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An Efficient and Optimal Algorithm for
Simultaneous Buffer and Wire Sizing

Chris C. N. Chu and D. F. Wongviember, IEEE

Abstract—n this paper, we consider the problem of intercon- ered. GWSA was later extended by Chen and Wong [2] to
nect delay minimization by simultaneous buffer and wire sizing continuous wire sizing (i.e., the segment widths can be from a
under the EImore delay model. We first present a polynomial time continuous range of real numbers). Recently, Chu and Wong

algorithm SBWS to minimize the delay of an interconnect wire. . . . .
Previously, no polynomial time algorithm for the problem has [6] proved that GWSA for continuous wire sizing runs in time

been reported in the literature. SBWS is an iterative algorithm linear to the number of segments.
with guaranteed convergence to the optimal solution. It runs In order to reduce delay and to maintain signal integrity,
in quadratic time and uses constant memory for computation. ysually buffers are inserted to interconnect wires. Sizing the

Experimental results show that SBWS is extremely efficient in ; :
practice. For example, for an interconnect of 10 000 segments and buffers appropriately can also reduce the interconnect delay

buffers, the CPU time is only 0.255 s. We then extend our result significantly. Since buffer sizes affect wire sizing solutions
to handle interconnect trees. We present an algorithm SBWS-T and wire sizes affect buffer sizing solutions, it is beneficial
which always gives the optimal solution. Experimental results to simultaneously size both buffers and wires. The algorithm
shoyv that S_BWS-T is faster than the greedy wire sizing algorithm G\WSA has been extended to handle simultaneous buffer and
[2] in practice. wire sizing in [11] for discrete sizing and in [1] for continuous
Index Terms—Buffer sizing, interconnect, performance opti- sizing. These algorithms have been shown to be very efficient

mization, physical design, wire sizing. in practice. However, no bounds on the runtime of them are
known. In Section V of this paper, we do some experiments
I. INTRODUCTION with GWSA for continuous buffer and wire sizing. We observe

L .. _that even for a single wire, the runtime is no longer linear (as
N the past, gate delay was the dominating factor in circuit ngie w 9 (
in the case of wire sizing alone).

design. However, as the feature size of VLSI devices L .
. . . . ome other related results on wire sizing and buffer sizing
continues to decrease, interconnect delay becomes increasingly . . .
listed below. Menezest al [17] applied the sequential

important. Nowadays, feature size has been reduced to 0. 23 dratic proaramming aporoach to simultaneous aate and
#m in advance technologies. Interconnect delay has becof) prog 9 app 9

e .. . . i
the dominating factor in determining system performance. \é}/}lre sizing. That is the sizing problem is reduced to a sequence

many systems designed today, as much as 50%-70% of clockquadr"’ItIC programming subproblems. No bound on the

cycle is consumed by interconnect delay [10]. It is predicteéjnt'me of the algorithm was reported. Lilks al. [16] gave an

in the National Technology Roadmap for Semiconductors [1 _gorit_hr_n for simultaneous bgffer insertioq, bUﬁer sizing _and
that the feature size will be reduced to 0.& by 2003 ire sizing based on dynamic programming. This algorithm

and 0.07 um by 2009. So we expect the significance ojuns in pseudopolynomial time and requires a substantial

interconnect delay will further increase in the near future. amount of memory. Chu and Wong [5] also considered si-

Wire sizing was first shown by Cong and Leung [12] ténulltanegl;s buffe; mslertltl)rl: buffer sizing ?no(lj Lwre s1zIng.
be an effective technique to reduce interconnect delay. ThA closed form optimal solution was presented. HOowever, in

proposed the greedy wire sizing algorithm (GWSA) whic .at Paper, on.ly wire area cqpacit.ance was considered. Wire
minimizes the weighted sink delay of an interconnect treg,Inglng capacitance [20], which will become more and more

Since then, many wire sizing results were published SonE}gnificant as feature size decreases, was ignored. Taking wire
[

examples are a closed form formula for an interconnect w inging capacitance into account significantly complicates the

[3], [15], its extension to an interconnect tree [4], an aIgorithIRrObIem and [5] can only give an approximate SOIU“.On' C.hu
to minimize the maximum sink delay [18], and an algorithnqnd Wong [7] showed that the simultaneous buffer insertion
for interconnects with multiple sources [8] and wire sizing problem can be formulated as a convex

In [12], discrete wire sizing (i.e., the segment widths muduadratic program. The convex quadratic program has a small

be chosen from a given set of discrete choices) was consié€ @nd some special structures, and so can be solved very

efficiently. The result was extended to handle buffer sizing
M ot ved Aoril 24. 1998 revised March 15. 1999, Thi bry enumerating all possible combinations of buffer sizes. A
anuscript receive pri s , revise arc , . IS pape . . . ..

was recommended by Associate Editor M. Pedram. pruning technique was proposed to improve the efficiency. A
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lem for a single interconnect wire. Basically, an interconnect Component index n=7
wire joining a source and a sink is divided into some uniform- b 2 3 4 5 6 7 8
width wire segments. Some of the adjacent segments have

buffers in between. The problem is to determine the buffer Ry, x

. . 3 X5 C
sizes and segment widths so that the Elmore delay fr xp||x2 —§>— Ix4 ~[>— jx,; $x7 L

the source to the sink is minimized. The details of th@)

problem formulation are presented in Section Il. Note thal I
no previous result can solve this problem optimally in a B={0.358 m=2
provably polynomial time bound. In particular, both wire W={1,2,4,67}

area capacitance and wire fringing capacitance are taken ip{p 1. The simultaneous buffer and wire sizing problem.
account in this paper. An approach completely different from
that in [5] is required here.
We make the following contributions in this paper.
« We present an iterative algorithm SBWS, for the simul- ._[>_. —>
taneous buffer and wire sizing problem. We prove that X; ’j_
SBWS always converges to the optimal solution. G, T
* We prove that for an interconnect wire consistingrof = =
buffers and segments, SBWS runs(iin? +n log (1/¢)) Fig. 2. The model of a buffer as a switch-level RC circuit.
time, wheree specifies the precision of computation (see
Theorem 1). Sincéog (1/¢) is bounded by the number of
bits in the input, the total runtime is quadratic to the input 2
size. This is the first polyn_0m|a_\l _tlme algorithm fo_r the o+ | Ix, }|— —> MW
simultaneous buffer and wire sizing problem considered L
in this paper. axi+ﬁT Té‘,—x,-+ﬁ
* SBWS requires only constant memory for computation. 2 = = 2
+ We show that our result can be extended to han%. 3. The model of a wire segment asretype RC circuit.
interconnect trees. We present an algorithm SBWS-T
which always gives the optimal solution for the weighted
sink delay objective. of the jth buffer. Note thatty = 0 and b,,,41 = n + 1.
« We demonstrate experimentally that SBWS and SBWSet B be the set of component indexes of buffers (i.e.,
are both extremely efficient in practice. For SBWS, fof = {00, 01, - -, bm, bm1}). Let W be the set of component
an interconnect of 10 000 segments and buffers, the Ciitglexes of wire segments (i.8y = {0,1,....n + 1} — B).
time of SBWS is only 0.255 s. Besides, we observe th&€e Fig. 1 for an illustration.
SBWS runs in linear time in practice. For SBWS-T, we If componenti is a buffer (i.e.,i € B), then it is modeled
show that it is faster than GWSA in practice. as a switch-level RC circuit as shown in Fig. 2. The output

The rest of the paper is organized as follows. In Section 'fastance ar_1d the input capacAltance Of the buffefﬂm_i and
i, respectively, wheré; and¢; are unit effective resistance

we present the formulation of the simultaneous buffer and wifé 4 uni . f the buff velv. A
sizing problem for a wire. In Section lll, the algorithm spwsnd unit gate capacitance of the buifer, respectively. As we

its optimality proof and its runtime analysis are presented. menuoned above, we treat the source (component 0) and the

Section IV, we describe how to extend our result to hand?énk (compAonentn +1) as fixed Size buffers. Sao, 7o,
and é,41 are set to some arbitrary values such that

interconnect trees. In Section V, some experimental results'fot+!’

show the efficiency of SBWS and SBWS-T are presented. “*P. — 7o/ a”‘?' i . .
If component: is a wire segment (i.e4 € W), then it

is modeled as ar-type RC circuit as shown in Fig. 3. The
Il. PROBLEM FORMULATION FOR A WIRE resistance and the capacitance of the wire segment; are

In this paper, &componentmeans either a buffer or a wire@nd éiz; + fi, respectively, where;, ¢;, and f; are the unit
segment. Given a source with driver resistaRge a sink with width wire resistance, unit width wire area capacitance, and
load capacitancé€’r,, the source and the sink are linked by aMvire fringing capacitance of the segment, respectively.
interconnect consisting of components. Théth component ~ FOr0 <@ < n, if b; < i <b;4q, let
is either a buffer of size; or a wire segment of width;. The )
simultaneous buffer and wire sizing problem is to minimize the R, = Ty, + Z Tk (1)
delay from the source to the sink with respectitg . . ., x,. Ty, k

In order to simplify the notations, we treat the source

)

i
i

=

|

k=b;+1

. . . . bjit1—1
and the sink as buffers of fixed size in this paper. Let the R R
=Gy . T e 2
source be called the Oth component and the sink be called G =By + k;—l(Ckxk ) ()

the (n + 1)th component. Letn be the number of sizable
buffers in the interconnect (i.e., excluding the source and thduitively, R; is the sum of all resistances before component
sink). For0 £ 5 < m + 1, let b; be the component index¢+1 (up to the last buffer), an@; is the sum of all capacitances
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Fig. 4. lllustration of R; and C;.

after component (up to the next buffer). See Fig. 4 for an

illustration. Let theupstream resistancef component: be
R;_;. Let thedownstream capacitancaf component be C;
if i €B,orC;+ (& + fi)/2if i € W.

In this paper, the widely used Elmore delay model [14]
used for delay calculation. Basically, the Elmore delay fro
the source to the sink is the sum of the delays associated W
the components, where the delay associated with a compone
is equal to its resistance times its downstream capacitance
other words, the Elmore delay from the source to the sink

given by
m o bijp1—1 o
b, T Gxi + fi
D= > (. — G+ — 3
) - bt D x<+ 5 ) (3)
j=0 7 i=b;+1
The problem is to minimizeD with respect tozy, ..., z,.

Ill. THE ALGORITHM SBWS

In this section, we derive a polynomial time algorithm
SBWS for the simultaneous buffer and wire sizing probleq}f
presented in Section Il. We first derive the necessary and
sufficient conditions for optimality and write down the systerg

1299

Also, observe that fol0 < ¢ < n, (1) and (2) can be
rewritten recursively as follows:

Ry =iz, iticB )
Ri=Riy +fifus, iLieW )
Ci=éipizin, ifit1eB ®)
Ci =Cip1 + Ciq1wig1 + fiqr, fi+1eW.  (9)

As a result, finding the optimal solution to the problem is
equivalent to solving (4) and (5) fary, ..., z,, where Ry,
o, Ry, Co, ..., O, satisfy (6)—(9). In other words, we need

ito solve a system o8n + 2 nonlinear equations (4)—(9) for

the variablesry, .. ., Ch. We

lore some special properties of the system and show how
'5 solve the system in quadratic time below.
he basic idea is instead of considering the system of
eHhations (4)—(9) directly, we consider a modified system
Sbtained by adding an extra equation to fix the valu&pfand
ignoring the equatioy = #o/2( [One of the equations in (6)
wheni = 0]. We show that this modified system of equations
can be solved in linear time. Moreover, if the resultiig
equalsiy/zo (= Rp by definition), then the solution of the
modified system will also be a solution of the original system,
and hence the optimal solution of the simultaneous buffer and
wire sizing problem. In the following, we first show how to
solve the modified system in linear time. Then we show how
to find the value ofR,, such that the resulting, equalsR .
For any wire segment, the lemma below gives the value
z; iIf R; and C; are known.
Lemma 1: For any: € W, for the solution of the modified
stem

., Tn, Ro, . Rn, aﬂdc(o7 ..

of equations specifying the optimal solution. Then, we sho

how to solve the system of equations in polynomial time using

a simple binary search technique.

The necessary conditions for optimality a¥é)/0x; = 0
for 1 <i<n.If i € B, then we can writeD in (3) in terms
of z; as

D =R, 1¢x; + 7—’07 + terms independent of;.
T

So dD/dx; = 0 is equivalent to

If © € W, then we can writeD in (3) in terms ofz; as

D=R,_i¢x; + i <Ci + %) + terms independent of;.
Py

T

So dD/dz; = 0 is equivalent to

Note thatD is a posynomial [13] incy, ..., z,. It is well

Fiti + V/(Fi6)? + 47,6, Ri(C; + [i/2)

v %R,
Proof: Eliminating R; ; from (5) and (7), we have
éz(Rz — fz/azz)azf = fZ(CZ + fi/2), or equivalently,éiRiazf —
7:éx, — 7:(C; + f;/2) = 0. Solving the quadratic equation
and taking the positive root, we get the result. [ |

So if we know R; and C; for some: between 1 and,
then by Lemma 1 (i € W) or by (6) (if : € B), we can
determinez;, and hencek; | and C;_{, in constant time.
Since R,, is fixed by the extra equation and, equalsCy,
(= ént12ny1), the values oy, ..., 2, Ro, ..., Ro—1, and
Cy, ..., C,_1 can be found in linear time by applying the idea
above, repeatedly. Hence, the modified system can be solved
in linear time as summarized in the functiddOLV E( ) in
Fig. 5.

In SOLVE( ), Step 1 follows from (8) with = » and that
CL = ¢n41%n+1, Step 4 follows from (6), Step 5 follows from
(4), Step 6 follows from (8) withi = ¢ — 1, Step 9 follows
from Lemma 1, Step 10 follows from (5), and Step 11 follows
from (9) with¢ = ¢ — 1.

known that under a variable transformation, a posynomial isAs mentioned above, the solution of the modified system is
equivalent to a convex function [13]. 90 has a unique global also a solution of the original system if and only if the value
minimum and no other local minimum. That means, if foof R, returned bySOLV E(R,,) equalsio/xo (= Rp). To
some solutiongD /dz; = 0 for 1 < ¢ < n, then the solution find the value ofR,, such thatSOLV E(R,,) = Rp, Lemma

is optimal. In other words, (4) and (5) are both necessary aBdelow implies that a binary search can be used. The proof

sufficient conditions for optimality.

of Lemma 2 is given in the Appendix.
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FUNCTION SOLVE(R,) According to the result of [5], a good initial guess for the
/% Given Cyp, B, W and 7,8, f; Vi value of R in Step 1 is given by

find z1,...,2,, Ro,..., Ry, Co,...,Chp. . ;

Retur; Ry. (’E“/ o " Pn/Zn, if n € B
L. Cp = CL(= Chp1Znt1) k= P <CL + &>/(éna:,2l) + P/, fnew
2. for i:=n downto 1 do 2
3. ifi€ Bthen { X o X _
4. z; :=7i/R; wherer = X,ew 74, ¢ = Ziew &, [ = Ziew fiy p IS root of
5. R, 1=fiCi/(’C\iZ,2) f N
6 G “mo(curg) T s=(5)
8. else { /*icW*/ iCE- Lot
9 TGt V(7@)? + 4riciRi(Ci + £i/2) and

' T 2R, f
T R Fi(eery) oo e
. i—1 -— Ly L i _
12. } Tn = AN .
13. return Ry el CL + 9 G if neW.
Fig. 5. The function to solve the modified system of equations. In practice, withe = 2 and this initial guess, the number

of iterations of dividing and multiplying? to find the range
is usually only zero or one. In Section V, we demonstrate that

A*LG_OR"ITHM SBWS o ) these values of and initial R work well in practice.
/ glven 9,6 Rp,Cr, B, W and 7,8, f: Vi, In the following, we prove that withr = » and a simple
nd z1,...,2,. */ — . . .
1. R:= an initial guess to the optimal value R/, initial guess of R = Rp, the runtime of SBW_S is quadratic.
2. if SOLVE(R) > Rp, then Lemma 4 below tells us how cloge, to the optimal valuez;,
3. while SOLVE(R) > Rp do R:= R/o should be in order to guarantee that the termination condition
4. else while SOLVE(cR) < Rp do R:=oR in Step 13 of SBWS is satisfied. The proof of Lemma 4 is
5. Riow =R given in the Appendix.
6. Ry :=0R Lemma 4: For any0<e<1,if 1/(14+¢/3") < R, /R, <
7. Rn = (Rup + Riow) /2 1+¢/3", thenl/(1+¢)<R)/Ro<1+e.
8. repeat /* Binary search */ So by Lemmas 3 and 4, if/(1 +¢/3") < R, /R, <1+
9. if SOLVE(R,) < Rp then y Ler /AL = S/ fin =
10. Riow = R e/3", then|z,—z;|/z; < eforl <i<nand|D-D'|/D <e.
11.  else Ryy:= Ry When we start the binary searctyo < R),/R,, < o (Where
12.  Rp:= (Rup + Riow)/2 o = n here). So the number of iterations of binary search (i.e.,
13. until 1/(1 +€¢) < SOLVE(R,)/Rp <1 +¢ Steps 8-13 of SBWS) to guarante&1+¢/3") < R, /R, <
1+ ¢/3™ is at mostlog, ((¢ — 1)3™/€) = O(n +log(1/¢)).
Fig. 6. The simultaneous buffer and wire sizing algorithm for a line. Lemma 5 bounds the number of iterations to find the starting
range (i.e., Steps 2—4 of SBWS). Its proof is given in the
Appendix.

Lemma 2: SOLV E(R,,) is a strictly increasing function Lemma 5: With o = n and the initial guess oR = R,

in R,. the number of iterations to find the starting rangeJis. ).

In the following, letzy, ..., zn, Ro, ..., Ry, Co, ..., Since it takesO(n) iterations to find the starting range,
C, be the solution computed bYOLV E(R,), and letr}, O(n + log(1/¢)) iterations for the binary search, and each
e o RO R CH L., Cl be the optimal solution. iteration takesO(n) time, we have the following theorem.

Let D and D’ be the delay corresponding to the solution by Theorem 1:For an interconnect with components and for
SOLV E(R,) and the optimal solution, respectively. Lemma&ny € > 0, the algorithm SBWS solves the simultaneous buffer

L ! > i .

3 below gives us a condition to terminate the binary sear@tqd wire sizing proble_m ||®.(n +n¥05(1./6)) time andQ(l)
h that th . ¢ th lution is withinTh ¢ memory for computation with precision(i.e., the solution by

such that the precision ot the solution 1S withn the proo SBWSuy, ..., z,, D and the optimal solution, ..., z/

of Lemma 3 is given in the Appendix. D' satisty |z; — x|/« < ¢ for all s and |D — D'| /D’ <€)'"
Lemma 3: For anye>0, if 1/(1+¢) < R{/Ry < 1+k¢,
then|z;, — z}|/zi<efor1 <i<nand|D - D'|/D <e.
To find a range to start the binary search, we can first

make an initial guesd® of R,. Next, R is repeatedly di- ) . L .

, i , ogy. As most interconnects in a circuit have a line topology,
vided or multiplied by a factoro untl SOLVE(R) < gpws can be applied to them directly. However, there are
Rp <SOLVE(oR). Then, the rangdR,oR) contains the some interconnects with a tree topology. In this section, we
optimal valueR;, and hence can be used to start the binagescribe how SBWS can be extended to handle interconnects
search. The algorithm SBWS is summarized in Fig. 6. with a tree topology.

IV. EXTENSIONS TOHANDLE INTERCONNECT TREES
So far we have considered interconnects with a line topol-
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TABLE |
ALGORITHM $B WSTT THE AVERAGE CPU TiME AND THE AVERAGE NUMBER OF CALLS
1. For each component i in the tree, let g; be the sum 70 THE FUNCTION SOLV E( ) FOR THE ALGORITHM SBWS

of all sink weights at the downstream of component i.
2. For each component i in the tree,

scale 7; by the factor p; (i.e., 7 := u;7).
3. Perform a bottom-up traversal of the tree

to compute C; for each component 1.
4. Perform a top-down traversal of the tree:

n | CPU(s) # calls
1000 0.025 11.9
2000 0.052 12.1
3000 0.077 12.1
4000 0.102 11.9
5000 0.126 12.0

For each tree edge, 6000 0.151 11.9
first find the upstream resistance of the edge, 7000 0.176 11.9

then optimally size the edge using SBWS. 8000 0.207 12.1

5. Repeat Step 34 until no improvement. 9000 0.231 12.0

10000 0.255 12.0

Fig. 7. The simultaneous buffer and wire sizing algorithm for a tree.

. s . : CPU(s)
For interconnect trees, minimizing maximum sink delay and

minimizing total area subject to sink delay bounds are the most 0.26 -
commonly used objectives. Chext al. [4] showed that both 0.24 -
objectives can be reduced by the Lagrangian relaxation tech- g2, i
nique to a sequence of subproblems minimizing a weighted 4| i
sum of the sink delays. In other words, by solving the problem

T

T

0.18} _
of minimizing weighted sink delay, we also solve the problems o161 |
of minimizing maximum sink delay and minimizing total area )
. : : 0.14| -
subject to sink delay bounds as well. So we consider the
problem of minimizing weighted sink delay in the following. 0.12)- 7
0.10+ =

To minimize a weighted sum of the sink delays of an
interconnect tree, a similar technique as in [4] can be used. The 008
basic idea is to iteratively optimize the tree edges one at a time. 006 .
At each time an edge is manipulated, we keep all the other o0.04
edges fixed and apply SBWS to that edge. The corresponding 0.02 -
algorithm SBWS-T is given in Fig. 7. Detailed explanations  q0}- |
of the steps can be found in [4]. (') 20'00 40'00 60‘00 80‘00 10(‘)00

It is easy to see that the weighted sum of the sink delays is
a posynomiaL So the pr0b|em has a unique g|0ba| minimufrg. 8. The CPU time of the algorithm SBWS versus the number of
As a result, the algorithm SBWS-T which greedily sizes eadmPonents:
edge iteratively always converges to the global minimum. In
practice, a few iterations are usually enough for SBWS-T to As the table shows, SBWS is extremely fast in practice.
converge. Note that since the downstream capacitance &4¢n for an interconnect of 10 000 components, the CPU time
upstream resistance of each edge are computed incremeniglignly 0.255 s. Moreover, we observe that the number of
by a bottom-up traversal in Step 3 and a top-down traverdalls to the functionSOLVE( ) is around 12 for all cases.
in Step 4 respectively, each iteration of SBWS-T takes onlherefore, as it is clearly demonstrated in Fig. 8, the runtime

linear time. Hence, SBWS-T is very efficient in practice. It§ linear in practice.
efficiency is demonstrated in Section V. Next, we compare the runtime of SBWS-T with that of

GWSA for simultaneous continuous buffer and wire sizing [1].
GWSA is the most efficient algorithm for minimizing weighted
V. EXPERIMENTAL RESULTS AND CONCLUDING REMARKS  gjnk delay reported in the literature. GWSA can also handle
In this section, we show that the algorithms SBWS arlgbunds on buffer size and wire width. For the comparison
SBWS-T are extremely efficient in practice. We have impldelow, we are using a version of GWSA which ignore the
mented these algorithms in the C Language. We run them loounds on buffer size and wire width.
a PC with a 200 MHz Pentium Pro processor. The precisionlt has been proved in [6] that for wire-sizing alone, GWSA
parametek is set to 0.1%. We use the parameters for the 0.18ns in time linear to the number of wire segments. However,
p#m technology listed in [9]. we observe that it is no longer the case when buffer sizing
First, we investigate the runtime of SBWS with respect tis considered as well. This point is clearly demonstrated by
the number of components. Different values ofn ranging the experiment on a wire below. We divide a 20 Qa@-long
from 1000-10 000 are used. For each value,0f00 problem wire into 200 segments and we insestbuffers into it, where
instances are generated randomly. The average CPU time andanges from 0 to 10. Then we size it with both SBWS
the average number of calls to the functiSWLV E( ) are and GWSA. The CPU time versus the number of buffers are
reported in Table I. The CPU time is plotted as a function gflotted in Fig. 9. As shown in Fig. 9, the runtime of SBWS is
n in Fig. 8 below. independent of the number of buffers. However, the runtime

T

T

T
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CPU(s) all 4, let
0055 I I i a;, =R;/R;
0.050 C;/C! ificB
0.045 pi = <Ci+£>/<0;+i> ifieWw
0.040 2 2

/
0.035 Yi =i/

0.030 Intuitively, 1/c;’s, 3;'s and~;’s are the ratios of the upstream

resistances, the downstream capacitances and the component
sizes of the solutions corresponding to two different values
of R,.

We first introduce Lemmas 6-9 which will be used in
proving Lemmas 2-5. Lemmas 6 and 7 below give bounds

0.025
0.020
0.015
0.010

0.005 on~;, a;_1, and 3;_; based on the values @f; and 3; for
0.000 - , 1 | 1 u buffers and wire segments, respectively.
m . . .
0 2 4 6 8 10 Lemma6:Forl < i < n, if i € B, then~v, = «,,

Fig. 9. The CPU time of the algorithms SBWS and GWSA versus the' Tt 7/ and By = 7.
number of buffersm. Proof: Consider the functiotfOLV E( ).

e By Step 4
TABLE I ) .
THE CPU TiME OF GWSA AND SBWS-T ON INTERCONNECT TREES 5 = i T &
T - . - .
Test | #szable | # | & CPU Time (5) Ry il
Case || components | sinks | buffers || GWSA | SBWS-T | ratio heref _
t1 139 3 3 0031 | 0013 | 2.38 Therefore,y; = .
t2 247 6 7 0.035 0019 | 1.84 * By Step 5
t3 287 5 5 0.038 0.021 1.81
t4 299 4 7 0.066 0.038 1.74 , 7CL FCE 4R
t5 387 9 9 0.071 0.044 1.61 1= 5 3 = % 23, = ERi—l-
t6 748 15 17 0193 | 0108 | 1.79 Gty Gl i

Therefore,c;—1 = 42 /5.

of GWSA is proportional to the number of buffers in the wire. « By Step 6
Also notice that the runtime of SBWS is always better than
GWSA, even when there is no buffer. O — Cx; _ Cig

In Table Il, the runtime of SBWS-T and GWSA on six LT an = =
interconnect trees with 4-17 buffers are reported. The length
of the tree edges range from 200—12 Q8. Most edges have Therefore,3;_1 = .
zero or one buffer inserted. As shown in Table Il, SBWS-T [
is about twice as fast as GWSA. For more advanced technol{emma 7:For1 < i < n, if i € W and1 < §; < a4, then
ogy, more buffers will be inserted in each edge, and hengéy;3; < v; < a;, a1 = v/, and 1< Bi_1 <.
larger advantage on the runtime of SBWS-T over GWSA iS  proof: Consider the functiolSOLV E( ).
expected. « By Step 9

. o y Step

We propose the following two directions for future research.
First, we would like to see if a tighter analysis will give
a better bound on the runtime of SBWS. In Theorem 1, a Fils + \/(fiéi)Q + 476 R, <C£ + ﬁ)
quadratic runtime is proved. However, the experimental results / 2

suggest that the actual runtime of SBWS is close to linear. We ‘ 26, R,
conjecture that a much better theoretical bound on the runtime ‘
of SBWS is possible. Second, we would like to investigate FiCi + \/(fi&i)Q + 470, R; <Oi + £>/ﬁi
how our idea can be extended to handle bounds on wire width _ 2
and buffer size. B 2¢;0; R;
APPENDIX 76 + \/(f’iéi)Q + 476 R; <Ci + %)
PROOFS OFLEMMAS <

In this Appendix, letzy, ..., zn, Ro, ..., Rn, Co, ..., 2ei R/ i i
C,, be the solution bySOLV E(R,,), and letz’,, ..., ', R}, asa; /(3> 1
..., R, Cl, ..., C! be the solution bySOLV E(R),). For =x; /.
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Proof: It can be proved by induction o Note that
G, =1 and it is given thaty, > 1. S01 < 3, < ay,.
Assume thafl < 3; < «; for somei between 1 andh.
Case 1)i € B.
By Lemma 6,3, = v; = e >1 and o,y = v2/3 =

z, = =
2800 1% 0412//31 > = ﬁi—l-
. J A fi Case 2)i €¢ W.
Tici + \/(”ci)2 AR, <Ci - 5) By Lemma 7,8, >1 and a;_1 = v2/8; > i3/Bi =
> S R oG > % >/3z—1
asai /B> 1 2t So1 < f3;_1 < ey for both cases. n
A Lemma 9: If a,, > 1, thenl <v; < o; andey; < ;g < o
=z;/a. for 1 < i < n.
Proof:
Therefore,v; < «;. Case 1)i € B.
* By Step 10 By Lemma 6,y; = «;. By Lemma 8,1 < ay; = ;.
By Lemma 6,a;_1 = v2/8; = o?/B;. Hence by Lemma
O/ fz) 7Ai<0i+£>72 8, Oéi<Oéi_1<OcZ<2.
/ _ 2)" ’Y_ZZR Case 2)i € W.
=l T T a2 a2 Bt By Lemmas 7 and 8] < Va5 < < a.
By Lemmas 7 and 8q;_1 = ~?/83; > «i3;/8; = «; and
Therefore,c; 1 = ~2/8;. iy = /Bi<ai /B < of.
« By Step 11 Sol<vy; < a; anday; < a;_y < o for both cases. [ ]
Proof of Lemma 2:SupposeR!, > R,,. Thena,, > 1. So
1 . 1 by Lemma 9,1 < o, < -+ <1 <. In particular, oy > 1.
Cia+ f2 =Ci+ &+ fi+ f2 So R) > Rg. In other words, SOLVE(R,,) is a strictly
fi increasing function ink,,. [ ]
CitT w  fi fia Proof of Lemma 3:If R/, > R,, then a,,>1. So by
- B - i 2+ 2 Lemma 9, 1<a, < - < <ap and 1<, < «; for
fi i fiot 1<i<n,and by Lemma 8] < ;< a; for 0 <i < n. It
<C;,+ = 5 + éxi + = 5 + 5 is given thatag = R{/Ro < 1+ €. Thereforel <y, <1+e
asf3; > landy; > 1 and 1 < g;<1 + ¢ for all i. 1<y, <1 4 ¢ implies
fiz1 0<(m; —a})/si<efor 1 < ¢ < n. The delay expression
-1 5 in (3) can be rewritten as
Therefore,1 < f3;_1. D= Z C + Z i < Z)
ieB—{n+1} T iow ¥
fi constant terms.
I S - T
2 B; vi 2 2 By the definitions ofy; and j;
f fz fi—l ~ . 3
>C+2+77+2+2 = ¥ %CHZ ‘<C, J;>
max (3, 7i) iCB—(n+1} icw i
asp; > landv; >1 + constant terms
Jic1 /3 7 /3 u fZ
Gty RSP SCEEY
= T ([3“%) i€EB—{n+1}
fZ 1 -+ constant terms.
Cz 1 +
=2 Sincel<y,<l+eandl < g, <1+ ¢ forall 4, 1/(1+
i €) < fBi/vi<1+eforall i. Hence,1/(1+¢) < D/D’ < 1+e,
asfli < v aiffi <. V\)/hich {mplies, D - D'|/D' <e. firag<bi
If R, <R,, using1/(1+ ¢ < Rj/Rg, we can prove
Therefore, 5,1 <. similarly (but with the roles of the solutions OLV E(R,,)
m  andSOLVE(R]) exchanged) thate < (x; — 2})/z} <0 for
Lemmas 8 and 9 below combine the results of Lemmasl6< ¢ < n and|D — D’|/D’ <e. ]

and 7 so that for alk, the values of3;, +;, and «;_; are

bounded based on the value ®f.
Lemma 8: If o, > 1, thenl < ;< a; for 0 < i < n.

Proof of Lemma 4:If R/ >R,, then «,>1. So by
Lemma 9,c; 1 <a? for 1 < i < n. As a,, < 1+ ¢/37,
o1 < (14 ¢/3M2 = 1+ 2¢/3" + (¢/3")? <1 +
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3¢/3" = 1+ ¢/3"~1. We can apply the idea inductively
to show thatag < 1 + ¢. Therefore, together with Lemma 2,
1<R)/Ro<1+e.

If R, <R,,usingl/(1+¢/3") < R/ /R,, we can prove
similarly that1/(1 + ¢) < Ry /Ry < 1. ]

Proof of Lemma 5:First, we want to upper bound the op-
timal delayD’. Whenz; = --- = z,, = 1, the resistance and [3]
capacitance of all components are constant. Since the Elmore
delay is a sum 0O(n?) terms such that each term is a productys

(1]

(2]
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