1014 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 7, JULY 1999

Fast and Exact Simultaneous Gate and Wire Sizing
by Lagrangian Relaxation

Chung-Ping Chen, Chris C. N. Chu, and D. F. WoNgmber, IEEE

Abstract—This paper considers simultaneous gate and wire with the driving gate. For simultaneous gate and wire sizing for
sizing for general very large scale integrated (VLSI) circuits general circuits, Cong and He [7] minimized a weighted delay
under the Elmore delay model. We present a fast and exact \,qiny 5 greedy sizing technique in conjunction with dynamic
algorithm which can minimize total area subject to maximum . Th laorith .
delay bound. The algorithm can be easily modified to give Programming. The algorithm cannot guarantee to give exact
exact algorithms for optimizing several other objectives (e.g., Solutions for objectives such as minimizing total area subject
minimizing maximum delay or minimizing total area subject to to maximum delay bound or minimizing maximum delay.
alr“Va_";'m? Spe_c'f"fa“or‘s at all '”p“tg and outputs). No previous | this paper, we consider simultaneous gate and wire sizing
algorithm for simultaneous gate and wire sizing can guarantee . -
exact solutions for general circuits. Our algorithm is an iterative for general very large scale integrated (VLSI) circuits under
one with a guarantee on convergence to global optimal solutions. the Elmore delay model. We present a fast and exact algorithm
It is based on Lagrangian relaxation and “one-gate/wire-at-a- Which can minimize total area subject to maximum delay
time” greedy optimizations, and is extremely economical and fast. pound. It can be easily modified to give algorithms for optimiz-
For example, we can optimize a circuit with 27648 gates and 4 seyveral other objectives (e.g., minimizing maximum delay
wires in 11.53 min using under 23 Mbytes memory on a PC with P | bi ival ti ificati
a 333-MHz Pentium Il processor. or minimizing total area subject to arrival time speci |cat|pns

at all inputs and outputs). Convergence to global optimal
solutions is guaranteed for all cases. Our algorithm is based
on the Lagrangian relaxation technique, which transforms the
problem into a sequence of subproblems called the Lagrangian
[. INTRODUCTION relaxation subproblems. We show that each subproblem can

NCE the invention of integrated circuits almost 40 yearde greatly simplified by the Kuhn—Tucker conditions and can

go, gate sizing has always been an effective technifp@ solved by an efficient “one-gate/wire-at-a-time” greedy
to achieve desirable circuit performance. As technology coflgorithm. So our algorithm is extremely economical and fast.
tinues to scale down, total number of gates and interconnet® €xample, we can optimize a circuit with 27 648 gates and
within a die grows over millions. In such increasingly dens#ires in 11.53 min using under 23 Mbytes memory on a PC
integrated circuits, a significant portion of the total circuiwvith a 333-MHz Pentium Il processor.
delay comes from the interconnects. Therefore, developingWe notice that the gate and wire sizing problem is similar
efficient algorithms which can handle large scale gate ai@l the transistor sizing problem. In this paper, our problem
interconnect optimization problems are of great importanceis formulated as a geometric program [10]. Fishburn and

In the past, gate delay was the dominant factor in determiunlop [12] have shown a long time ago that the transistor
ing circuit performance. Thus, gate and transistor sizing has&ing problem can also be formulated as a similar geo-
been extensively studied in the literature [6], [12], [16], [L7]netric program. However, it would be very slow to solve
[23]. As interconnect delay plays an increasingly importatihe geometric program by some general-purpose geometric
role in determining circuit performance, wire sizing has begrogramming solver. So instead of solving it exactly, Fishburn
an active research topic in the past few years [2], [4], [7], [98nd Dunlop proposed TILOS [12], which is based on an
[19], [22]. efficient sensitivity-based heuristic.

Since gate sizes affect wire-sizing solutions and wire sizesMarple [16], [17] solved the geometric program by the
affect gate-sizing solutions, it is beneficial to simultaneouslyagrangian augmentation technique. Lagrangian augmenta-
size both gates and wires. Several results on simultaneous giie, like Lagrangian relaxation, is a general technique for
and wire sizing have been reported [2], [7], [8], [18], [20]constrained nonlinear optimization. The difference between
Chenet al [2], Cong and Koh [8], Menezest al. [18], and them is that Lagrangian augmentation adds to the Lagrangian
Menezeset al. [20] considered a single routing tree togethes penalty term that helps to steer the solution toward the

feasible region. However, we demonstrate in this paper that
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Sapatnekaet al. [23] later transformed the geometric proinput drivers Gates or Wire segments (sizable) ~ Output loads
gram into a convex program and solved it by a sophisticat s=2 n=10 t=2
general-purpose convex programming solver based on intel < = = ==
point method. This is the best-known previous algorithm th ~ R?
can guarantee exact transistor sizing solutions. Again, as

L
explore the special structure of the geometric program, c Ci
tailored algorithm is much faster than the algorithm in [23 S
For example, the largest test circuit in [23] has 832 transistc R
and the reported runtime and memory are 9 hours (ona ¢ Rz Ch
SPARCstation 1) and 11 Mbytes, respectively. Note that for
problem of similar size (864), our approach only needs 1.3 s k2
runtime (on a PC with a 333-MHz Pentium Il processor) and
1.15 Mbytes of memory. According to the SPEC benchmafig- 1. An illustration of a circuit.
results! our machine is roughly 40 times faster than the
slowest model of Sun SPARCstation 1. Taking the spee |, Output
difference of the machines into account, our algorithm is aboiCompenent Component
600 times faster than the general-purpose solver for a sm: J]

circuit. For larger circuits, we expect the speedup to be eve
more significant.

The rest of this paper is organized as follows. In Section Il ----
we introduce some notations and terminology that we use i 13:"
this paper. In Section Ill, we present our algorithm for the
problem of minimizing total area subject to maximum delay m = 13
bound. In Section 1V, we show how to modify our algorithm to_ ] ] S ) )
minimize maximum delay, o handle arrival tme specificatiory; 2, A% Isteton of e crout b Fig 1 with node ndexee and
at all inputs and outputs, to consider power dissipation and4e also shown.
use a more accurate gate model. In Section V, experimental

results to show the runtime and storage requirements of @He one connecting to thith output load. For + 1 < i < n,

algorithm are presented. the node with index is a connection point among the gates
and wire segments. The indexes are assigned in such a way
[l. PRELIMINARIES that if node¢ and nodej are connected to an input and the

output of some component, respectively, then- j. For

%’—i—l <i < n+s, the node with index is the one connecting

0 the (¢ — n)th input driver. The node with index. is the

gqutput point of the input component. It is not difficult to see

on combinational circuits below. lﬁat if we yiew the'circuit asa directeq acyclic graph, the node
index assignment is a reverse topological ordering of the graph.

Given a combinational circuit witk input drivers,t output .
. P o+ oulp We also label the components by indexes - -, m such that
loads, andn gates or wire segments, the gate sizes or the T
. A .. the output of the component with indéxs connected to node
segment widths are allowed to be varied in order to optimize

som abjecie. For < ;< .l be th dur resisance 24¢ 10 20 sl o e Sl BTl L
of the ith input driver. Forl < ¢ < ¢, let CZL be the load P ' ' P )

capacitance of théth output load. See Fig. 1 for an illustration For0 < i < m — 1, let inputi) be th_e set of indexes
S of components directly connected to the inputs of component
of a circuit. ; : ) .
. . . . 1. For 1 < ¢ < m, let output:) be the set of indexes of
A gate, a wire segment, or an input driver is called &

. . . components directly connected to the output of component
componentin order to unify the notations that we introduce e T )

) . 2. ;. For example, for the circuit in Fig. 2, input(G {1, 2},
later, imagine that two factitious components are added to tjﬁeut(G)— 8.9}, output(6)= {3.4}, input(8) = {11}, and
circuit. The first one is called an output component whicliP = {89}, P = 13,4}, inp = {11},

consists of all the output loads. The second one is called aﬁﬂ:pzi(%): {6}. Note thatj € input(¢) if and only if i €
input component which connects to all thénput drivers. Let puty).

. . Let G be the set of component indexes of gates in the circuit.
anodebe a connection point between two components or the . .
output point of the output component. Note that the outputld t IV be the set of component indexes of wire segments
) the circuit. For the circuit in Fig. 2(G = {2,6,7} and

each component should connect to a distinct node. So it is easy
= {1,3,4,5,8,9,10}.
to see that there are+ s+2 components and + s+2 nodes. .
For the purpose of delay calculation, we model components

Letm = n+s-+1. We label the nodes by index8s---, m ' o qiiance ca acitand®@) circuits. If component is a
as follows. The node with index O is the output point of the b ’ P

. L .. gate (i.e.y € G), itis modeled as a switch-lev&BC circuit as
. << S :
output component. Fof < i < #, the node with index is shown in Fig. 3. See [24] for a reference of this model. Let

1SPEC table; ftp://ftp.cdf.toronto.edu/pub/spectable. x; be the gate size. Then the output resistance +;/z,, and

In this section, we define some notations and terminolo
that we use in this paper.

For a general VLSI circuit, we can ignore all latches an
optimize its combinational subcircuits. Therefore, we foc
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[T Let D, = r;C; be the delay associated with resistoiVe

Component i '_Tlfﬂ represent a signal path passing through resisgtors -, i, by
| T T the setp = {¢1, - -, i1 }. Let P be the set of all possible paths
D I::> from nodem to node O (i.e., from an input driver to an output
| load). Then for anyp € P, the Elmore delay along path
size x; T is Yic, Di

Fig. 3. The model of componernt which is a gate, by a switch-lev&C
circuit. Note thatr; = #;/z; andc; = &; + f;, wherer,;, ¢;, and f; are

the unit size output resistance, the unit size gate area capacitance and the gate . MINIMIZING TOTAL AREA

perimeter capacitance of gaterespectively. Although the gate shown here SUBJECT TO MAXIMUM DELAY BOUND

is a two-input AND gate, the model can be easily generalized for any gate

with any number of input pins. In this section, we solve the problem of minimizing the total

component area with respect to component sizes - -, z,
) subject to the constraint that the maximum delay from any
Componenti input driver to any output load is at most some constagt
(i.e., Ag is a bound on the arrival time at node 0).

i i :
o o ' - i i
‘I:I‘ —> i AW C_ In Section llI-A, we first show how to formulate the prob

- ; G lem as a constrained optimization problem with a polyno-
width x; | a5 > !

mial number of constraints. We call this formulation the
primal problem PP). PP is a geometric program. There
Fig. 4. The model of componerit which is a wire segment, by a-type are many standard methods for solving geometric programs
RC %rcuit- _i\lot_gt:]hat‘_m = fg/tﬂ',: ath;;‘ = é{a'i_;;hfi,_wheref;, Ci a_r:dfi [10]. However, because of the special structureR#®, we
e Wife“f?i'ng}’r']g C:g;eci{gifeagfz;egrﬁe%rt‘r'e:gecti\g'lgf area capacitance, alfl that it can be solved very efficiently by Lagrangian
relaxation. Lagrangian relaxation is a general technique for
solving constrained optimization problems. We outline the

the input capacitance of a pin = &z; + f;, wheres, & basic idea of Lagrangian relaxation below. More details can
Pt cap P = &+ Ji b e found in [1], [13], and [14].

and f; are the unit size output resistance, the unit size g In Lagrangian relaxation, “troublesome” constraints are

area ca_pacnance a_md Fhe gate per_|meter capacitance Oac’.ga‘tPeIaxed” and incorporated into the objective function after
respectively. (To simplify the notations, we assume the input = o

) . . multiplying them by constants called Lagrange multipliers, one
capacitances of all input pins of a gate are the same. We also

ignore the intrinsic gate delay. It is clear that all our resul sultiplier for each constraint. For each fixed vecloof the
gnore . 9 Y- . agrange multipliers introduced, we have a new optimization
will still hold without these assumptions.)

If Wi . tlieic W), iti deled problem (which should be easier to solve because it is free
component 1S a wire segmen (_|.eL,_e ). itis modele of troublesome constraints) called the Lagrangian relaxation
as amn-type RC circuit as shown in Fig. 4. Let:; be the

dth. Th h . N q subproblem associated with (LRS/A). It can be shown
sr:egment width. T en the Se;CJme”t ress;anc? 7f/xi’ and  ihat there exists a vector such that the optimal solution of
the segment capacitanee = ¢;x; + fi, wheresy, &;, and f; LRS/Xis also the optimal solution of the original constrained

are the unit width wire resistance, the unit width wire are@ptimization problemPP. The problem of finding such a
capacitance and the wire fringing capacitance of segment,qcior A is called the Lagrangian dual probled®P). So
respectively. For € G U W, let L; andU; be, respectively, it ye can solve bothCRS/A and £DP, then the optimal
the lower bound and upper bound of the valuesgf i.e., gqution of PP will be given by LRS/A where A is the
Li < @ 2 Ui ) ~optimal solution of LDP.

Elmore delay model [11] is used for delay calculation. | section I11-B, we show howPP is relaxed to obtain the
Basically, the EImore delay along a signal path is the sum BfRS/)\ and the correspondingDP. In Section III-C, we
the delays associated with the resistors in the path, where {R@ the Kuhn—Tucker conditions (see [1] for a reference) to
delay associated with a resistor is equal to its resistance tingRsive a set of optimality conditions ok We show that the
its downstream capacitance. For our case, each compongimality conditions can be used to greatly SimplERS/A.
(except the two factitious components) contains a resistqye called the simplified versioRS/u. In Section 11I-D,
We label the resistors by indexes ---, n + s such that we show how to solvetRS/pu (i.e., LRS/A) for any fixed
resistor: is the one inside componentFor convenience, for vectorpu. In Section I1I-E, we describe how to SOMEDP by
n+1<i<n+s,letr; = RP  (ie., the driver resistancethe classical method of subgradient optimization.
of the (i — n)th input driver). So forl < ¢ < n + s, the
resistance of resistaris r;. Forl < i <n + s, let C; be the )
downstream capacitance of resistoFig. 5 shows the circuit A- Problem Formulation
in Fig. 2 after replacing the components by tR€ models. For eachi, the area of componeritis proportional to its
The resistance of each resistor is marked in the figure. Alsize x;. Therefore, the total component area can be written as
the regions corresponding to the downstream capacitancesygf | «;z; for some constants, - - -, «,. Then the problem
resistors 5 and 12 are shaded. of minimizing total area subject to maximum delay bound can
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! | ” |
\ i \ Sum of capacitance

Sum of capacitance

= C/2 = Cs

Fig. 5. lllustration of the circuit in Fig. 2 after replacing the gates and wire segments HgGhmodels. The resistance of each resistor is marked in the
figure. Also, the regions corresponding to the downstream capacitances of resistors 5 and 12 are shaded.

be formulated directly as problemPP has a unique global minimum and no other local
" minimum. We consider the formulatigAP in the following.

Minimize ZO‘Z%

; B. Lagrangian Relaxation

Subject to ZDi < Ap Vpe P We relax all the constraints on arrival time &fP since
icp they are difficult to handle. The simple constraints on the
Li<z <U i=1,---, n. component sizes,, -- -, x, are not relaxed. They are handled

in the Lagrangian relaxation subproblem.
However, the number of possible signal paths from nodefoj|lowing the Lagrangian relaxation procedure, we intro-
m to node O (and, hence, the number of constraints in th@ce a nonnegative value called the Lagrange multiplier for
mathematical program above) can be exponential. i§o this each constraint on arrival time. For all € input(0) (i.e.,

direct formulation is impractical. =1, t) we introduce) ;o for the constraini; < Ao.

This difficulty can be handled by the classical technqueo” =1,---,n and for allj € input(i), we mtroduce)\ﬂ
of partitioning the constraints on path delay into constraintg the constramb +D;<a;.Fori=n+1,---, nts, we
on delay across components. We associate a variable introduce),,; for the constrain®; < a;. Let A be a vector of
each node. a; represents the arrival time at nodgi.e., the g the Lagrange multipliers introduced. Let= (x1, -+ -, )
maximum delay from node: to node:). Thenitis not difficult andgq = (4;, ---, a,4,). Let
to see that the mathematical program below, which we called
the primal problem ®P), is equivalent to the mathematical o
program above: Z @i + Zt(o) Ajo(a; — Ao)

jCinpu
PP "
+ Z Z )\ji(aj + Di — CLZ‘)

Minimize — 4
n =1 j€input(:)

. n—+s
; i + Z Ami(Dy — a;).

Subject to i=n+l
a; < Ao J € input(0) /* outputs™/ Then the Lagrangian relaxation subproblem associated with
a;+D; <a; i=1,---,nandV¥j € input(s) the Lagrange multipliers\ is
D; < a i=n+1 -, n+s/"inputs”/ LRS/X: Minimize  Lx(z, a)
Li<z <U; i=1,---,n Subjectto L;<z; <U; i=1,---,n

Note that the number of constraints R is polynomial in et the functionQ()) be the optimal value of the problem
n and s. Also note that for the probler®P, the objective £RS/A. We define the Lagrangian dual problem as follows:
function is a posynomial [10] and the constraints can be ) -

rewritten in the form of polynomials. It is well known that LDP: Max_lmlze Q)
under a variable transformation, the problem is convex. So Subjectto A > 0.
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As said in Section 1lI-A;PP can be transformed into a convex
problem. So [2, Theorem 6.2.4] implies that\ifs the optimal
solution of LDP, then the optimal solution o£RS/A will
also optimizePP.

n—+s
Z Z Aki — Z Ajk | an
k=1

tCoutput(k) jCinput(k)

DN IDIRVEEED

AjoAg
C. Simplification ofCRS /X =1 \j€input(d) j€input(0)
. . n+s
Here, we use the Kuhn—Tucker conditions to derive a set of
optimality conditions om. Then we show that the optimality + . zn;rl AmiDi + Z i + Z uiLi = i)

conditions can be used to greatly simpli§RS/A.

For1 < ¢ < n, letu; andv; be the Lagrange multipliers for
the constraintd,; < z; andz; < U;, respectively. Consider
the Lagrangian [1]C of PP

n

+ Z vi(x
i=1

L= Z iz + Z Ajola; — Ag)

j€input(0)

SIS

=1 jCinput(z)

Ajilaj + Di — a;)

n—+s n

+ Z rnz ) + Z U/z(Lz - xz)

i=n+1 =1

+ Z vi(xi — Uz)
=1
Z Akoar — Z

kCinput(0) jCinput(0)

n+s n
+ Z Z AkiGk +Z Z
=1 j€input (i)

k=t+1 i: k€input (z)
n—+s

—2 Z Ajrak + Z AmiDi

k=1 j€input(k) i=n+1
n—+s

Z )\rnkak + Z ;T + Z U/z T z)

k=n-+1
n

+ZUZ z_l]

=1

t
Z Ako — Z Ak | a

k=1 j€input(k)
n

+ Z Z Aki — Z Ajk | ax

k=t4+1 \i:k€input(i) j€input (k)

AjoAg

AjiDy

n—+s

+ Z Z Aki — Amk | ak

k=n+41 \i:kCinput(s)

+ Z Z Xji | D — Z AjoAo
=1 \ jCinput(s) JCinput(0)
n—+s

+ Z AmiD; +Zaa:7+2u7 i — ;)
P

+ Z vi(x; — U;)
i=1

The Kuhn-Tucker conditions impl@L/da;, = 0 for 1 <
k < n + s at the optimal solution of"P. In other words, the
Lagrange multipliers corresponding to the optimal solution of
PP must satisfy the condition8£/8a;, = 0 for 1 < k <
n + s. SO we can consider those Lagrange multipliers only.
By settingdL/dq;, = 0, we obtain the following conditions
on A.

Optimality Conditions or:

Z Aki = Z Ajk

i€output(k) j€input (k)

for1<k<n+4+s.

We show in Lemma 1 below how the optimality conditions
on A can be used to simplift RS/A. Let 2y ={A > 0: A
satisfies the optimality conditions ox}.

Lemma 1: For any X € €2, solving LRS/X is equivalent
to solving

LRS/p: Minimize L,(x)
Subjectto L; <xz; < U i=1,-,n
Whereu = (NOv T Nn+s) Hi = ZJEmput(z )‘ji for0<i <
n+s,andL,(x) = S0 D + 30, aqi.

Proof: By rearranging the termg;, (z, ) can be rewrit-
ten as follows:

n+s

Li(x, a) = Z Z Aki — Z Ajk | a

k=1 \i€output(k) j€input(k)
n n
i=1 i=1 \jcinput(i)
n+s
— > XNodo+ D> AuiDi
jinput(0) —l

So by substituting the optimality conditions oA into
Ly(z, a), we get

a):zaixi—i-z: Z Aji | Di
i=1 i=1 \ j€input(i)
-

n—+s
jEinput(0) i=n+1

Aodo+ D AmiDi
n—+s

= Z wiD; —i—Z a;x; — proAo. (1)
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Note thatL,(z, a) in (1) no longer depends o Also note independent ofc;. So
that 1194 is a constant. So if lef, (x) = 777 D +

o oz, then minimizingL,, is the same as minimizing

L. After finding the optimale, the optimale can be found Lyu(z) = Z pyTiCi + o |
by considering, one by one, the variablgss in the order of j€upstream(s)
inGi. ‘ . . AiC _
decreasing. For eacha;, we set it to the smallest possible T i | terms independent of;

value that satisfies the constraints@#. Hence, the lemma Z;

follows. O o
=(&R; + o)z + FiTivs

Ti
D. Solving£LRS/u + terms independent of;.
In this subsection, for any fixeg > 0, we show how apce the lemma follows. 0
to solve LRS/u optimally by a greedy algorithm based on | emma 3: Let # — (i1, ---, ) be a component-sizing

iteratively resizing the gates and wire segments. A simildgytion. An optimal local resizing of componenis given by
technique has been successfully applied to some other V\@’—?anging the size of componento

or buffer sizing problems before (e.g., [3] and [9]). Chu and

Wong [5] proved that for wire sizing of interconnect trees, i

, NP , Bi(z)
the greedy algorithm runs in time linear to the number of 27 =min | U;, max | L;, A, ()
segments. iF

If we resize component (i.e., changinge;) while keeping ) . . .
the sizes of all the other components fixed, we say that it is Eroof. If we fix the size of componeny to z; for all

a local resizing of componerit An optimal local resizing of 7 #BL aLgiquxZ ;ha}??s&“ivvéﬁ Ean viewL,, as a function of
component is a local resizing that minimizé, (). vi- BY ' 9 y
For 1 < i < n, let upstrearft) be the set of resistor (%)
—— 4+ E(x).

Ly

indexes (excluding) on the path(s) from componento the F(z;) = Ai(Z)x; +
nearest upstream gate(s) or input driver(s). For example, for
the circuit in Fig. 5, upstream(1¥ {3, 6} and upstream(6) Differentiating * with respect tar;, we get
=1{8,9, 11, 12}. LetR; =3, 1ctream(s) Hi75 (1€, Riis a }
weighted upstream resistance of compongnor: € W, let dr — A (&) — B;(%)
Ol = C;—¢éizi/2, and fori € Gorforn+1 <4 < n+s, let dx; ’ z?
C! = C;. Note that forl < i < n+s, C! is independent of;.

Lemma 2:For 1 < i < n, L,(x) can be written in the Let #(z) = \/B;()/A;(%). Note that
following form:

dF/dxi <0 if z; < 9(:&)

Bi xT
Bi(z) + Ei(x) dF/dz; >0  if z; > 0(%).

%

L, (z) = Ai(z)x; +

' Hencel'(z;) is decreasing whenm,; < 6(z), F'(x;) is increas-
where A;(z), B;(z), and E;(x) are independent ofr;, ing whenz; > 6(&), and F(x;) is minimum atz; = 6(). If

Ai(x) = &R + o, and Bi(x) = 11:7:,C;. x; is constrained to the rand&;, U;], we consider three cases:
Proof: Case 1-6(z) € [L;, U;]: In this caseF(x;) is minimized
when z; = 6(z).
s n Case 2-4(z) > U;: Then F(x;) is decreasing ifL;, U;].
L(z)= Z 1i7:Ci + Z T So F'(z;) is minimized whenz; = UZ o
im1 im1 Case 3-4(z) < L;: Then F(z;) is increasing in[L;, U;].
éim; So F(x;) is minimized whenz; = L;.

= Z piri Cf + Z HiTq <C§ + T) Hence the lemma follows. O

iCE icw LRS/p can be solved by a greedy algorithm based on

iy P iteratively resizing the components. In each iteration, the

+ Z piriC; +Z il components are examined one at a time; each time a com-

i=ntl =1 ponent is resized optimally using Lemma 3 while keeping the

_ nif Ot Z Wit C; +zn:a‘x‘ sizes of the other components fixed. We call the algorithm

2 HiTi g Z 9 vt e SOLVE_LRS} and it is described below. Note that in order

to use Lemma 3 to resize componénive need to compute
C! and R, first. Our algorithm SOLVE_LR$ computesC!’s

For any: between 1 andh, p;r;C, = u;#;C!/x;. For any and R;’s incrementally by traversing the circuit in a reverse
J # 4, if j & upstreant), then u;7;C;} is independent of topological order (Step 2) and in a topological order (Step 3),
z;. If j € upstrean), then y;r;C; = p;r;éx;+ terms  respectively. So it is not difficult to see that each iteration of
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the algorithm takes only(n) time. Case 2—! = L;: In this case, L; >
V(Bi(z*))/(A;(z*)). We have dL,/dz;(z*) > 0 and

ALGORITHM SOLVE LRS/p : %=z 2 0,Vz € .. Hence

Output: £ = (x4, -- -, z,) Which minimizesL,, (x) gH (z)zi—2F) = (?9L” (x*)ez;* (zi—%) >0, Vzef,.
1. fori:=1tondox; :=1L; i L

2. /* Finding C! for 1 < ¢ < n by traversing the circuit Case3—=; =U;: In  this  case, U <

V(B ( *))/(Ai(z*)). We have 0L, /dz;(z*) < 0 and
2 —x; £0,Vz € Q.. Hence

oL

in a reverse topological ordéy
fori:=1totdo

y {CZL if i e G 3 (Z)(z—27) = 3 E(x*)e" (2—2) = 0, Vzel,.
;v — . Z X
’ CE+fij2 ifiew

fori:=¢+1tondo S00H /07 (2*)(z; — zF) > 0 for all < and for allz € Q..

o {0 fica Thus for any feasible solutiosm,

fi/2 fieW L,(x)— L,(z") =H(z) — H(z")
for all £ s.t.¢ € input(k) do >VH(2")(z— 2%) as H is convex
C{_:{Cg‘i‘ékxk‘i‘fk if ked B " 8H o .
it O+ tpan + fu)2+Cl ifkeW —‘1azi(z)(zz—zi)
3. /* Finding R; andz; for 1 < i < n by traversing the S OZ_
circuit in a topological ordef / S o _
for i ‘= n downto 1 do Therefore «z* is the global minimum point. O
) Lemma 5: The algorithm SOLVE_LR$! always con-
R;:=0 verges.
for all j € input(¢) do Proof: For any two vectorg andz’, we usex < z’ to
Ri+ p;RP, denote that:; < z for all 7. Let z* be the optimal solution,
fntl<j<n+s x be a feasible solution, ang' be the solution after locally
VRt py# ) resizing a component of. If z < z*, then we can prove that
R = if jeG x < ' < z* (this is similar to the dominance property in [7]).
R+ lij‘f’j/xj +R; In Step 1 of algorithm SOLVE_LR#/ we setz; = L, for
if jew all ¢ initially. So we know that for alki, z; is nondecreasing
for each local resizing, and is upper boundedajy Hence,
#; := min <Ui, max <Li7 )) the algorithm SOLVE_LR${ converges. O
By Lemmas 4 and 5, we have the following theorem.

Theorem 1:For any fixed vectoru > 0, algorithm
SOLVE_LRS} always converges to the optimal component-
sizing solution of the problentRS/u.

Note that L,(z) is a posynomial [10] inz. It is well ~ Algorithm SOLVE_LRS/ runs in O(rn) time usingO(n)
known that under a variable transformation, a posynomigiorage, where: is the number of components amdis the
is equivalent to a convex function. Sb,(x) has a unique number of iterations. We observe that the number of iterations
global minimum and no other local minimum. We show in thé is constant (i.e., the run time of SOLVE_LRSIs linear)
following that algorithm SOLVE_LR$/ always converges to in practice.
the global minimum.

Lemma 4: If algorithm SOLVE_LRS/ converges, then the E. SolvingLDP

solution is optimal toLRS/p. As we point out in Section 11I-C, instead of considering all
Proof: Suppose the algorithm converges#6 = (21, A > 0, we can focus on thosd € Q. So £LDP can be
x}). Then forl < 4 < n, by Lemma 3,27 = min(U;, redefined as below:

max(L;, v/ B;(z*)/A;(=*))). Note thatL,, (=) is a posynomial ) -

in z, and that under the transformation= ¢* for1 < i < n, £DP: Maximize  Q(A)

4. Repeat Step 2 and 3 until no improvement.

the functionH(z) = L, (¢, - -+, ¢**) is convex over, = Subjectto A € €,
{Z' Liger U, 1<i<n} Letz =(zf, ---, z;) Where  yhere()) is the optimal value ofZRS/A.
xj = ¢¥ for 1 <4 < n. We now consider three cases. By [2, Theorem 6.3.1](Q(A) is a concave function over
Case 17 = \/(B;(2"))/(Ai(z)): Inthis case, we have ) >’ o, However, Q()) is not differentiable in general. So
9L, /9xi(z*) = 0. Thus methods like steepest descent, which depends on the gradient
directions, are not applicable. The subgradient optimization
OH (z") = oL 1 (") A () = aL, (x*)ez; -0 method is usually used instead. The subgradient optimization
9z dz; 9z dz; method can be viewed as a generalization of the steepest
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descent method in which the gradient direction is substitutbélow.

by a subgradient-based direction (see [1] for a reference).
Basically, starting from an arbitrary poik, the method ALGORITHM SGWS-LR:

iteratively moves from the current point to a new point| Output: the optimal gate and wire sizing solutian

following the subgradient direction. At Stép we first solve 1. Call SOLVELDP to find the optimal.

LRS/A (by solving the simplerLRS/u). Then for each

relaxed constraint, we define the subgradient to be the righ Z : )/\ji'

j€input(z
Call SOLVELRS/u to find the optimake.

2. Letp=(po, -, fints) Wherep,; =

[eN=1

hand side minus the left hand side of the constraint, evaluate
at the current solution. The subgradient direction is the vector 3-
of all the subgradients. We move to a new point by multiplying
a step sizep;. to the subgradient direction and adding it to Theorem 3:For simultaneous gate and wire sizing, the
A. After each time we moved, we projedt back to the problem of minimizing total area subject to maximum delay
nearest point irf2, so that we can solv&€RS/pu instead of bound can be solved optimally by SGWS-LR.
LRS/X for the next iteration. The procedure is repeated until
it converges.

It is well known (see [2, Theorem 8.9.2] for example)

that If the step size s%guean} satisfies the conditipns component area and the constraint is on the maximum delay
gg,ti’“r;’icz’oafi’; n_moet?lr(])(zi Zvjv’mzl aph’;v a;/sOZBET/Z?g;h?oSltjr?grz?t?r? from any input to any output (i.e., the arrival ime at node 0).
solution. aln this section, we exteljd our Lagrarjgia_n relaxation_approach
The description s the algorithrﬁo hanc_ile problem; with other objectives a_nd with other

SOLVE LDP below. constra_unts_. In Section IV-A, we tre_at_ the maximum delay_as
- the objective and show how to minimize it. We also point

out that the problem of minimizing maximum delay subject

to total area bound is easy to handle. In Section IV-B, instead

V. EXTENSIONS
In Section Ill, the objective of our problem is the total

summarized in

ALGORITHM SOLVELDP :
Output: A which maximizesCRS /A
1. k:=1 /" step countef/

A := arbitrary initial vector in€2

2. Letu= (po, - Z Aji

Jj€input(4)
Solve LRS /A by calling SOLVELRS/y to solve

LRS/p and calculatingsy, - -
in the proof of Lemma 1.

3. /* Move to a newA by adjusting the Lagrange
multipliers A;; *
/fori:=0ton+sdo

for all j € input(¢) do

Aji + pr(a; — Ao)
N+ pula;+D;—a;) fF1<i<n
N + pu(D; — a;) fn+l<i<n4s

4. ProjectX onto the nearest point if2,.

5. ki=k+1

6. Repeat Step 2-5 until

<Z Ty — Q(A)) < error bound
=1

*y Hnts) Wherep,; =

-, an+s as described

if =0
)\ji =

Theorem 2: The algorithm SOLVE_LDP always converges

to the optimal solution ofLDP.

We conclude Section Il by giving the algorithm simultane-
ous gate and wire sizing by Lagrangian relaxation (SGWS-LR)

of assuming that all the input signals arrive at time 0 and all
the output signals have a single bound on the arrival time,
we allow different arrival time specifications on the input
and output signals. In Section IV-C, we show how power
dissipation can be handled. In Section IV-D, we show that
a more accurate gate model can be used.

For all the extensions, only slight modifications to our
algorithm presented in Section Ill are needed. Moreover, con-
vergence to global optimum solutions is still guaranteed.
Actually, it is not difficult to see that any combination of
the problem in Section Ill or the extensions can be handled
similarly. For example, we can optimally solve the problem of
minimizing power subject to bounds on area and on maximum
delay from any input to any output.

A. Minimizing Maximum Delay

Instead of having a constant bourg for the arrival time
at node 0, we introduce one more variaklg to represent
the arrival time at node 0, and we want to minimizg As
in Section IlI-A, by partitioning the constraints on path delay
into constraints on delay across components, the problem of
minimizing maximum delay by simultaneous gate and wire
sizing can be formulated as

PP:

Minimize
ag

Subject to
a; < ag J € input(0) /* outputs™/
a; +D; <a; i=1,---,nand¥j € input(s)
D; <a; t=n+1,---,n+s /" inputs*/
L;<z; <U; ¢=1,---,n.

Authorized licensed use limited to: lowa State University. Downloaded on April 15,2010 at 14:41:55 UTC from IEEE Xplore. Restrictions apply.



1022 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 7, JULY 1999

If all the constraints on arrival time are relaxed, then the L#&he jth output load. Then the problem can be formulated as
grangian relaxation subproblem associated with the Lagrarfgdows:
multipliers A will be:

PP
LRS/A: Minimize Ly(z, a) Minimize
Subjectto L; <z, <U; t=1,---,n Zazxz
t=1
where Subject to
a; < A; J € input(0) /* outputs™/
LA(:L', a) =ag+ Z( ) )\J'O(Clj - aO) aj+ D;<a; i=1,---,nandVje mput(L)
JjE€input(0
th I Ai+D;<a, i=n+1---,n+s/"inputs*/
—i—Z Z Ajila; + Di — a;) Li<ze; <U; =1, n.
=L jCinput(i) If all the constraints on arrival time are relaxed, then the La-
n+s . . . .
grangian relaxation subproblem associated with the Lagrange
+ Zl Ami(Di = ai). multipliers A will be:
i=n—+
LRS/A: Minimize Ly(z, a)
As before, by the Kuhn-Tucker conditions, we have the Subjectto L; < x; < U; i=1 -, n
following optimality conditions onh: where
1= > Xo La(z,a) =Y i+ > Aolay — 4)
j Einput(0) =1 j Cinput(0)
Z Aki = Z )\jk forl1 <k <n+s. n
i€output(k) j€input(k) + Z Z )\Jl(aﬂl + DZ - ai)
=1 j€input(:)
Then forA satisfying the conditions; RS /A can be simplified nts
to + Z Ami(Ai + Dj — a;).
t=n-+1

LRS/p: Minimize L
/h w(®) Again, by the Kuhn—Tucker conditions, we have the following

Subjectto L;<ai <U; i=1--.n optimality conditions onm\.
wherep = (po, *+ -, fins)s i = 2 jeimpur() Asi TOr 0 <6 < YooM= > A forl<k<n+s
n—+ s, and LH (.’L') = E?:ls NzDz iCoutput(k) jCinput(k)

It is easy to see thal’RS/u can be solved optimally

by the iterative local resizing algorithm in Section IlI-D andSO for A satisfying the conditions, we can simplify,(z, )

the correspondingCDP can be solved optimally by the nts n nts
subgradient optimization method as described in Section IlI- Lz, a) = Z 1D + Z &L+ Z Ami A
V. Therefore the problem of minimizing maximum delay can =1 =1 i=ntl
also be solved optimally by our approach. — Z Ajod,.

In fact, the problem of minimizing maximum delay subject jCinput(0)

to area bound can also be optimally solved by the Lagrangigra
relaxation approach. The constraint on area can be relaxed an
incorporated into the objective function as well. The functio
L,(z, a) is of the same form as the one in Section IlI-B.

he Lagrangian relaxation subproblem can be formulated in
ctly the same form as the problefRS/p in Section Ill-

g. LRS/p and LDP can be solved as before. Therefore even
with different arrival time specifications on inputs and outputs,
the problem can still be solved optimally by our approach.

B. Arrival Time Specifications on Inputs and Outputs

In Section 11, we assume that all the input signals arrive & Power Consideration
time 0 and we want to bound the arrival time at the outputs The power dissipation of a circuit is mainly due to the
uniformly by a single constamty. We show in this subsection dynamic power. The dynamic power is the power dissipated in
that different arrival time specifications on the input and outpeharging and discharging capacitances in the circuit. For each
signals can be easily handled. We demonstrate the ideaibthe capacitance of componeris a linear function of its size
considering the problem of minimizing total area subject te;. Hence, the total dynamic power is also a linear function
different arrival time constraints at inputs and outputs. of z1, .-+, xn. In other words, the dynamic power can be

Forn+1 < ¢ < n+s, let A; be the arrival time specification handled in exactly the same way as the total component area.
of the input signal at thé; —»)th input driver. Forl < j <, Sapatnekar and Chuang [21] showed that the short-circuit
let A; be the arrival time requirement on the output signal g@iower of gates [25] can sometimes be a nonnegligible part of
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the total power dissipation. We notice that our approach can TABLE |
also be extended to handle short-circuit power. As pointed THE RUNTIME AND STORAGE REQUIREMENTS OF OUR
. . . . . ALGORITHM ON TEST CIRCUITS OF DIFFERENT SIZES
out in [21], the short-circuit power of a gate is proportional
to the MOS transistor gain factor and the Elmore delay Circuit Name T Cirwi\t&_Size —_ (Runtirm; {i‘iimor{
s . . . ates | # Wires ota minutes Mbytes
of the dr|V|r_lg gates. Since the _MOS transistor gain facto i3 GO 150 o s =
are proportional to the gate sizes and the Elmore dele  qdqer (16 bits) 240 oo | 432 0.01 076
are posynomial functions in the gate sizes, the short-circ adder (32 bits) 480 384 | 864 0.02 1.15
power can be written as a posynomial function. So the st “jﬁt‘f E?isbﬁ}} lggg ggg ;f: g-gg ;gz
. . . . adder its y ! 5 } .82
of the dy_nar_nlc power an_d the short-circuit power is also adder (256 bits) 3510 3575 T 6013 THE =
posynomial in the gate sizes. adder (512 bits) 7680 6144 | 13824 2.75 11.83
Consider as an example the objective of minimizing pow: adder (1024 bits) 15360 12288 | 27648 11.53 22.92

subject to maximum delay bound. We can use Lagrangian

relaxation to handle the constraints on arrival time and use

the optimality conditions on to simplify LRS/A to LRS /e Runtime vs. Circuit Size
as before. The only difference is that the objective function of
LRS/u here consists of a weighted sum of the component de-
lays and the posynomial function corresponding to the power. |
This problem can still be solved by the greedy technique as 10.00 -
in Section IlI-D. Each optimal local resizing step will be a bit |

Minutes
12.00|

different from before. However, it is not too difficult to see 8'OOF E
that the optimality of the greedy algorithm can still be proved 6.00L -
similarly. !

4.00!
D. More Accurate Gate Model 2.00:

For higher precision timing requirements, more accurate
gate models are desirable. Although in Section I, we model a
gate as a switch-lev&®C circuit with a resistance proportional 0 10000 20000 30000
to the gate size, better gate models can be easily mteg_ra,i%da The runtime requirement of our algorithm versus circuit size.
into our algorithm. We now show an example of using

precharacterized function as the delay model for gates. . ) ] ) ]
The following precharacterized delay functiai;() and ©" adders [15] of different sizes ranging from eight bits to 1024

output slope functioff;() can capture the input slope effect adits: Number of gates range from 120 to 15360. Number of
well as the diffusion capacitance effect to the delay of gateWires range from 96 to 12288 (note that the number of wires
. here means the number of sizable wire segments). The total

Dy(xi, ti, C) = & + piti + Giwi + i o, numbgr of §iz§ble componel_wts ra_nge from 2_16 tlo 21 6_48. The
T stopping criteria of our algorithm is the solution is within 1%

0.00 - \

# of components

- = ~ T of the optimal solution. The lower bound and upper bound of
Li(zi, ti, Ci) = 8i + pits + Gizi + — Ci, . :
( ) b ¢ T4 the size of each gate are 1 and 100, respectively. The lower

wherez; is the gate sizet; is the input rise or fall time of bound and upper bound of the width of each wire are 1 and

gated, C; is the capacitance load,, ¢;, 7, 3;, ¢;, and 7; 3 pm, respectively. . .

are precharacterized coefficients. It is not difficult to see that-rable '_ShOWS the “_‘”“’_“e _and store_lge requirements of
while keeping the size of other components fixed, the inpq]'tjr algorithm. For a circuit with 864 sizable components,
slopet; is a linear function of; since gate contributes only 1€ runtime and storage requirements of our algorithm are

the linear termé;z; to its parents’ capacitance load. HencéHSt 1.3 s and 1.15 Mbytes. .Even for a circuit Wit_h 27648
the delay of gaté can be rewritten as follows: sizable components, the runtime and storage requirements of

our algorithm are 11.53 min and about 23 Mbytes only.
Di(ws, i, C5) = 8 + s + f_va Figs. 6 an_d 7 show the rur_wtime a_md storage rgquirements
x; of our algorithm. By performing a linear regression on the
logarithm of the data in Fig. 6, we find that the empirical
componeny is the parent of componentlt is not hard to see runnmg of our program is abOL@(”.L/)'. F|.g. 7 shows thgt
that after the substitutiond;(z) = & R; +«; +¢,. Hence, our Fhe ratio of the storage versus the circuit size of our algo.nthm
algorithm in Section Il still converges to the optimal solutior® close to I_mear. The storage requirement for each sizable
under this modification. Component is about 0.8 kbytes. .
Fig. 8 shows the convergence sequence of our algorithm
SOLVE_LDP on a 128-bit adder. It shows that our algorithm
converges smoothly to the optimal solution. The solid line
We implemented our algorithms on a PC with a 333-MHmpresents the upper bound of the optimal solution and the
Pentium Il processor. Table | shows the experimental resudtstted line represents the lower bound of it. The lower bound

wheres; = §;,+0;(8;+0;t;+d4;x;), ¢ = ¢+p:8,(7;/x;), and

V. EXPERIMENTAL RESULTS
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Fig. 7. The storage requirement of our algorithm versus circuit size.
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Fig. 8. The convergence sequence for a 128-bit adder.
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Fig. 9. The area versus delay tradeoff curve for a 16-bit adder.

values comes from the optimal valug(A) of LRS/A at

current iteration. Note that the optimal solution is always8
in between the upper bound and the lower bound. So theéel
curves provide useful information about the distance between
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the optimal solution and the current solution, and help users
to decide when to stop the programs.

Fig. 9 shows the area versus delay tradeoff curve of a 16-
bit adder. In our experiment, we observe that to generate a
new point in the area and delay tradeoff curve, SOLVE_LDP
converges in only about five iterations. It is becauseXha
the previous point is a good approximation for that of the new
point and, hence, the convergence of SOLVE_LDP is fast. As
a result, generating these tradeoff curves requires only a little
bit more runtime but provides precious information.

VI. CONCLUSION

We have presented a Lagrangian relaxation approach to
simultaneous gate and wire sizing for combinational circuits.
We have shown that this approach can handle optimally and
efficiently several different objective functions and constraints,
like minimize total area subject to maximum delay bound and
minimizing maximum delay. We have demonstrated the idea
by deriving the algorithm SGWS-LR in Section Il in detail.

The Lagrangian relaxation technique reduces the problem
into two subproblems, namely the Lagrangian relaxation sub-
problem and the Lagrangian dual problem. For the Lagrangian
relaxation subproblem, we have shown that it can be greatly
simplified by the Kuhn-Tucker conditions. The simplified
Lagrangian relaxation subproblem is solved exactly by a very
efficient greedy algorithm. For the Lagrangian dual problem,
it is solved exactly by the classical subgradient optimization
method.

In this paper, Elmore delay and relatively simple gate
delay models are used. In the future, we would like to
incorporate more accurate timing models into the Lagrangian
relaxation approach. Lagrangian relaxation is such a flexible
technique that the same framework should still work for more
accurate timing models. However, maintaining the exactness
and efficiency of the algorithm would be a challenge.
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