay versus, for DP.

In this subsection, we present a constant reusing technique to in-
crease the speed of the DQP algorithm. All v:;'s, vy:'s, andwuy;’s in (4.6) are independent df, ¢r7, ¢, and

The algorithm EASM can be applied directly in DQP to solve thén- Their values depend only on the electrical parameters (@.gx,
MCQP instances for all wires. However, for each wire branch, thegédcy) and the set of wire widths and buffer sizes that are being used.
are many ¢p, tp) pairs at the downstream node, many values at In the active set method, some segments are set to inactive at each it-
the upstream node and several choices of buffer size. Therefore, ttRfigdion. Hence, the set of wire widths being used may only be a subset
can be a lot of MCQP instances. If those MCQP instances are sol¥dH . So, when a particular set of wire widths is first used in some
independently by EASM, experimental results show that the DQP dgration of the active set method, the constantsv.;, andwv,; can
proach has only a very limited runtime improvement over the pure O computed and stored. When the same set of wire widths is used
approach. However, we recognize that all MCQP instances are the s&@@ain in another iteration, the stored constants can be reused. This con-
except that the parametefs .7, ¢y, andt, are different. Many con- Stant reusing technique only moderately increases the memory usage
stant values computed in one MCQP instance can be stored and relgédgiramatically reduces the runtime. Please refer to the Appendix for
by other MCQP instances. the equations to calculate constants v,;, andw:;.

By observing (4.5), we recognize thhtand A can be expressed
by two separate linear functions in terms of downstream capacitance
cp, total length of the wire branch, and upstream capacitance.

Upstream delay timé;; can be expressed by a quadratic function in Tpe DQP algorithm was implemented as a C program. We tested
terms ofcp, L, cv and downstream delay time, as shown in the e program on a PC with a 500-MHz Pentium 1l processor and
following: 256-MB of memory (with RedHat Linux 6.0 operating system). We
used the parameters for the 0.28% technology listed in [20]. The
results were compared with the pure DP approach. We used six
trees with 2-100 sinks. The length of the tree wires range from
and 100015 000::m.
Fig. 10 shows the delay time of the solutions obtained by DQP versus
R R ) the number of upstream capacitance choite®n the input tree with
tv =vacpFve Ll fvscptvacu Ltvis Lep+vsepcu+En. ten sinks. The results in Fig. 10 show thét need not be a large value
(4.6) to obtain a good solution quality. Fig. 11 shows a similar chart for the

V. EXPERIMENTAL RESULTS

A =wviicp +vaeLl +virscu, l=wvucp +vel +vscy
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TABLE |
COMPARISON BETWEEN DP AND DQP
# of | Optimal DP (I, =200) DQP (N.=90)
Sinks| Delay | Run |Memory| #of | Delay | Run | Memory # of Delay
(ps) | Time | Used | Buffers| (ps) | Time |Used (Mb)| Buffers | (ps)
(sec.) | (Mb) | Inserted (sec.) Inserted
2 129372 { 1.77 6.17 2 294.70 | 0.27 | 0.00+0.9 2 295.59
5 |666.60 | 6.44 22.12 9 668.83 0.76 | 0.01+0.9 8 668.53
10 |1232.95 § 12.66 | 42.93 23 1237.34 | 1.41 | 0.02+0.9 18 1233.80
15 |1430.64 {20.82 | 70.35 40 |143533 | 1.95 | 0.03+0.9 28 1431.50
30 |1937.31 {38.20 | 129.95 75 193995 | 4.09 | 0.05+0.9 57 1937.86
100 |2256.82 | N/A N/A N/A N/A 1324 | 0.17+0.9 189 2265.29

pure DP with the same input tree. Theis the segment length in mi- quadratic program formulation corresponding to an active set with wire
crometers that we used in DP to divide a wire branch into equal-lengttidth choices{h, ..., hy}
segments.

For the purpose of comparison, we set the paraméteasnd V.
such that the quality of solution for DP and DQP were similar. In our
experiment/, = 200 and N. = 90. The experimental results are
shown in Table I.

The estimated optimal delay value was obtained by sefiingo
1800 in DQP. In our experiment, DP with = 200 could not be run I
successfully for the input file containing 100 sink nodes, possibly be-

Minimize 1/21"®1+ p"1

al
Subjectto T1=1b (a1)

where

cause of memory limitations on the PC that we used. The memory data

column of DQP contains two parts. The first part is the memory dynam-

ically allocated for ¢, t) pairs. The second part is the memory used to L,

store the constants being reused. and
Our experimental results suggest that DQP is better than DP in run- b= < L ) _

time, memory, and accuracy (except for the delay of the smallest input cU —¢p

tree). For small problems and for the same quality of solution, the run-

time advantage of DQP over DP is relatively less. This is because of fimm (4.5) and (al), we can derive the following:

overhead and the lower constant reusing rate of the EASM algorithm.

However, for bigger problems, the runtime advantage of DQP over DP D—A C D

is more significant. A= <F _ B) €D = <E> L- <F> cu (@2)
We also observe that the constant reusing technique can enhance

the efficiency of our algorithm significantly. By applying the constanf,nare

reusing technique, the runtime of our program can be reduced by

around 75% compared to the implementation without constant reusing~ p I

technique. E 7 ) =Te™T)

no g+l n j+1

CY D" Bigro/hi)+DD_ D" (eibiro/hy)

[ j=1i=j—1

VI. DiscussioN ANDCONCLUSION

As the experimental results suggest, our hybrid DQP algorithm is < 4)
faster and more accurate than the pure DP approach. It also requires \ B
less memory and can optimize a bigger interconnect tree.

In this paper, only the timing optimization of an interconnect tree is
presented. However, interconnect power and area optimization can be
easily applied to the same algorithm framework. Also, this paper &¥3d4:; is the element irb ™"
sumes that buffer insertion can occur anywhere on the wires. In prac-
tice, however, we may not be able to insert a buffer in some parts of
a wire due to certain conditions, such as space restriction or over-cell

route. Such additional restrictions can be handled by adding linear CQheren. 4 and~ are as shown in (ad) at the top of the next page
straints to the quadratic programs as in [1]. T '

n j+1 P ES]

EZ Z (9,‘]7“0/]1‘]')—{—FZ Z (C,‘ﬂ,jj?“o/hj)

=1 = =1 j=1i=j—1

l=acp+ 8L+ ~veu @3)

where
APPENDIX ro/ha
EQUATIONS FORCONSTANT REUSING TECHNIQUE ro/ha
g = .
The WS’ problem in Fig. 6 is used below to illustrate the idea. Exten- :
sion to include buffer insertion is easy. Consider the following convex 70/hn
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2 2

Jj=1 j=1

~(D =3 0) = (F=B)> (#1jc)) = > (81 r0/h))

2

7j=1

3

—(D - A)Z(ﬁzj') - (F - B)Z(ﬂzjcu') — > (625 70/hy)
‘= —(D = A)) (83;) = (F = B)> (bjc;) — Y (835 70/h;)
—-(D - A)_Z (Onj) = (F = B)»Z (nnjcj) = Z (Bnjro/hj)
CY (615) + Ei(ew) DY (61)+ F> (615c5)
CY (82) + EY (62c)) DY (62)) + Fy (825¢;)
A= and v =

4 4
CY (63)+ B> (63¢))
j=2 j=2

C > (6a))+E DY (Base))

j=n—1 Jj=n—1

D> (83;) + F> (835c;)

DY () +F > (Bnjey)

j=n-—1 j=n-—1

ty = I/QIT@I +epoll+itp = (1/2aT¢'a + aTu)c% + (1/2,6T(1>/3)L2

+ (1/2"/1’@7)(% + (aT<I>7 + O'T’}")(‘,U e+ (aT@/B +olB)enL + (/311@"/)@:[' +tp

(a4)
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