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A Quadratic Programming Approach to Simultaneous
Buffer Insertion/Sizing and Wire Sizing

Chris C. N. Chu and D. F. Wongviember, IEEE

Abstract—n this paper, we present a completely new approach and more important, [13] demonstrated that wire sizing is also
to the problem of delay minimization by simultaneous buffer very effective in reducing interconnect delay. Almost all the
insertion and wire sizing for a wire. We show that the problem can 005 approaches to interconnect delay optimization that
be formulated as a convex quadratic program, which is known . izinal divid L Il fixed-| h
to be solvable in polynomial time. Nevertheless, we explore someUS€ WIré sizing divide a wire into small fixed-length segments
special properties of our problem and derive an optimal and and optimize the width of each segment iteratively. Some
very efficient algorithm modified active set method (MASM) to examples are [4], [9], [13], [26], and [29] for wire sizing
solve the resulting program. Givenm buffers and a set ofn  glone, [2], [8], [12], and [25] for simultaneous buffer sizing

discrete choices of wire width, the running time of our algorithm 4 \yire sizing, and [22] for simultaneous buffer insertion,
is O(mn®) and is independent of the wire length in practice.

For example, an instance of 100 buffers and 100 choices of wire PUffer sizing, and wire sizing. See [11] for a comprehensive
width can be solved in 0.92 s. In addition, we extend MASM to Survey. In order to obtain accurate results, a wire usually needs
consider simultaneous buffer insertion, buffer sizing, and wire to be divided into a large number of segments.
o e o o i o bk 5 by e o O e sizing alone, [3], [, 16], and [17] considered
\:{gri/:heoices o.f wire widtr?, the optimal solution for a 15000:um a variant which does 'not divide a wire Intp segme.nts. _For
long wire can be found in 0.05 s. Besides, our formulation is so the problem they considered, the set of choices of wire width
versatile that it is easy to consider other objectives like wire area iS a continuous interval. Therefore, the resulting function
or power dissipation, or to add constraints to the solution. Also, describing the wire width is continuous. However, in practice,
wire capacitance lookup tables, or very general wire capacitance 3 giscrete set of choices of wire width is usually used. In that
models which can capture area capacitance, fringing capacitance, . . . .
coupling capacitance, etc. can be used. case, the contlnuo_us wire S|zmg_solut|.on needs to .b.e rounded.
In [7], we considered buffer insertion, buffer sizing, and
wire sizing simultaneously and a closed-form optimal solution
is obtained. For the problem they considered, the lengths of
the wire segments are treated as variables and hence not fixed.
However, in that paper, the wire widths are also taken from
. INTRODUCTION a continuous interval. Besides, only wire area capacitance is
N the past, gate delay was the dominating factor in circugensidered. (Terms like wire fringing capacitance are ignored.)
design. However, as the feature size of very large scaleln this paper, we consider the problem of interconnect delay
integration (VLSI) devices continues to decrease, interconn@atnimization for a wire by buffer insertion, buffer sizing
delay becomes increasingly important. Nowadays, feature sied wire sizing under the Elmore delay model [15]. We first
has been down to 0.24m in advance technology. Interconnecgonsider the simultaneous buffer insertion and wire sizing
delay has become the dominating factor in determining systg@ipblemBIWS, shown at the bottom of the next page. Note
performance. In many systems designed today, as muchttagf for the problenBZWS, the wire is not divided into fixed-
50%—70% of clock cycle is consumed by interconnect deldgngth segments. None of the previous results can be applied
[11]. Itis predicted in the Semiconductor Industry Associatio® our problem and get exact solutions.
(SIA) roadmap [27] that the feature size will be reduced to We not only propose a more general problem formulation
0.18 zm by 1999 and 0.13:m by 2003. So we expect thewhich does not divide a wire into fixed-length segments, but
significance of interconnect delay will further increase in neatso present a completely new approach for interconnect delay
future. optimization which has many advantages over previous ap-
Buffer insertion and buffer sizing have been known for proaches which optimize the widths of fixed-length segments.

long time to be effective techniques to reduce delay and havel) Instead of solving3Z)VS directly, we solve an equiva-
been extensively studied in the literature [1], [14], [19], [20],  lent problemBZWS’ which is introduced in Section IIl.
[23], [28]. As delay due to interconnect wire becomes more  The problem BZWS’' has much less variables than
Manuscript received April 24, 1998; revised September 5, 1998. This paper the prObIem fc_)rm_UIated a_cco_rdmg to the_ traditional
was recommended by Associate Editor M. Pedram. approach of dividing a wire into small fixed-length
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wong@cs.utexas.edu). n choices of wire width is givenBZWS" will have
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in practice, usually only a few buffers and a few choices nlih

for the wire width are allowed(m + 1)n is a small — |4 o > MWW

number. Moreover, the problefBZTWS’ is completely

equivalent toBZWS (not an approximation). [ = "'(‘: )l _i_ ""{f”
2) BIWS' can be solved optimally and very efficiently 47 - VAR

even for largen andn. We prove that our problem is a — del of & wi t of lengtiand widihi b .

. . 1g. 1. € model of a wire segment ot len na wi . Dy aw-type
anvex quadratic progrgm. Convex quadratic p“?g_ra’ﬁ'c circuit.rq is the unit wire resistance(h) is the wire capacitance per unit
ming has been well studied and can be solved efficientbngth for a segment of width. We assume:(k) is an increasing function
by many public domain or commercial software system#. this paper.

Nevertheless, we derive a tailored iterative algorithm

MASM which is even more efficient. MASM runs in fringing capacitance and coupling capacitance at the
aboutn iterations in praCtice. Based on the observation same time’ suppose the distance to an adjacent para”e]
that the inverse of the Hessian matrix of the convex  \ire isd— &k when the wire width is:. Then we can set
guadratic program is tridiagonal, we prove that each ¢(h) = coh + ¢5 +c./(d — h), wherec is the unit wire
iteration needs only linear time. For example, an instance  grea capacitancey is the unit wire fringing capacitance

of 100 buffers and 100 choices of wire width (i.e., 10100 andc, is the unit wire coupling capacitance. The values

variables) can be solved in 0.92 s by our algorithm. of ¢(h) for eachh in H can also be obtained from a
3) Buffer insertion is generally considered a hard problem  |ookup table.

and usually some heuristics or dynamic programming | this paper, we also show how the algorithm MASM for
are needed to handle it. However, it is interesting {87)1s can be applied to the simultaneous buffer insertion,
note how naturally and easily buffer insertion is handlegffer sizing, and wire sizing problelBZBSWS introduced
in our approach. We observe that it is no more difficuly section Iv. INBZWS, the number of buffers and the sizes
than wire sizing alone. of the buffers are given as input. If the number of buffers
4) Besides delay, our formulation can be easily extendgded is not given and there are several choices for the buffer
to consider other objectives like wire area or powesjzes, the optimal solution can be found by trying all possible
dissipation. For example, we can optimally solve thgombinations of number of buffers and buffer sizes. For each
problems of minimizing a weighted sum of delay andombination, the corresponding problem is of the form of
wire area, minimizing delay with bounded area, minB7/s and, hence, can be solved by MASM. Nevertheless, we
imizing area with bounded delay, etc. Our formulatiogerive a simple lower bound on the delay which can be used
also allows adding constraints to the solution. Moreovety prune most of the combinations. The resulting algorithm
our efficient algorithm MASM can still be applied to getMASM-BS is optimal and very efficient. For example, with
optimal results. six choices of buffer size and ten choices of wire width, the
5) We can use very general wire capacitance models whigptimal simultaneous buffer insertion, buffer sizing, and wire
can capture area capacitance, fringing capacitance, cel¥ing solution for a 1500@m-long wire can be found in
pling capacitance (the capacitance due to an adjacents s.
parallel wire), etc. A wire segment is modeled as-a  The paper is organized as follows. In Section II, we first
type RC circuit as shown in Fig. 1. The capacitance @onsider the problem of wire sizing without buffer insertion.
a wire segment of width: and length! is given by Once the formulation and the algorithm for wire sizing are
c(h)l, wherec(h) is the unit length wire capacitanceunderstood, the extension to simultaneous buffer insertion
for a segment of width:. The only restriction onc and wire sizing is easy and is discussed in Section Ill. In
is that it has to be an increasing function froRt to  Section IV, we discuss how to apply our result on Section IlI
‘RT. For example, to model wire area capacitance, wite determine the optimal number of buffers and to handle

PROBLEM BIWS: The Simultaneous Buffer Insertion and Wire Sizing Problem

Given: wire lengthZ, driver resistancé?p, load capacitancé€,, a setd = {h4,-- -, h,} of n choices of wire
width such thath; > --- > h,, andm buffers of sizesBy,---, By,.
Determine: the positionszy, - - -, z,, at which the buffers are inserted and the wire width) at each point: along

the wire such that the delay from source to sink is minimized.

BH'I
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buffer sizing as well. In Section V, we further extend oufor [ — 6 < z <l and f(z) = I forl < = < 1+ 6§ for
results to consider other objectives like wire area or power, asdmeé > 0. Let g be another wire sizing function defined
to handle additional constraints to the solution. In Section Vs follows:

some experimental results to show the efficiency of our

algorithms and some concluding remarks are given. K, I—6<z<lI
gle)=qh  I<z<i+d
Il. WIRE SIZING f(z), otherwise

In this section, we consider the wire sizing probléms, ] ]
shown at the bottom of the page, and derive a very efficichPnsider the Eimore delay corresponding to these two seg-

algorithm modified active set method (MASM) for it. InMents of lengthé. Let Ky be the total driver and wire
Section I1-A, we first show that the probles is equivalent resistance before these two segments@acbe the total wire

to a much simpler problem calledvS’. Then we prove and load capacitance after these two segments. The delays with
in Section II-B that WS’ can be formulated as a convex@SPect tof andg are, respectively

quadratic program. In Section II-C, we introduce the active set

method. In particular, we present how the active set meth@i(f) = Ry(c(h)S + c(k')§ + Cp)

can be applied to convex quadratic programs. In Section II- . . /
rod <—c(h)6 +e(B)6 + CD) 4 o0 <c(h L cp)

D, we prove the interesting observation that the inverse of the + —- -
X . . L h 2 h 2
Hessian matrix of the convex quadratic program is tridiagonal. ,
Then with this observation and the idea of the active sét(9) = ng(c(hle‘s;c(h)‘wcp) S o
method, we derive our algorithm MASM. The extension to | 7L/<C( ) c(h)6+CD> n l(c( ) +CD>-
include buffer insertion is given in Section Ill. h 2 h 2
For the rest of the paper, we use uppercase boldface letters

to denote matrices and lowercase boldface letters to den?ﬁ’D(g)—D(f) = (ro62c(R))/(K') — (ro62c(R'))/(R) < 0 as

vectors. We use the convention that indexes of matrices a}tzld< 1’ and c(h) < ¢(h'). In other wordsg is better thanf,

vectors start from one. To simplify the presentation, if we refefhicn contradicts to the fact is optimal. 0

to an element of a matrix or a vector such that the index is | stead of solvingVs directly, we solve the problefs’,

out of range, we assume that the value is zero. shown at the bottom of the next page. WiS’, the wire is
divided inton segments such that the width of tith segment

A. Simplification of the Problem is h;, and the length of each segment is to be determined.

Consider the wire sizing problefS, where the optimal BY Lemma 1, it is clear that the probledVS” is equivalent
wire width is represented by a step functign[0, L] — H. © WS. Note that our new apprqach d|V|d.es the wire into
We first prove thatf must be a decreasing function. As wenly 7 segments and gives an optimal solution to the original
will see later, this property can be used to greatly simpli?mb'em- If we approachVs by dividing the wire into small
the problem. A similar monotone property for simpler wir |xed—le_ngth segments, the splutlon WI|! not be exact. In _o_rder
capacitance model and fixed-length segments has been prdfe@btain a good approximation, the wire needs to be divided
in [13]. into much more tham segments.

Lemma 1: The optimal wire sizing functiorf is a decreas-
ing function. .

Proof: Without loss of generality, we assume that th8- Problem Formulation
length of every step off is greater than zero. Suppoge  We show in this subsection th#VS’ can be formulated as
changes from a smaller value to a larger valuei’ at a a quadratic program. In addition, we prove that the quadratic
point of a distanced from the source. Thereforei(x) = h program is convex.

PROBLEM WS&: The Wire Sizing Problem
Given: wire length L, driver resistanceRp, load capacitanc&, a setH = {hy,---,h,} of n choices of
wire width such thath; > --- > A,.
Determine: the wire width f(x) at each point: along the wire such that the delay from source to sink is minimized.

T I—
h;,_. - I
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Let ¢; = c(h;) for 1 < i < n. Then forWws’, the delay Definition 1 (Symmetric Decomposable MatriX)et Q =

from source to sink is (¢:;;) be ann x n symmetric matrix. If for somea =
at, - o) andv = (vi,---,v,)7 such thatd) < a1 <
D =Rp(aly +eola+- - + el + CL) ( < ap, q)ij =g = OégUﬂ/j for i)S 4, thenQ is called a
+ roly <% + ol + o+ cply + CL) symmetric decomposable matrix. We den@e= SDM a, v).
hy 2 Definition 2 (Upper Triangular Decomposable Matrix)-et
rola ( calo U = (u;;) be ann x n upper triangular matrix. If for some
h—2<7 teslste et CL) 8= ((/ilj-)--,ﬁn)T andv = (vy,---,v,)7T such that3; > 0
for all 4, u;; = Bv; for ¢ < j andw;; = 0 for ¢ > j, thenU
: is called an upper triangular decomposable matrix. We denote
+ M(Cnln n CL) U = UTDM(e, v).
hy 2 Lemma 2: ® in CQP is symmetric decomposable.
_ 11T<I>1—|—pT1—|—RDC’L Proof: Let o« = (CI‘;JLI 7’...767:‘;JLH)T anfd v =
2 (e1,--+,¢,)". Note that0 < - < --- < . Then
where ® = SDM v, v). O
ciro/hi caro/hi csro/hi -+ caro/ha Lemma 3: If Q is symmf_atric decomposable, thep =
caro/hy  caro/hs  caro/hz o+ cnro/ha UTU whereU is upper triangular decomposable. In par-
&= | csro/hs  csro/ha  csro/hs - cnrofhs ticular, if Q = SDMa, v), thenQ = UTU whereU =
. . . . UTDM(B,v), Bi = vai — a1 for 1 < i < .
5 5 : . 3 Proof: Let U be the matrix as defined in the lemma.
cnro/h1 carofha  caro/hs -+ curo/hn Note thats; > 0 for all i as0 < oy < -+ < av,. FOri < j
Rpey +Crro/hn Iy i
Rpea +Crro/ha Iy entry (i, ) of UTU = Z(ﬁkvj)(ﬁkvi)
p= | Bpes+ Crro/hs and 1= 1|14 |. k=1
. . 2
Rpen + Crrofhn b - <; /3k> vivi
So WS’ can be formulated as follows: = ViU
CQP: minimize 17®l+ p”1l =entry (i,j) of Q
subjectto Iy +---+ 1, =L O

l;20 forl<i<n. Lemma 4: If Q is symmetric decomposable, the® is

CQP is a quadratic program. In general, quadratic prograpositive definite.
is a mathematical program with a quadratic objective function Proof: Let Q = SDM«, v). By Lemma 3,Q = UTU
subject to linear equality and inequality constraints. If thehere U = UTDM(3,v) for some/3. For anyx # 0, let
Hessian matrix® is positive definite, it is called a convexy = Ux. Note thaty # 0 asU is nonsingular anck # 0.
quadratic program. Note that quadratic programming is NBo x?'Qx = x?UTUx = y%y > 0. In other words,Q is
hard [18] but convex quadratic programming can be solved frositive definite.
polynomial time [21]. In the following, we prov@ in our case = By Lemma 2, Lemma 4, and [21], we have Theorem 1.
is positive definite, and hence the quadratic progta@ is Theorem 1: The quadratic progran€ QP is convex, and
convex. First, we make the following two definitions. hence can be solved in polynomial time.

PROBLEM WS&’: The Simplified Wire Sizing Problem (equivalent WS)
Given: wire length L, driver resistanceRp, load capacitanc&€r, a setH = {hy,---,h,} of n choices of
wire width such thath; > --- > h,.

Determine: the segment lengths > 0 for 1 < ¢ < n such that the delay from source to sink is minimized.

L
. s LL NN NN NOR DN DRV DON N
h,
Rp p | L
Cr
/) b Iy %
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C. Solving Convex Quadratic Programs by Active Set Methaglof full rank, since all th® obtained from our formulation
The active set method is a classical technique for cofif the wire sizing problem and of the extensions in this paper

strained optimization problems. It has been shown to &€ Of full rank. Consider the associated Lagrangian
efficient in practi_ce. Itis also one Qf the mos_t popularlmethoc.js o1, 0) = EIT@ + 714+ 2T (T - b).

to solve quadratic programs. In this subsection, we give a brief 2 o -
introduction to the active set method. In particular, we presehf€ Lagrange necessary optimality —conditions _are
how to solve general convex quadratic programs by the actit&(1, A))/(9l;) = 0 and (041, A))/(0A;) = 0 for all i.

set method. More details can be found in [24]. The conditions can be written in matrix form as follows:
Assume without loss of generality that we are considering Bl+I"A+p=0 (1)
minimization problems. An inequality constraigtx) < 0 for ITl—b=o0. )

some mathematical program is said todmive at a feasible o
Multiplying (1) by T'®"!, we haveIl 4+ I'&'T7) +

point x if g(x) = 0, andinactiveat x if g(x) < 0. Consider iy A , LT
a general convex quadratic program, which can have bd’zﬁ[’_lp = 0, which can be rewritten ab + (I'®™ ')A +
equality and inequality constraints. At the optimal solutiork ®_# = 0 asI'l = b by (2). Since® is positive definite

each inequality constraint is either active or inactive. If wa"d T is of full rank, F&~I'""is invertible. Hence

solve the program by setting all those active inequality con- A= —(I‘@*lI‘T)_l(I“Iﬁlp—i— b). 3

stralnts_as equalities and ignoring all those |_nact|ve mequa!NSO' by rearranging (1), we have

constraints, then the resulting program will have equality

constraints only. Moreover, its solution will be the same as 1=-27'T"A-27'p. (4)

the optimal solution of the original program. As we will showin other words, the solution to the Lagrange necessary optimal-

shortly, equality constrained convex quadratic programs datg conditions is uniquely given by (3) and (4). SInEEQP is

easy to solve. Therefore, if we know which constraints ammnvex, the Lagrange necessary optimality conditions should

active at the optimal solution, then the optimal solution of thalso be sufficient. So (3) and (4) also give the optimal solution

original program can be easily obtained by solving a convet £CQP.

guadratic program with equality constraints only. However, Therefore, if we apply the active set method to the convex

the set of active constraints at optimal solution is not knowguadratic progran€Q7”, we need to solve an equality con-

beforehand. Basically, the active set method is a systematttained problem in the form &gfCQP, which is equivalent to

way to find the set of active constraints at the optimal solutiooomputing (3) and (4), in each iteration. So each iteration can
The active set method works iteratively. In each iteratiotbe done in cubic time in general. However, we show below

the inequality constraints are partitioned into two sets: thokew ECQP can be solved in linear time in our case.

that are to be treated as active and those that are to be _

treated as inactive. We call the set of inequality constraints Our Algorithm MASM

treated as active the active sdt Those inA are considered In this subsection, we show how to solf€ QP in linear

as equality constraints and those not .ih are essentially time. Then we present a very efficient algorithm MASM for

ignored. The resulting equality constrained program is solvéte convex quadratic prografiQ? based on the active set

and the active se#d is modified according to the solutionmethod.

obtained. If the current solution is infeasible with respect to The technique enabling us to soN&QP in linear time

the original program, some inequality constraints currently based on two observations. The first observation is that

treated as inactive will be added tb If the current solution is all the inequality constraints i@QP are of the simple form

feasible but some Lagrange multipliers corresponding to soe> 0. If we apply the idea of the active set method presented

constraints in4 are negative (or positive for a maximizationn Section II-C directly, then in each iteration, we have an

problem), then by the sensitivity interpretation of Lagrangequality constrained progra@C QP obtained by treating all

multipliers, the objective value can be improved if we relajiequality constraints in the active sdtas equalities. AsA

those constraints (i.e., the solution is not optimal). So in thigay contain a lot of constraint&; may have many rows. So

case, some of those constraints will be removed frém instead of solving (3) and (4) directly, which may be slow, we

Exactly which inequality constraints to add or to remove igetl; = 0 for all i such that/; > 0 is in .4, and we substitute

each iteration depends on the problem and the design of them into€C QP. The resulting program is of exactly the same

algorithm. See [24] for some commonly used strategies. TRgm as ECQP but has only one equality constraint (total

process is repeated until the optimal solution is found. length constraint) and has less variables. In particular, if for
It is clear that a fundamental component of the active sé@me iteration, all constraints excdpt > 0,---,l; > 0 are

method is to solve problems with equality constraints only. W8 the active set4, then the progran€CQP corresponding

present how to solve an equality constrained convex quadrd@icthat iteration will be equivalent to the following reduced

program below. Consider the following equality constraine@quality constrained convex quadratic program

convex quadratic program: RCQP: minimize 314414 + pLla
ECQP: minimize 117®1+ pTl subjectto T'4l4 =L
subjectto T1=Db where 14, = (4,,---,;,)T, Txa = (1 1 - 1),
where® is positive definite. It is reasonable to assume hatpx = (Rpcj, + Crro/hy,, . Rpc;. + Crro/h;)Y,

Authorized licensed use limited to: lowa State University. Downloaded on April 15,2010 at 14:37:59 UTC from IEEE Xplore. Restrictions apply.



792

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

and &, is the symmetric decomposable matrix cor- Theorem 2: @A in RCQP is tridiagonal.

responding to A (i.e., ®4 = SDMa4,v,4) with
ax = ((ro)/(cihy), - (ro)/(c;.h; )T and va =
(le7...7

necessary optimality conditions f®&CQP is
—1
Aq = —(FAQZIFE) (I‘A@;\lpA—l—L)

4= —@;11‘5&4 — ‘1);‘1/),4

The second observation is that all symmetric decomposabl

matrices are tridiagonal. Hencér,;‘1 is tridiagonal. The fol-

lowing 2 lemmas prove this interesting observation.

Let & ,' = (6;;) wheref;,; is given by Lemma 6 and let
pa = (p1,--+,p.)¥. Because of the simple structure of the

¢;)Y). As before, the solution to the Lagrangematrix @;1 andT' 4 in RCQP, the solution to the Lagrange

optimality conditions fofRC QP can be written in closed form
as follows:

L4301, + 6 + 8iv14)pi
S (Bicii+ i+ 0iv14)

—(0i—1,i + 65 + 0ig1)Aa

— (0im1,ipi1 + 0iipi + 0iv1,ipit1)

Au=—

Ji
forl1<i <.

Lemma 5:If U is upper triangular decomposable, thefyt the solution ofRCOP, we show how to find the solution

U~! is bidiagonal. In part|cular iU = UTDM(B, v), then
Ul = (w;) wherew;; = =&~ for 1 < i < n, w; 41 =
(=1)/(Bigrvs) for 1 <i < n — i} andw;; = 0, otherwise.

Proof: Let W = (w;;) wherew;; is defined as in the
lemma.

Case )1 <i=j3<n—-1

entry (i, j ofWU_— 3:v; + -0=1.
y( J) [z Ui / ﬁi-l-lvi
Case 2)i = j = n:
1
entry (¢,7) of WU = Fron “Bpvn = 1.
CaseJ1<i< j<n
1
entry (¢,j) of WU :% - Bivy
! -3 0
ﬁz-l—l i L=

Cased) 1< j<i<n
entry (¢, 7) of WU = 0, obviously
Sow =U"1L
Lemma 6: If Q is symmetric decomposable, th€p—!
tridiagonal. In particular, |fQ = SDM e, v), thenQ!
— 1 .
(6;;), where 6;; = (az_az 37 T ey Gt
Sl for 1 < i< m—1, 0,
(a i1 — )b Vit
enza. w2 andd;; = 0 otherwise.

Proof: By Lemma3and Lemma ®)~! = U-L(U-HT
such thatU* = (wij), Wherew;; = L for 1 < i < n,
Wil = a -for1 <i<n—1,wy = O otherwise, and
B = Vo —Ocz 1 for 1 <4 < n. Then

)2

Case N1 <i=757<n-1
2
1 -1
6, = [ —— Tt
X </3ﬂ/i> + </3z‘+1vi
1 1
(i —i)v] (g1 — @)vi’

Case )1 <i¢<n-—1,5 =i+ 1L
-1 1
6, =6.;= .
! ! /37‘,-1-11/7‘,
Case 3)i = j = n:

1
0, = ——
! <ﬁnvn

2 1
) " (o — o102
Case 4) Otherwise
6,; = 6;; = 0, obviously.
By Lemma 6, we have Theorem 2.

O

Oit1i

-1

—067‘,)1/7‘,1/71-1-1 '

Bit1vit1  (ip

O

1 and A of £CQP below. Obviously,l; = 0 for all j ¢
{j1,---,jr}. Sol can be found in linear time. Ondds found,
A can be found as follows. Let = ®'T7X. By (4), x =

—1 — &'p and sox can be computed in linear time. LEY
be the submatrix of, such thaf'” = (' ,7T"). Therefore,

IV consists of all the rows corresponding to the nonnegative
constraints in the active set. L&t be the subvector ok, such
that AT = (A4X'T). Therefore, A’ consists of all Lagrange
multipliers corresponding to the nonnegative constraints in the
active set. Thek7A = LT\ 4+ I""N. Sox = & 'ITA =

S HIIA4+ T N). Hence, @ 1T N = x — @7 1T4\ 4.
Note that the right-hand side can be computed in linear time.
Then it is not difficult to see thad’ (i.e., A) can be solved

in linear time. As a result, the progradC Q7P can also be
solved in linear time.

We now state our strategy to add constraints to the active set
and to remove constraints from the active set at each iteration.
In our implementation, we add all the inactive constraints
corresponding to negative segment lengths, and we remove
all the active constraints corresponding to negative Lagrange
multipliers. We observe that this simple strategy works well
in practice. The algorithm can be summarized as
Algorithm MASM (Modified active set method):

1. Set the active setl = §.

2. repeat

3. Solve forA andl with respect taA by our special
technique.

4. f (17 0) then /* check for feasibility */

5. Add all the constraintg; > 0 to A, for all j

such that; < 0.
6. else if (A # 0) then /* check for optimality */
7. Remove all the constraints > 0 from A, for

all j such thatk; < 0.
8. until 1>0andX > 0)

Theorem 3: The wire sizing problen¥WS (or equivalently,
WS') can be solved by the algorithm MASM such that each
iteration takesO(n) time.

We show in Section VI that when our algorithm MASM is
applied to wire sizing, the number of iterations of MASM is
less thamm and hence the total runtime @3(n?) in practice.

In this section, we show that the simultaneous buffer inser-
tion and wire sizing problenBZWS introduced in Section |
can also be solved by the algorithm MASM. For the problem

SIMULTANEOUS BUFFER INSERTION AND WIRE SIZING
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Then the delay from source to sink is

p
i |>—' —> ,—\/V\/WT N N
’ l% @ yﬁ D= %IT\III + o1+ ZTBkch+1 + ZdBk' (5)
% Iy k=0 k=1

Y
So BIWS' can be formulated as follows:
Fig. 2. The model of a buffer of siz& by a switch-level RC circuitcg,

rg, anddg are the input capacitance, output resistance, and the intrinsic minimize %IT\III + 071

delay of the buffer, respectively. subject to Iy + --- + l(rn-l—l)n .y
;>0 for1<i<(m+1)n
BIWS, m buffers of sizesB,,---,B,, are given and they = . N
are inserted into a wire in this order (with the buffer of siz&hich is of the same form a6 QP. ¥ is clearly positive
B, nearest to the source). A buffer is modeled as a switcﬂ@f'n't_e as® is positive d_e_f|n|te. Hence,_the q_uadratlc program
level RC circuit as shown in Fig. 2. For convenience, we trel @gain convex. In addition, for each iteration, we can find
the driver and the load as buffers. Assume without loss 8fidA as before by reducing the equality constrained program
generality that the driver is a buffer of siz&, and the load @S In£CQP to one as INRCQP. The reduced matrixp
is a buffer of sizeB,,,41. corresponding taA is
Note that for BZWS, the wire width is not necessary to
be decreasing across a buffer. However, the sizing problem
of the piece of wire between any two consecutive buffers is P, =
basically the same a9/S discussed in Section Il (except that 0
the length of that piece of wire is not fixed). So by Lemma 1, P4,
the optimal wire sizing function between two adjacent buffers ) ) )
is still a decreasing step function. Hence, we can approd¢here ®.4, is the reduced symmetric decomposable matrix
the problem as before by dividing the piece of wire betwediprresponding to the sety of active constraints for segments
every pair of consecutive buffers intosegments of decreasingPetween the:th buffer and the(k + 1)th buffer. So
width, and determining the length of each segment. Instead of 1
X ; X . P 0
having a total length constraint for each piece of wire between Ao 1
buffers, we have a single constraint specifying that the sum ol @4,
of all the segment lengths equals The simplified problem A 0 -
BIWS' is shown at the bottom of the page. @;‘1
For the delay from théth buffer to the(k + 1)th buffer,
let & be the matrix corresponding to the coefficients therefore\Il;‘l is also tridiagonal ag,;‘i’@;d’...’@;‘; are
the quadratic terms (i.e., the Hessian matrix as defined dp tridiagonal. Hence3ZWWS’ can be solved as before.
Section 1I-B) and px be the vector corresponding to the Theorem 4:The simultaneous buffer insertion and wire
coefficients of the linear terms. Let sizing problem BZWS (or equivalently, BIWS’) can be
solved by the algorithm MASM such that each iteration takes
O(mn) time.
We show in Section VI that when our algorithm MASM is
¥ = . and o= . |. applied to simultaneous buffer insertion and wire sizing, the
0 B : number of iterations is about and hence the total runtime is
‘1’ Pm O(mn?) in practice.

0

P 0 Po

PROBLEM BIWS’: The Simplified Simultaneous Buffer Insertion and Wire Sizing Problem (equivaleBZyS)
Given: wire length L, driver resistanceRp, load capacitanc€r, a setH = {hy,---,h,} of n choices of
wire width such thath; > --- > h,, andm buffers of sizesBy,---, Bp,.
Determine: the segment lengthls > 0 for 1 < ¢ < (m + 1)n such that the delay from source to sink is minimized.

B - By
Ry 5 : % ‘
e | e | T
R E R —_— & C
L b bpv ] bms
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IV. SIMULTANEOUS BUFFER INSERTION, Lemma 7: Consider a combinatioBy, By, - - -, B, Bimt1
BUFFER SIZING, AND WIRE SIZING of buffer sizes. By and B,,,+1 are the sizes of the driver and

. . _ the load, respectively. Thereforay, buffers are inserted.) The
In this section, we present an algorithm MASM-BS (MOdaelay of the correspondin§ZWs problem instance
ified Active Set Method with Buffer Sizing consideration) for m
the simultaneous buffer insertion, buffer sizing, and wire sizindD > (m + 1)D* + guin(Bo, - -, Bma1) L + Z T By CBya
problem BZBSWS, shown at the bottom of the page. k=0
For the problemBIWS considered in Section Ill, it is i
assumed that the number of buffers to be inserted and the sizes T Z d,
of those buffers are given. But in practice, usually a library of k=1

* : nr - " L= i
buffers of several different sizes is given instead. The problffiére 0" = min{317@1: 30, i = L/(m + 1)}, @ is the

is to determine the optimal number of buffers and the size pESSIan matrix corresponding to the wire sizing problem be-
each buffer used, as well as the position of each buffer and fij§¢€n any two consecutive buffers, andiu(Bo, -~ Bm-+1)
width of the wire at each point. This more general problet’ﬁ the minimum over all the gntnes in the vectprof the
can be solved by trying all possible combinations of number BPrrespondmg_ﬁIWS prob_lem_ Instance.
buffers and buffer sizes. The problem instance correspondin Proof. Given a combinatiombo, - -, By.11, the delayD)
to a particular combination (i.e., the number of buffers and t the correspondingZWS problem is given by (5). So
buffer sizes are fixed) is of the form &ZWS and so can be
solved by our algorithm MASM.

Suppose the size of the buffer library ¢s the maximum

1 m
D > min §IT\PI + QTI + Z 7B}, CBiy1
k=0
(m+1)n

number of buffers allowed for a single wire id (excluding s

the driver and the load), and the number of choices of wire + ZdBk : Z li=Landl; =2 0Vi
width is . Whenm buffers are inserted, there ay® choices k=1 =1

of buffer sizes. For each choice, as shown in Section VI, 1 (m+1)n

the runtime of MASM to solve the correspondin@ZVs > min §1T‘I’1: Z li=1L

problem instance i€©)(mn?) in practice. Since the range of i=1

m is from 0 to M, the total runtime to solve5ZBSWS (m+L)n

is M ¢qmO(mn?) = O(¢" Mn?). As q, M, andn are +ming @"1: > I =L andl; > 0Vi
usually small numbers in practice, this simple approach to i=1

handle buffer sizing should work well. Nevertheless, we i i
present an effective technique below which can prune a lot T ZTBkchﬂ + ZdBk
of suboptimal combinations. k=0 =L

The basic idea of the pruning technique is that for each =(m+ 1)1nin{11TtIJI : Zli _ L }
combination, we derive a lower bound on the delay of the 2 = m+ 1
correspondingBZWS problem instance. If the lower bound m m
is already larger than the minimum delay obtained up to +Qmin(BOv'"7Bnl+1)L+ZTBkCBk+1 +ZdBk
the previous combination (which is an upper bound on the k=0 k=1
optirﬁal delay), then we kngw this combinF;?ion will not give :(m:[ D™+ Qmi“(fo’ s Bmi) L
a delay better than the delay of the current best solution and ZTBk CByyr + ZdBk-
can be pruned. The lower bound is given in the following o =1
lemma. O

PROBLEM BZIBSWS: The Simultaneous Buffer Insertion, Buffer Sizing and Wire Sizing Problem
Given: wire length L, driver resistance?p, load capacitanc€r, a setd = {hy,---,h,} of n choices
of wire width such that.; > --- > h,, a setS of ¢ choices of buffer size, and an upper bound
M on the number of buffers inserted.
Determine: the optimal number of buffersn*, the sizesBy,---, B,,» of the m* buffers, the positions
x1,---,Zm- at which the buffers are inserted and the wire widix:) at each point: along the
wire such that the delay from source to sink is minimized.

B,

1
L %CL
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This lower bound is simple and easy to calculate. It cadote that only those( ) and#( ) associated with combinations
also be shown experimentally to be very effective in pruningvhich are not pruned need to be calculated.
However, for future technologies, the valueldfwill probably The algorithm MASM-BS can be summarized as
be set to larger values (around 5-10). The time to calculadgorithm MASM-BS (Modified Active Set Method with
the lower bounds for all th§~_, ™ combinations will then Buffer Sizing consideration) A
become dominating. In the following, we improve the ideal. precompute(b,¥'), #(b, '), Ti(b,¥') and T} (b, ¥')
above so that instead of pruning a single combination each for all £, b and¥'.
time, an entire subset of the possible combinations can & for m :=0to M do
pruned. 3. Call PRUNEm, 0, (Bo, Bjnt1), 0, —dp, ).
Supposem buffers are inserted and the sizes of the first
i buffers inserted (i.e.B:,-- -, B;) are fixed. Then there areProcedure PRUNEm, i, (Bo, -, Bj, Bint1),t,t)
¢ combinations corresponding to the different choices for* t = t(By, - --, B;),t = #(Bo,- -, B;) */
the sizes of the remaining — ¢ buffers. We call the minimum 4. LB := min{t +dp, + TAm,i(Bi, Bg1),t+dp,

over all the lower bounds for thosg”—* combinations an +7T—i(Bi, Bit1)}
aggregate lower bound. If the aggregate lower bound is largé&. if (LB < minimum delay so farjhen
than the minimum delay obtained so far, then all gf#&~* 6. if (¢ =m) then
combinations can be pruned. Otherwise; iequalsm, the 7. Call MASM to solve the combinatio®,, - - -,
sizes of allm buffers are fixed. We call MASM to solve the Biy1.
combinationBy, By, - -+, By, Bm1. If 1 1S less thann, we fix 8. else
the size of one more buffer (i.e3;+1) and try pruning again. 9. for B;41 € S do
For0 <i < M andbo,--,bi+1 € SU{Bo, Bim1}, let 10. 7 :=min{t + dp, +(B;, Biy1),
) t+dp,+t(Bi, Biy1)}
t(bo, -+, bit1) = (i + 1)D* + omin(bo, - -+, bip1) L 11. #:=t+dp, +#(B;, Bis1)
d ’ 12. Call PRUN m,t+1,(Bo,---, By, Bit1,
+ Z Tby, Chy g T Z dy, Bpi1), T, %)& (B o
k=0 o k=L ‘ D* can be computed ifD(n) time by the technique for
. , T : solving&£C QP in Section 1I-C. Then it is clear thafb, v’) and
t(bo, -5 bir) = (i+ D" + Z”k Copr T Z o, t(b,¥') for all b and¥’ can be computed i®(g%n) (time), and
F=0 =L T (b, ') and T3 (b, ¥') for all k, b and’ can be computed in
ForO0 < k< M andb, b € SU{By,B,,41}, let O(M¢?) time. So the total time for the precomputation step
is O(¢*(n + Mgq)). Once the precomputation is done, each
T3 (b, V') = min{ ¢(b, by, -+, by, b') 2 by, -, by € S} aggregate lower bound can be calculated in constant time. In
T (0, ') = min{ #(b, by, - -, b, b') : by, -+, b € S}. Section VI, we show experimentally that our pruning tech-

nique is very effective. Far less thaw ¢") aggregate lower

It is not difficult to see that for the combinations with fixethounds need to be calculated, and even less combinations need
By,---,B;, the aggregate lower bound is given by eitheo be solved by MASM. As a result, the algorithm MASM-BS
t(Bo,---,B;) +dp, + T i(Bi, Bmy1) O t(Bo,- -+, B;) + is very efficient in practice.
dp, + Tr—i(B;, Bmt1), depending on whether the minimum
entry in g is before or after théth buffer.

(), £(), Tr() and 73() (and hence the aggregate lower
bound) can be calculated efficiently as follows. HaK ) and
T (), instead of enumerating all th¢ combinations, they can |, the following two subsections, we extend our result for
be precomputed by the dynamic programming technique. gjmyltaneous buffer insertion and wire sizing to consider wire

For0 <k < M andb,t € SU{Bo, Bmy1} area (and, hence, power dissipation), and to handle additional
constraints to the solution respectively. We show that for both

V. EXTENSIONS

/
Ti(b: ) , : extensions, the resulting problem can still be solved by MASM
t(l_” ), " a if k=0 guch that each iteration can be done in linear time. Besides, it
= mmb’iGS{Tk—/}(b’ V) +dy ‘f/TOI(b LT is easy to see that we can also handle a combination of the two
AT’“—l(b’b )+ dyr +To(V", )}, if &>0  extensions and the resulting program can again be solved by
To(b, V) = {tA(lh v), X if k=0 MASM such that each iteration takes linear time. Moreover,
’ Ty 1 (0,6 +dypr +To(b", V), if k>0 all extensions can be easily incorporated into MASM-BS to

. _ consider buffer sizing as well.
t() andt() can be calculated incrementally. For< ¢ < M

andbg,---,b;41 € SU {Bo, Bm+1}
_ . A. Wire Area Consideration
#bo, + -+, bigr) = min{t(bo, -+, bi) + dy, +bi, bivr), Besides delay, we sometimes want to consider some other
t(bo, -~ -, bi) + dy, +t(bi, biga)} objectives as well. In this subsection, we use wire area as an
t(bo, -, big1) = t(bo, -, b;) +dp, +t(b;, biy1) example and we consider three cases.
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Minimization of a Weighted Sum of Delay and Area: h; > h > h;11, then the corresponding program will be

First, note that
minimize 171+ ¢71

. i subjectto I} 4+ +lppyr < L —d
wire area= » _ hulins1 + -+ hulgesryn = b1 b+ A+l gy =L
k=0 ;>0 for1<i<(m+1)n

whereh = (hlal' iy Py - - . b, 'Twhn)T-l ThTen the Wwe can also easily restrict the position of the buffers inserted,
objective ?N(gl ¥ 1+ 1) +~h'l = ul"¥l+  the distance between two consecutive buffers, etc. For exam-
(ne™ +~h™)l for some given constants and~. So ple, if we want the first buffer to be at a distance betwéen
the problem can be formulated as follows: and d» from the source, then the problem can be formulated

minimize  (;1/2)17®1 + (110" + vh7)l as follows:

subject to Iy + -+ + g1y = L minimize 17 @1+ g71

;>0 forl<i<(m+1Dn. subjectto Iy +---+1, > d;

Lt 4l < do

Note that this program is of the same form&8P and R

hence can be solved by MASM as in Section II-D. ;>0 forl<i<(m+1n.
Delay Minimization with Bounded Area: ‘= -
The problem can be formulated as follows: As we mentioned above, as long@sl) constraints are added,

L 1T T the resulting program can be handled by MASM such that each
minimize ;T Wt o'l iteration can be done in linear time.
subjectto I + -+ +{nyyn = L
hT]' S barea
>0 forl<i<(m+1)n VI. EXPERIMENTAL RESULTS AND CONCLUDING REMARKS
) In this section, we demonstrate the performance of the

whereba,., is the area bound. We can solve the progra)gorithms MASM and MASM-BS in practice. For MASM,
by the active set method. If the area constraint {Je show that the runtime i©(mn?) in practice. For MASM-
inactive, than that iteration can be solved in closed fors \ve show that because of the pruning technique, the actual
as before. If the area constraint is active, the matryntime is much better than the complexity bound given in
L4 in RCQP for that iteration will contain two rows. gection IV. We have implemented the algorithms in the C
However, it is clear that it can still be solved in I'”earl_anguage. We run them on a PC with a 300-MHz Pentium II
time. In fact, it is not difficult to see that "4 has processor and 64 MB of memory. We use the parameters for
O(1) rows (i.e., we havé(1) nontrivial equalities), the e 0.18um technology listed in [10].

iteration still takes linear time. For MASM, we have shown that the runtime of each
Area Minimization with Bounded Delay: iteration is onlyO(mn). In the experiment below, we would
This case is not as simple since the resulting mathemgie to find out the dependency of the number of iterations of
ical program is no longer a quadratic program MASM on the number of choices of wire width and on the
minimize L7l number of buffersm. We run MASM for the simultaneous

subject to %IT‘I,I + 071 < buetay buffer insertion and wire sizing p_roblem on a wide range of
LA +lmgiyn =L values forn and_m. For each pair of values fon _and m,
;>0 forl<i<(m+1)n we run our algorithm on 100 randomly generated interconnect
T -~ instances of length between 50@6n and 20000:m. The
wherebgaay is the delay bound. We can solve this probaverage number of iterations and CPU time over the 100
lem by the Lagrangian relaxation technique as in [2instances are reported in Table I.
Basically, the program above is reduced to a sequenceéAn observation is that the number of iterations is about

of programs of the following form: and is basically independent of. So for the problenBZWS,
S algorithm MASM runs inO(mn?) time in practice.
minimize b1+ (31" 1+ "1 — buctay) Nowadays, the values of and m that actually used are
subject to &1 + - +lpnnyn = L usually less than ten. So the running time is negligible. Even
;20 for1<i<(m+1)n for an instance of 100 choices of wire width and 100 buffers,

the algorithm still takes only 0.92 s.

We also compare the runtime of MASM with some general
purpose convex quadratic program solvers. There are many
public domain or commercial software systems that can solve

where A is the Lagrange multiplier. It is again of the
form of CQP and hence can be solved by MASM.

B. Additional Constraints convex quadratic programs (e.g., LOQO, CPlex, OSL, MINO).
We can add restrictions to the solution by adding constrainit®QO is one of the fastest systems available. So we use

to the convex quadratic program. For example, we may requit®QO for the comparison. We notice that MASM, being

that the section of the wire within a distaneefrom the based on the observations in Section II-D, is much faster

sink

cannot be wider thak. If ¢ is the index such that than LOQO. For small problems:(= 10 and m = 10),
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TABLE |
THE AVERAGE NUMBER OF ITERATIONS AND CPU TIME OF THE ALGORITHM MASM FOR SIMULTANEOUS BUFFER INSERTION AND WIRE SIZING
# width chices # buffers # variables Algorithm MASM
n m (m+1)n # iterations CPU time (s)
10 0 10 9.25 <0.001
10 10 110 11.86 0.001
10 40 410 13.15 0.004
10 70 710 13.83 0.008
10 100 1010 14.09 0.011
40 0 40 37.60 0.001
40 10 440 41.60 0.015
40 40 1640 43.11 0.059
40 70 2840 43.89 0.103
40 100 4040 44.08 0.146
70 0 70 65.87 0.004
70 10 770 71.86 0.047
70 40 2870 73.17 0.177
70 70 4970 73.67 0.309
70 100 7070 74.04 0.447
100 0 100 94.13 0.008
100 10 1100 101.72 0.095
100 40 4100 103.14 0.356
100 70 7100 103.59 0.632
100 100 10100 104.03 0.920
TABLE I , We notice that the pruning technique is more effective for
THE OPTIMAL NUMBER OF BUFFERS INSERTED (m*), THE NUMBER OF a largerm. In fact, we observe that if the optimal number of
COMBINATIONS SOLVED BY MASM (1.E., NOT PRUNED), THE buff . disn*. th he b di il
NUMBER OF AGGREGATE LOWER BounDSs CALCULATED, uffers inserte I$n K then t e bound in Lemma 7 wi prune
AND THE CPU TiME OF THE ALGORITHM MASM-BS FOR almost all combinations with more than* 4 1 buffers. An

SIMULTANEOUS BUFFER INSERTION, BUFFER SIZING, AND WIRE SIZING explanation for this observation is given below. A larger

# Combinations # Aggregate lower

Lm)  m* e | pagregate OWE ¢y time (s) means more cpmbinations havg- been considered..This implies
a smaller minimum delay obtained so far, or equivalently, a
3000 1 3 17 <0.001  petter upper bound used in pruning. In particular, when
gggg i 23 }1; <8'ggé equalsm*, the optimal combination is found. On the other
12000 2 152 269 oot hand, a largemn also means more delay due to the input
15000 2 373 797 0.052 capacitance of the buffers and more intrinsic buffer delay. So
for a larger value ofn, a larger proportion of the combinations
is pruned.

our algorithm is about 15 times faster. For larger problems The memory requirement of MASM and MASM-BS is
(n = 100 andm = 100), our algorithm is more than 30 timesproportional to the size of the convex quadratic programs
faster. formulated. Each variable needs about 50 bytes. So for the
For MASM-BS, we are interested to know the number gfimultaneous buffer insertion, buffer sizing and wire sizing
combinations that are solved by MASM (i.e., the number gfroblem considered abovweé/ = 10,n = 10), the memory
combinations not pruned). We run our algorithm MASM-B$equirement is onlyA/ + 1)n x 50 bytes= 0.005 MB.
on interconnect wires of different length. We use ten choicesNote that for our approach, the size of the quadratic program
for wire width and six choices for buffer size. We set théormulated is independent of the wire length. So for MASM,
maximum number of buffers allowed for a single wit¢ to the runtime is basically independent of the wire length. For
ten. So for each simultaneous buffer inserting, buffer sizilgASM-BS, a longer wire requires more buffers. So in general,
and wire sizing problem instance, we have 6 +6% +.--4+ more combinations needed to be solved. For the traditional
6'% = 73 million possible combinations. The optimal numbeapproach of dividing the wire into small fixed-length segments,
of buffers inserted, the number of combinations that are solvadonger wire needs to be divided into more segments in order
by MASM (i.e., not pruned), the number of aggregate loweo obtain comparable accuracy.
bounds calculated, and the CPU time are reported in Table Il.In the future, we would like to extend our approach to handle
It shows that the algorithm MASM-BS is extremely efficient imets with tree topology. For weighted sink delay objective,
practice. Even for the slowest case, only 0.052 s is requiredolir algorithm MASM-BS can be applied to nets with tree
also shows that the pruning technique introduced in Section t¥pology by a similar technique as in [6]. That is we use an
is very effective. Almost all the combinations are pruned. iterative algorithm to optimize the tree edges one at a time.
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At each time we optimize an edge, we keep all the other)
edges fixed and apply MASM-BS to that edge. For other

objectives like minimizing maximum delay or minimizing[;3
area with delay bounds, the problems can be solved by
the Lagrangian relaxation technique as in [6]. Basically, tn&]
Lagrangian relaxation technique reduces the problems into
a sequence of problems of minimizing weighted sink delay,

where the sink weights are just the Lagrange multipliers. TII%B]
weighted sink delay problems can be solved by the iterative
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using the optimal number of buffers. However, if there is g5
bound on the total number of buffers allowed for the whole

tree, we speculate that combining our approach with dyna ?I
programming to distribute the buffers among the edges w
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