
A Fast Incremental Cycle Ratio Algorithm∗

Gang Wu and Chris Chu
Department of Electrical and Computer Engineering, Iowa State University, IA

{gangwu, cnchu}@iastate.edu

ABSTRACT
In this paper, we propose an algorithm to quickly find the
maximum cycle ratio (MCR) on an incrementally changing
directed cyclic graph. Compared with traditional MCR al-
gorithms which have to recalculate everything from scratch
at each incremental change, our algorithm efficiently finds
the MCR by just leveraging the previous MCR and the cor-
responding largest cycle before the change. In particular,
the previous MCR allows us to safely break the graph at the
changed node. Then, we can detect the changing direction
of the MCR by solving a single source longest path prob-
lem on a graph without positive cycle. A distance bucket
approach is proposed to speed up the process of finding
the longest paths. Our algorithm continues to search up-
ward or downward based on whether the MCR is detected
as increased or decreased. The downward search is quickly
performed by a modified Karp-Orlin algorithm reusing the
longest paths found during the cycle detection. In addition,
a cost shifting idea is proposed to avoid calculating MCR
on certain type of incremental changes. We evaluated our
algorithm on both random graphs and circuit benchmarks.
A timing-driven detailed placement approach which applies
our algorithm is also proposed. Compared with Howard’s
and Karp-Orlin MCR algorithm, our algorithm shows much
more efficiency on finding the MCR in both random graphs
and circuit benchmarks.

1. INTRODUCTION
Given a directed cyclic graph and each edge in the graph

is associated with two numbers: cost and transition time.
Let the cost (respectively, transition time) of a cycle in the
graph be the sum of the costs (respectively, transition times)
of all the edges within this cycle. Assuming the transition
time of a cycle is non-zero, the ratio of this cycle is defined
as its cost divided by its transition time. The maximum cy-
cle ratio (MCR) problem finds the cycle whose ratio is the
maximum in a given graph [1]. The MCR problem is closely
related to the optimization of VLSI circuits. In particular,
for synchronous circuits, MCR reflects the optimization po-
tential of the retiming or clock skew scheduling techniques
being applied to the circuits [2]. For asynchronous circuits,
MCR directly corresponds to the circuit performance [3].
There are also applications in other areas, e.g., time separa-

∗This work is supported in part by NSF award CCF-1219100.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISPD ’17, March 19-22, 2017, Portland, OR, USA
c© 2017 ACM. ISBN 978-1-4503-4696-2/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3036669.3036670

tion analysis of concurrent systems, graph theory [4].
In practice, most of the optimization processes which ap-

ply MCR algorithms are actually performed incrementally.
For example, during the detailed placement stage of VLSI
circuits, one step of the algorithm adjusts the coordinates of
only a few cells. Then, evaluation is performed for this mod-
ified circuit before the next move [5] [6]. Similarly, in the
gate sizing process of circuits, the algorithm might adjust
the size of one gate at a time, instead of changing the sizes
of all the gates at once [7]. Considering the above type of
applications which only few changes are made at each step,
the MCR algorithm might also be able to do the calculation
“incrementally” by leveraging the information calculated at
the previous step, and therefore be able to find the MCR
much faster. In this paper, we focus on the MCR problem
considering such incremental changes, which we referred to
as the incremental MCR problem. By leveraging the pre-
viously calculated information, we expect the incremental
MCR algorithm to be faster than traditional MCR algo-
rithms, which have to recalculate everything from scratch
at each step.

The MCR problem without considering the incremental
changes has been well studied [1] [4] [8]. One way to solve
the MCR problem is by linear programming [9]. In addition,
various MCR algorithms are proposed to solve the problem
more efficiently. Experimental study of existing MCR algo-
rithms shows the Karp and Orlin’s algorithm (KO) [10] and
an efficient implementation of KO [11] is the fastest among
them [4]. When the graph size is small, the Howard’s algo-
rithm (HOW) [12] is also able to generate comparable re-
sults [1]. For the incremental MCR problem, only very few
researches have been done. In [13], the authors developed
an adaptive negative cycle detection algorithm and incor-
porated it into the Lawler’s MCR algorithm [14]. However,
the experiments in [13] are performed only on very small
graphs, and thus the efficiency of the algorithm cannot be
confirmed. In addition, Lawler’s algorithm finds MCR based
on the binary search idea, which is much slower compared
with KO and HOW [4].

In this paper, we propose an efficient incremental MCR
algorithm. The only information we need to leverage is the
previous MCR and the corresponding largest cycle in the
graph before the incremental change is made. Our algorithm
contains three parts: cycle detection, local upward search
and global downward search. After an incremental change
is made on the given graph, the cycle detection is performed
first. During the cycle detection, we use our cost shifting
idea to filter out the cases which the incremental change will
not affect the MCR. For the remaining cases which affect the
MCR, the algorithm continues to detect whether the MCR
is increased or decreased. If the MCR is detected to be in-
creased, we perform the local upward search to identify the
new MCR in the changed graph. Otherwise, we perform the
global downward search to identify the new MCR. To speed

up the cycle detection and the local upward search, we pro-
pose a bucket distance idea which can quickly build a longest
path tree in a graph without positive cycle. Also, we propose
a modified KO algorithm to speed up the global downward
search by reusing the longest paths found in the cycle de-
tection step. We evaluate our algorithm on both random
graphs and the ISPD 2005 placement benchmarks [15]. To
evaluate our algorithm on circuit benchmarks, we propose
a timing-driven detailed placement approach which applies
our incremental MCR algorithm. The experimental results
show our algorithm is very efficient on calculating MCR com-
pared with the fastest traditional MCR algorithms.

The rest of this paper is organized as follows. In Section
II, we briefly review the Howard’s algorithm and the Karp-
Orlin algorithm. In Section III, we present our incremental
MCR algorithm. In Section IV, we present our timing-driven
detailed placement approach. Finally, the experimental re-
sults are shown in Section V.

2. PRELIMINARIES

2.1 Maximum cycle ratio problem
We formally define the MCR problem in this section. Let

G = (V,E) be a directed cyclic graph. Each edge e ∈ E is
associated with a cost denoted as w(e) and a transition time
denoted as t(e). Let c denotes a cycle in G. Let τ(c) denotes
the cycle ratio of c. With the assumption that

∑
∀e∈c t(e) >

0, the MCR problem finds the maximum τ(c) ∀c ∈ G as:

τ∗(G) = max
c⊂G

{∑
∀e∈c w(e)∑
∀e∈c t(e)

}
Here, we use τ∗(G) to denote the MCR of G. As an example,
Fig. 1 shows a graph with two cycles (a, b, c) and (a, b, d, c).
The two numbers associated with each edge denote its cost
and transition time respectively. By calculating the ratio
of both cycles, we can identify the largest cycle shown as
the dotted lines in Fig. 1. However, for larger graphs, it
is difficult for us to enumerate all the cycles to find out
which one is the largest, as the total number of cycles can
be exponential to the graph size.

Figure 1: Finding the maximum cycle ratio in a graph.

One way to solve the maximum cycle ratio problem is to
formulate it as a linear program [9]:

Minimize τ

Subject to d(i) + w(i, j)− t(i, j) ∗ τ ≤ d(j) ∀(i, j) ∈ E

Here, (i, j) denotes the edge connecting node i to node j.
d(i) and d(j) are free variables for each node v ∈ V denoting
its distance.

In addition to the linear program solution, various algo-
rithms have been proposed and are able to solve the problem
more efficiently. We discuss these algorithms below.

2.2 Traditional maximum cycle ratio algorithms
Given a cycle ratio τ , we can construct another graph

Gτ = (V,Eτ) based on G. Gτ is identical to G, except
now each edge in Eτ is associated with only one number
length, instead of having two numbers (i.e. cost and tran-
sition time). Each e ∈ Eτ will have a corresponding edge
e′ ∈ E, and the length of e is defined as l(e) = w(e′)−τ∗t(e′).
Correspondingly, the length of a cycle c ∈ Gτ is defined as
l(c) =

∑
∀e∈c l(e).

Gτ has many interesting features which can help us iden-
tify the largest cycle in G. In particular, if Gτ contains
positive length cycles, it means the given cycle ratio τ is less
than τ∗(G). If Gτ contains zero length cycles and does not
contain positive length cycles, the given τ will be equal to
τ∗(G), and the zero length cycle in Gτ will correspond to
the most critical cycle in G. If Gτ only contains negative
cycles, it means the given cycle ratio τ is larger than τ∗(G).
In this case, single source longest path trees rooted at any
node v ∈ V exist in Gτ . Detailed proofs of these facts can
be found in [4].

Most of the MCR algorithms use the above facts to trans-
fer the MCR problem into the problem of either detecting
positive cycles in Gτ or maintaining a longest path tree in
Gτ . Howard’s algorithm and Karp-Orlin algorithm are two
of the fastest algorithms among them, and they tackle the
MCR problem in exactly opposite directions. In particular,
Howard’s algorithm starts with a very small τ and gradually
increases τ until it cannot detect a positive length cycle in
Gτ . Karp and Orlin’s algorithm starts with a very large τ
and gradually decreases τ while maintaining a longest path
tree in Gτ .

2.2.1 Howard’s algorithm (HOW)

HOW can be separated into two phases: the discovery
phase and the verification phase. If the starting cycle ratio
τ is small enough, all the cycles in Gτ will have a positive
length. In the discovery phase, an arbitrary positive length
cycle c ∈ Gτ is located, and we increase τ to τ ′ such that
l(c) = 0 in Gτ ′ . Next, in the verification phase, a positive cy-
cle detection algorithm (e.g., the Bellman–Ford algorithm)
can be used to check if there are still positive cycles in Gτ ′ .
If so, we repeat the discovery phase. If not, we are safe to
exit the algorithm and output τ ′ as τ∗(G). More details and
pseudo code for HOW can be found in [1] [4].

2.2.2 Karp and Orlin’s algorithm (KO)

KO starts with a large enough τ such that all cycles in
Gτ is negative and thus longest paths are well defined in
Gτ . Here, we use a simple example to illustrate the basic
idea of KO. For more details, please refer to [1] [4] [11].

In the beginning, KO modifies G by adding a node s and
a set of edges Es connecting s to all nodes v ∈ V , with
w(e) = 0 and t(e) = 1 for all e ∈ Es. Let a path from s
to node v in G be denoted by p(s, v), which corresponds to
the path from root s to v in the longest path tree Ts in Gτ .
For each node v ∈ V , we have w(v) =

∑
∀e∈p(s,v) w(e) and

t(v) =
∑
∀e∈p(s,v) t(e), shown as (w(v), t(v)) in Fig. 2. For

each edge (i, j) ∈ E, let ∆w(i, j) = w(i)+w(i, j)−w(j) and
∆t(i, j) = t(i)+t(i, j)−t(j). Then, a max heap containing all
the edges in G is maintained using the key value calculated

as follows:

key(i, j) =

{
∆w(i, j)/∆t(i, j), if ∆t(i, j) > 0.

−∞, otherwise.

Fig. 2 shows the process of calculating τ∗(G) using KO
for the graph G shown in Fig. 1. Fig. 2(a) shows the
initial longest path tree Ts inGτ0 and the corresponding max
heap. Next, edge (b, c) which has the maximum key value
is retrieved from the heap, and Ts is updated by replacing
edge (s, c) with (b, c) as shown in Fig. 2(b). This tree update
makes Ts to be the longest path tree inGτ1 . We will continue
the max heap update and tree update until a cycle is found
which gives us τ∗(G), as shown in Fig. 2(d).

(a) (b)

(c) (d)

Figure 2: An example of Karp and Orlin’s algorithm

3. PROPOSED ALGORITHM
We define an incremental change on an edge as a cost

change on this edge, and an incremental change on a node
as the cost changes on all input and output edges directly
connected to the node. The transition times remain to be
the same for both the edge change and the node change. In
Section III-A, we first look into details about how MCR is
affected by an edge change. In Section III-B, we consider
the incremental changes happened on a node, which is the
assumption made by our algorithm.

3.1 Considering incremental changes on an edge
Let e denotes the changed edge. We use Ce to denote the

set of cycles passing through e, and when w(e) changes, only
the cycles in Ce will be affected. In addition, we use G to de-
note the graph before the change and G′ to denote the graph
after the change, with corresponding largest cycle to be c∗

and c∗′ respectively. Based on whether w(e) is decreased or
increased and whether e ∈ c∗ or not, we can separate the
incremental changes into the following four cases:

3.1.1 e /∈ c∗ and w(e) is decreased

This is the easiest case, as it can be guaranteed that c∗′ =
c∗ after the incremental change. Before the change happens,
we know τ(c) ≤ τ(c∗) ∀c ∈ Ce. Since decreasing the cost of
e will only decrease τ(c) ∀c ∈ Ce, none of these cycles will
get a chance to become larger than c∗. Thus, c∗ will remain
to be the largest cycle in G′.

3.1.2 e /∈ c∗ and w(e) is increased

Increasing w(e) will increase τ(c) ∀c ∈ Ce. It is possible
that τ(c) of a cycle c ∈ Ce becomes larger than τ(c∗) and
thus dominates all other cycles and becomes the largest cycle
in G′. If this happens, we have c∗′ = c, and thus it can be
guaranteed that c∗′ is passing through e.

3.1.3 e ∈ c∗ and w(e) is decreased

Decreasing w(e) will decrease τ(c∗). Thus, another cycle
in G can replace c∗ and becomes dominating in G′. If this
happens, there is no clue for us to know where this new
largest cycle is located.

3.1.4 e ∈ c∗ and w(e) is increased

Increasing w(e) will increase τ(c∗) and also increase τ(c) ∀c ∈
Ce. Thus, it is guaranteed that c∗′ is passing through e.
However, there is no guaranteed that c∗′ = c∗. As an exam-
ple, let the graph in Fig. 1 to be G and the graph in Fig. 3
to be G′. It can be seen that after increase w(c, a) from 12
to 400, the largest cycle also get changed.

Figure 3: e ∈ c∗ and w(e) is increased.

3.2 Considering incremental changes on a node
Only considering changes on a single edge is certainly

not enough, as applications typically involve multiple edge
changes. We can transform the multiple edge changes into
single edge change by only processing one edge at a time, but
this can slow down the incremental MCR algorithm. There-
fore, instead of only considering a single edge change, our
algorithm handles the case of a single node change, which
makes it more suitable for real applications. A single node
change can create more complicated situations compared
with an edge change, as cycle ratio of some cycles can de-
crease while others can increase at the same time. However,
similar to the edge change, only the cycles passing through
the changed node will be affected. If the change is happened
on more than one node, our algorithm will just transform it
to the single node change by processing one node change at
a time.

3.3 Considering HOW and KO incrementally
HOW and KO are not suitable to perform the MCR calcu-

lation incrementally. One reason is that most of the middle

information (i.e. node distances, the longest path tree) is
calculated based on Gτ whose edge lengths depend on the
parameter τ . Once τ is changed, all edge lengths in Gτ will
be updated and the middle information calculated in the
previous iteration will become useless. It is also not real-
istic to keep these middle information for each possible τ
value, as the possible τ values correspond to all cycles in
the graph whose total number is exponential to the graph
size. Another reason is that, the cycle ratio can change in
both directions when an incremental change is made, while
HOW or KO can only search from one direction. In partic-
ular, if MCR is decreased, it will be difficult for HOW to go
backward and locate the new largest cycle. Similarly for KO
when MCR is increased. This suggests the incremental MCR
algorithm needs to be able to search from both directions.
When MCR is increased, the algorithm can search upward
starting from the previous MCR, similar to HOW. When
MCR is decreased, the algorithm can search downward sim-
ilar to KO. This is just the basic idea of our algorithm, which
we will discuss below.

3.4 An overview of our proposed algorithm
An overview of our incremental MCR algorithm is shown

in Fig. 4. Give an initial graph G with its MCR to be τ∗(G)
and the corresponding largest cycle to be c∗. Assuming a
node v in G is updated and the set of cycles passing through
v is Cv, our algorithm first detects the changing direction
of MCR. If the MCR is detected as increased, we perform a
local upward search to identify the new MCR. If the MCR is
detected as decreased, we perform a global downward search
to identify the new MCR. The output of our algorithm is
τ∗(G′) and c∗′ for G′ which denotes the graph after the
change.

Figure 4: Overview of our incremental MCR algorithm.

3.5 Cycle detection
In the beginning, at our cost shifting step, we filter out the

incremental change which will not affect MCR. If this is the
case, we can directly exit the MCR algorithm and output
τ∗(G) as τ∗(G′). If the change has a potential to affect
MCR, we continue to detect whether the MCR is increased
or decreased. To do this, we first transform G into Gv by
replacing node v ∈ V with two new node vs, vt. Next, we
build the longest path tree Tvs rooted at vs. Finally, based
on the longest distance from vs to vt, we will be able to
detect the changing direction of MCR.

3.5.1 Cost shifting

As we discussed in Section III-A case 1), if the changed
edge is not on c∗ and the edge cost is decreased, we can guar-
antee that the MCR will not be affected. The idea of cost
shifting is to transform all edge changes into this particular
case, by shifting edge costs from the input (or output) edges
of v to the output (or input) edges of v. As an example,
Fig. 5(a) shows the current edge cost changes of v with 4
decreased edges and 1 increased edge. By shifting 9 units
of cost from the output edges of v to the input edges of v,
we get the new cost changes shown in Fig. 5(b). Assuming
v /∈ c∗, since only decreased edges exist after cost shifting,
this change of v can be identified as not affecting MCR.

(a) (b)

Figure 5: (a) Before the cost shifting. (b) After the cost
shifting.

In general, by applying the cost shifting idea, we can exit
the MCR algorithm if v /∈ c∗ and the increment change be-
longs to one of the following two cases: (1) all edge costs are
decreased. (2) all edge costs on one side (input or output)
of v are decreased, and the smallest amount of decreasing at
the decreased side is larger than largest amount of increasing
on the other side.

3.5.2 Transform G into Gv

If the incremental change has a potential to affect MCR,
we continue to this step and transform G into Gv as follows.
We remove v from G and add two new nodes vs, vt to G,
with vs connecting to all v’s output edges and vt connecting
to all v’s input edges as shown in Fig. 6.

(a) (b)

Figure 6: (a) Before breaking at v. (b) After breaking at v.

Let τ0 = τ∗(G), we can get the corresponding Gvτ0 for Gv.
Let Tvs denotes the longest path tree rooted at vs. Then we
can have the following Theorem:

Theorem 1. Tvs is well defined in Gvτ0 .
Proof: Before the incremental change, we have l(c) ≤

0 ∀c ∈ Gτ0 . After the incremental change, only the cycles
passing through v can be positive in Gτ0 . Since all c ∈ Cv
is broken at v in Gvτ0 , they will not form a positive cycle in
Gvτ0 . Therefore, we have l(c) ≤ 0 ∀c ∈ Gvτ0 , and thus the
longest paths in Gvτ0 are well defined.

3.5.3 Constructing Tvs on Gvτ0

Constructing Tvs on Gvτ0 is equivalent to the problem of
finding a single source longest path tree in a graph with-
out positive cycle. Since Gvτ0 contains both negative and
positive length edges, Dijkstra’s algorithm is not applicable
here. One way to construct Tvs is to use the Bellman–Ford
algorithm and update the node distances in a breath first
search manner, as suggested in [16]. However, the breath
first search has a very limited control on the updating order
of the nodes, and thus each node can be repeatedly updated
for many times [17]. Therefore, the runtime of this approach
is not good.

We propose a distance bucket approach to help us update
the nodes in an appropriate order, which can effectively re-
duce the total number of updates on each node and there-
fore speed up the process of constructing Tvs . The basic
idea of the distance bucket approach is similar to the Di-
jkstra’s algorithm: we always pick the node which has the
largest distance to update. Different from Dijkstra’s algo-
rithm, this cannot guarantee that the updated node will not
be updated again, but the chance that this node get up-
dated again will be much smaller compared with a random
updating order. Instead of maintaining a priority queue to
exactly find the node with largest distance, we only differen-
tiate the nodes by putting them into certain buckets based
on the range of their distance. One reason we do this is
that it is not necessary to differentiate the node distances
exactly, as repeated update of the nodes cannot be avoided
anyway. Another reason is that maintaining a priority queue
is expensive, especially considering the total number of edge
update operations is huge.

Figure 7: The distance bucket data structure.

Assuming we have M +N buckets denoted from bucket[0]
to bucket[M +N −1] with M buckets for negative distances
and N buckets for positive distances, as shown in Fig. 7. Let
du be a unit range of distance covered by a bucket. Then,
for a particular node v, its corresponding bucket index can
be calculated as M + d(v)/du. Instead of storing a copy of
all the contained nodes, the distance bucket only pointing to
one of the contained node as shown in Fig. 7. The rest of the
contained nodes will simply be connected to the this node
in a doubly linked list manner. The details of our distance
bucket approach is shown in Algorithm 1.

3.5.4 Detecting the changing direction of MCR

After constructing Tvs , we can get d(vt) which is the
longest distance from vs to vt in Gvτ0 . If d(vt) > 0, it
means a positive cycle passing through v exists in Gτ0 , and
τ∗(G) < τ∗(G′). Therefore, we search upwards to find the
new MCR. If d(vt) = 0, it means τ∗(G) = τ∗(G′) and c∗

remains to be the largest cycle in G′. So we can exit the

Algorithm 1 The distance bucket approach

Ensure: Constructing Tvs on Gvτ0 .

1: Insert s to bucket[0] and set max := 0;
2: while max > 0 do
3: Pick and delete node u from the bucket[max].
4: for each (u, v) ∈ Eτ0 do
5: if d(v) < d(u) + l(u, v) then
6: d(v) := d(u) + l(u, v);
7: Find the bucket index i based on d(v);
8: if v is not in any buckets then
9: Insert v to bucket[i];
10: else
11: Delete v from its current bucket;
12: Insert v to bucket[i];
13: end if
14: if i > max then
15: max := i;
16: end if
17: end if
18: end for
19: while bucket[max] is empty do
20: max := max− 1
21: end while
22: end while

MCR algorithm. If d(vt) < 0, it means the largest cycle
passing through v in Gτ0 is negative. If v /∈ c∗, we can exit
the MCR algorithm as the MCR will not be affected in this
case. Otherwise, it means τ∗(G) > τ∗(G′) and we search
downwards to find the new MCR.

3.6 Local upward search
In this step, we search upwards until τ∗(G′) is identified.

It is safe for us to only perform a local search among all the
cycles in Cv based on the following theorem:

Theorem 2. If τ∗(G′) > τ∗(G), c∗′ ∈ Cv.
Proof: In Section III-A, the only cases which the incre-

mental change can increase the MCR are case 2) and case
4). As we have discussed, we can guarantee c∗′ is passing
through the changed edge e in both these two cases. Since
e is connected to v, this means c∗′ must also pass through
v.

The strategy we used to perform the local upward search
is similar to HOW. Assuming the current cycle ratio is τi,
we first increase τi to τi+1, which makes d(vt) = 0 in current
Tvs . Next, we construct the new Tvs in Gvτi+1

using Algo-
rithm I and get the corresponding new d(vt). If d(vt) > 0, it
means there are still positive cycles existing in Gτi+1 whose
cycle ratio is larger than τi+1. So we repeat the first step
and keep updating the cycle ratio. Otherwise, we can exit
the MCR algorithm and output τi+1 as τ∗(G′).

3.7 Global downward search
Our algorithm enters this step only when the cycle ratio

of the previous largest cycle is decreased, i.e., τ(c∗) < τ∗(G)
in G′. In one case, c∗ might remain to be the largest cycle
in G′ and we need to perform a global search to verify that
τ(c) ≤ τ(c∗) ∀c ∈ G′. In the other case, another cycle can
replace c∗ and becomes the new largest cycle in G′. Since
we have no clue where this largest cycle is located, a global
search for all cycles in G′ is also required.

We leverage KO to perform this downward global search.
In particular, the Tvs we calculated during the cycle detec-
tion can be reused here. Thus, instead of running KO start-
ing from a very large τ with the initial longest path tree as

shown in Fig. 2(a), we can start KO from τ∗(G) with Tvs .
However, Tvs is a longest path tree in Gvτ0 rooted at node v,
while the original KO requires the longest path tree rooted
at an artificial node s, as shown in Fig. 2. Simply starting
KO from τ∗(G) with Tvs will make all cycles c ∈ Cv cannot
be examined, and the algorithm will be incorrect if c∗′ ∈ Cv.
Therefore, we modify KO like this: we add a pseudo edge
(vt, vs) which is connecting node vt to node vs, and insert
(vt, vs) into the max heap with key(vt, vs) = d(vt)/t(vt).
If (vt, vs) is picked during the execution of KO, it means
c∗′ ∈ Cv. Since d(vt) represents the largest cycle in Cv,
it is safe for us to exit the MCR algorithm and output
τ∗(G′) = d(vt)/t(vt).

4. TIMING-DRIVEN DETAILED PLACEMENT
We propose a timing-driven detailed placement approach

which applies our incremental MCR algorithm. Considering
the type of circuits, i.e. asynchronous circuits [3] or syn-
chronous circuits using retiming or clock scheduling tech-
niques [2], whose performance is bounded by the MCR of
the most critical cycle (c∗) in the circuit. For asynchronous
circuits, c∗ is defined as the timing loop which has the largest
cycle delay divided by the number of tokens along the cy-
cle. For synchronous circuits, c∗ is defined as the timing
loop which has the largest cycle delay divided by the num-
ber of flip-flops along the cycle. Here, we assume delay is
proportional to the wirelength. Given an initial legalized
placement, our goal is to reduce the MCR of the circuit by
sequentially swapping a cell on c∗ with one which is not on
c∗.

The basic idea of our approach is illustrated in Fig. 8.
First, we randomly pick a cell on c∗, i.e. cell v in Fig. 8.
Next, we find the two neighboring cells of v on c∗, i.e. cell v1
and v2. The coordinates of v1 and v2 can define an optimal
region (x(v1), x(v2), y(v1), y(v2)) for v, shown as the blue
rectangle in Fig. 7. Assuming v′ is a cell within this optimal
region, by swapping v with v′, we can minimize the total
Manhattan distance of (v1, v) and (v, v2). Thus, τ(c∗) is
reduced. However, it is possible that some cycle passing
through v′ becomes worse than c∗ after the swap. Hence,
we need to perform timing analysis using the incremental
MCR algorithm to see whether the swap is beneficial before
actually swapping the two cells. The details of our approach
is shown in Algorithm 2.

Figure 8: Timing-driven detailed placement.

5. EXPERIMENTS
The proposed incremental mean cycle algorithm is imple-

mented in C++ and runs on a Linux PC with 94 GB of
memory and 2.67 GHz Intel Xeon CPU.

Algorithm 2 A timing-driven detailed placement approach

Ensure: Reduce MCR of the circuit
1: n = 1; /* loop counter */
2: best MCR = +∞;
3: while n < limit do
4: Randomly pick a cell v on c∗ with neighboring cells v1,

v2;
5: Set optimal region := (x(v1), x(v2), y(v1), y(v2));
6: Set xopt := 0.5 ∗ (x(v1) + x(v2));
7: Set yopt := 0.5 ∗ (y(v1) + y(v2));
8: Move v to (xopt, yopt).
9: Incrementally calculate MCR;
10: for each v′ in optimal region do
11: Move v′ to (xv , yv);
12: Incrementally calculate MCR as current MCR;
13: if current MCR < best MCR then
14: best MCR = current MCR;
15: best node = v′;
16: end if
17: end for
18: Move v to (xbest node, ybest node);
19: Incrementally calculate MCR;
20: Move best node to (xv , yv);
21: Incrementally calculate MCR as best MCR;
22: n = n+ 1;
23: end while

We generate a set of random graphs following the same
graph size and method used in [4]. Given an input total
number of nodes and total number of edges, we first gen-
erate the desired number of nodes in the graph. Next, we
randomly pick two nodes in the graph and connect them.
This step is repeated until the desired number of edges is
reached. The self loops (an edge connecting a node to itself)
and duplicated edges (two edges connecting the same pair of
nodes) are disallowed. In addition, we connect all the nodes
using a circle to make the graph strongly connected. Both
the cost and transition of each edge is randomly generated
between 1 and 300.

In the beginning (i.e., before any incremental changes is
made), our algorithm uses KO to find the initial MCR and
the corresponding largest cycle as a starting point. For all
the random graphs and circuit benchmarks, our algorithm
sets both the total number of negative and positive buck-
ets to be 106. In addition, we set du to be 10. Thus, a
distance range [−107,+107] is covered, which is more than
enough. In case any node has a distance below or above
this range, we will assign it to the first or last bucket. We
implement three other MCR algorithms for comparison: the
linear programming (LP) approach, HOW and KO. The LP
is formulated as we discussed in Section II-A, and solved us-
ing the API of Gurobi optimizer [18]. Both HOW and KO
are implemented following the description in [1] [4]. In par-
ticular, we implement a binary heap as the max heap used
in KO.

For each random graph, we sequentially perform 100 node
changes and calculate the MCR after each change. For each
changing node, we randomly change the costs of all its input
and output edges. Two different methods are used to pick
the changing node. In one method, which we referred as
“M1”, we randomly pick a node among all the nodes in the
graph. Our algorithm is able to run faster in this case, as
only the upward search might be performed if we are not
changing c∗, which is quite often in M1. In another method,
which we referred as “M2”, we always pick a node on c∗ to

Table I. Comparison on random graphs

Graph # of # of MCR M1 Runtime (s) M2 Runtime (s)
nodes edges Init M1 M2 LP HOW KO Ours LP HOW KO Ours

r01 12752 36681 4.03 4.03 3.76 566.43 4.07 1.92 0.44 720.50 3.97 2.58 1.15
r02 19601 61829 4.39 4.39 4.06 2238.94 4.69 3.12 0.74 2885.36 9.92 4.79 2.06
r03 23136 66429 5.04 5.04 3.81 2380.95 3.20 2.72 0.92 3130.45 8.26 5.07 2.32
r04 27507 74138 4.50 4.50 3.61 2963.66 3.65 3.20 0.94 3866.92 12.48 5.16 2.77
r05 29347 98793 4.39 4.49 4.18 5090.83 18.03 8.07 1.42 4644.15 20.34 10.28 4.12
r06 32498 93493 3.87 3.87 3.56 6829.63 14.60 7.50 1.42 9060.00 24.86 9.35 4.02
r07 45926 127774 4.18 4.18 3.58 12377.20 9.95 6.93 1.80 15743.50 33.72 13.38 5.57
r08 51309 154644 4.84 4.84 4.11 – 10.01 7.52 2.11 – 27.24 11.40 6.31
r09 53395 161430 4.70 4.70 4.18 – 9.19 8.28 2.12 – 41.73 15.24 6.42

Norm. – 6.496 4.136 1.000 – 5.253 2.223 1.000

r10 69429 223090 4.45 4.50 4.36 – 70.51 24.41 4.09 – 66.74 23.96 9.78
r11 70558 199694 3.84 3.84 3.57 – 95.00 24.77 4.20 – 95.62 24.42 9.53
r12 71076 241135 4.83 4.83 4.47 – 109.14 24.35 4.77 – 91.43 24.91 10.57
r13 84199 257788 4.79 4.79 4.07 – 29.65 17.12 4.25 – 100.52 23.84 10.80
r14 154605 394497 5.08 5.08 3.48 – 32.52 18.99 5.43 – 103.43 30.80 17.90
r15 161570 529562 6.30 6.30 4.45 – 22.46 22.59 7.21 – 268.69 52.77 26.33
r16 183484 589253 4.76 4.76 4.36 – 187.87 42.79 8.44 – 315.99 66.09 28.64
r17 185495 671174 5.24 5.24 4.94 – 488.10 74.59 12.75 – 620.42 98.54 42.62
r18 210613 618020 4.34 4.34 4.17 – 390.57 64.55 11.27 – 442.07 82.08 36.02

Norm. – 22.848 5.034 1.000 – 10.952 2.224 1.000

r19 262144 851968 5.14 5.14 4.38 – 90.15 63.92 13.36 – 481.11 115.48 46.68
r20 311744 1013166 6.03 6.03 4.48 – 65.41 62.41 16.18 – 705.11 134.60 55.87
r21 370728 1204865 4.65 4.65 4.41 – 341.74 125.63 25.92 – 1023.05 169.74 65.69
r22 440879 1432834 5.06 5.06 4.65 – 399.31 154.68 36.86 – 1329.38 178.20 76.65
r23 524288 1703936 6.04 6.04 4.50 – 268.13 149.38 48.55 – 1112.68 240.61 97.21
r24 623487 2026333 4.59 4.59 4.44 – 1868.32 327.39 49.96 – 1679.11 305.82 116.13
r25 741455 2409729 29.75 29.75 43.13 – 71.00 47.10 38.21 – 75.93 53.94 91.21
r26 881744 2865667 5.52 5.52 4.66 – 294.65 189.08 44.39 – 1222.89 297.44 141.97
r27 1048576 3407872 4.78 4.78 4.57 – 1217.15 332.73 54.74 – 3355.29 450.52 180.88

Norm. – 14.066 4.426 1.000 – 12.593 2.231 1.000

Table II. Analysis on medium and large size random graphs

Graph
Updates per node M2 Runtime (s) DB Runtime Breakdown (s)
BFS DB BFS DB CD LUS GDS Others

r10 9.00 1.23 27.03 9.78 3.53 1.84 4.03 0.37
r11 9.58 1.32 22.17 9.53 3.65 1.00 4.53 0.35
r12 9.21 1.35 24.96 10.57 4.27 1.36 4.59 0.35
r13 9.27 1.21 28.89 10.80 3.84 1.30 5.31 0.35
r14 6.27 1.09 40.13 17.90 6.05 2.27 9.00 0.58
r15 9.75 1.19 72.70 26.33 8.39 3.78 13.48 0.66
r16 9.68 1.16 77.73 28.64 9.98 3.87 13.80 0.99
r17 10.14 1.16 89.75 42.62 13.09 5.65 22.49 1.39
r18 9.74 1.16 90.33 36.02 12.17 6.15 15.96 1.74

Norm. 7.614 1.000 2.465 1.000 0.338 0.142 0.485 0.035

r19 9.98 1.24 132.18 46.68 15.89 6.19 23.17 1.43
r20 10.71 1.21 175.30 55.87 19.02 8.25 27.04 1.56
r21 11.18 1.27 199.96 65.69 23.51 8.58 31.33 2.27
r22 11.22 1.15 232.59 76.65 24.71 8.71 40.64 2.58
r23 10.32 1.19 268.26 97.21 34.86 11.28 48.30 2.77
r24 10.99 1.29 381.76 116.13 42.58 15.95 52.21 5.40
r25 3.17 1.00 205.87 91.21 37.04 20.43 30.83 2.91
r26 8.85 1.05 439.19 141.97 44.63 21.62 70.85 4.87
r27 11.07 1.20 779.65 180.88 62.75 23.76 87.36 7.01

Norm. 8.257 1.000 3.227 1.000 0.350 0.143 0.472 0.035

Table III. Comparison on ISPD 2005 benchmarks

Design # of # of c∗ Skip Total HPWL x 106 (nm) MCR Runtime (s)
nodes nets moves moves moves Init Final Init Final HOW KO Ours

adaptec1 210861 644176 39 2 514 77.78 77.89 2582.00 1390.60 248.42 409.98 48.19
adaptec2 254425 731135 23 4 398 87.68 87.73 4301.60 3456.80 80.10 49.43 34.40
adaptec3 450642 1289483 18 7 280 203.33 203.35 8084.50 2523.00 139.44 130.75 35.13
adaptec4 494590 1246535 24 1 482 183.59 183.72 2729.00 2115.00 327.05 171.16 95.88
bigblue1 277022 794445 24 2 225 97.21 97.30 3125.67 2973.00 40.99 30.59 32.13
bigblue2 528704 1267929 35 2 422 147.80 147.81 3494.91 3491.91 305.14 104.46 98.49
bigblue3 1094904 2511616 26 6 413 324.91 325.05 6020.33 3692.25 305.37 261.76 178.60
bigblue4 2168351 5691264 29 4 448 790.65 790.85 6085.50 3885.25 1128.32 704.68 403.59

Norm. 0.069 0.009 1.000 1.000 1.000 1.000 0.646 2.779 2.011 1.000

change. This is the most difficult case for our algorithm, as
both the downward and upward search might be performed.

Table I shows the experimental results for random graphs,
which are divided into three sets to simulate the applications
with different scale. Columns “Init”, “M1” and “M2” reports
the initial MCR, the final MCR after 100 node changes us-
ing M1, and the final MCR after 100 node changes using M2
respectively. In general, LP is much slower than other algo-
rithms. We denote the runtime of LP as “–”, if it exceeds
our runtime limit. Compared with HOW, our algorithm is
about 5X∼23X faster among all the experiments. The per-
formance of HOW is not good especially on large size graphs.
Compared with KO, our algorithm is about 2X∼5X faster
among all the experiments. In addition, as expected, the
runtime of our algorithm in M1 is better than the runtime
in M2.

Table II shows analysis of our algorithm in M2 on medium
and large size graphs. We compare our MCR algorithm
using the distance bucket approach (DB) with our MCR
algorithm using the BFS approach described in [16]. The
column “Updates per node” shows the average number of
distance updates per node, and is calculated as (total #
of node distance updates)/(# of Tvs × # of nodes in the
graph). It shows the DB approach is effectively reducing the
updates per node and thus can achieve faster runtime. In
addition, we show a runtime break down of our algorithm
using DB. The columns “CD”, “LUS” and “GDS” denote the
cycle detection, local upward search and global downward
search process respectively.

We use ISPD 2005 benchmarks [15] as the circuit bench-
marks. Assuming a hypernet is connecting one output pin
and p input pins of some gates, we represent this hypernet
with p two-pin nets, by connecting the output pin with each
input pin. Since there is no cell library type information
in [15], we cannot calculate the wire delay. Instead, we set
the cost of each two-pin net to be its HPWL, and the tran-
sition time of each two-pin net to 1. In addition, we ignore
the fixed cells (i.e. terminals, macro blocks) and the nets
connecting to them.

We stop the detailed placement if the improvement of
MCR is less than 0.1% when we do the swap. Since our algo-
rithm needs to incrementally calculate MCR at each move,
a swap operation will need two calculations, while it only
needs one calculation for HOW and KO. Thus, line 9 and
line 19 in Algorithm 2 is required for our algorithm, but it
is not needed for HOW and KO. Therefore, the total # of
MCR calculations for our algorithm is larger than HOW and
KO in this application. Table III shows the experimental
results on circuit benchmarks. Columns “c∗ moves”, ”Skip
moves” and ”Total moves” denote the # of moves on c∗, the
of moves skipped using our cost shifting idea and the to-
tal # of moves respectively. The runtime of the proposed
detailed placement approach using three different MCR al-
gorithms for timing analysis is compared. In particular, the
placer based on our MCR algorithm is about 2X faster than
the KO version and 2.8X faster than the HOW version.

6. CONCLUSIONS
In this paper, we have proposed an incremental MCR al-

gorithm. The previous MCR allows us to break the graph
at the changed node, and therefore detecting the changing
directions of the MCR by solving a longest path problem in
a graph without positive cycle. Based on the detected direc-

tion, our algorithm will either search upward or downward
until the new MCR is found. We preform experiments on
both random graphs and circuit benchmarks. The results
show our algorithm is more efficient compared with HOW
and KO.

7. REFERENCES
[1] A. Dasdan, S. Irani, and R. K. Gupta, “An

Experimental Study of Minimum Mean Cycle
Algorithms,” Tech. rep. 98-32, UC Irvine, 1998.

[2] A. P. Hurst, P. Chong, and A. Kuehlmann, “Physical
Placement Driven by Sequential Timing Analysis,” in
ICCAD 2004, pp. 379–386.

[3] P. A. Beerel, R. O. Ozdag, and M. Ferretti, A
Designer’s Guide to Asynchronous VLSI. Cambridge
University Press, 2010.

[4] A. Dasdan, “Experimental Analysis of The Fastest
Optimum Cycle Ratio and Mean Algorithms,”
TODAES, vol. 9, no. 4, pp. 385–418, 2004.

[5] P. Min, N. Viswanathan, and C. Chu, “An Efficient
and Effective Detailed Placement Algorithm,” in
ICCAD 2005, pp. 48–55, Nov 2005.

[6] G. Wu and C. Chu, “Detailed Placement Algorithm
for VLSI Design with Double-Row Height Standard
Cells,” TCAD, no. 99, pp. 1–1, 2015.

[7] G. Wu, A. Sharma, and C. Chu, “Gate Sizing and Vth
Assignment for Asynchronous Circuits Using
Lagrangian Relaxation,” in ASYNC, pp. 53–60, 2015.

[8] L. Georgiadis, A. V. Goldberg, R. E. Tarjan, and R. F.
Werneck, “An Experimental Study of Minimum Mean
Cycle Algorithms,” in Proceedings of the Meeting on
Algorithm Engineering & Expermiments, pp. 1–13,
Society for Industrial and Applied Mathematics, 2009.

[9] J. Magott, “Performance Evaluation of Concurrent
Systems using Petri Nets,” Information Processing
Letters, vol. 18, no. 1, pp. 7–13, 1984.

[10] R. M. Karp and J. B. Orlin, “Parametric Shortest
Path Algorithms with An Application to Cyclic
Staffing,” Discrete Applied Mathematics, vol. 3, no. 1,
pp. 37–45, 1981.

[11] N. E. Young, R. E. Tarjant, and J. B. Orlin, “Faster
Parametric Shortest Path and Minimum-balance
Algorithms,” Networks, vol. 21, no. 2, pp. 205–221,
1991.

[12] R. A. Howard, “Dynamic Programming And Markov
Process,” The M.I.T Press, Cambridge, Mass, 1960.

[13] N. Chandrachoodan, S. S. Bhattacharyya, and K. Liu,
“Adaptive Negative Cycle Detection in Dynamic
Graphs,” in ISCAS 2001.

[14] E. L. Lawler, “Combinatorial Optimization: Networks
and Matroids ,” Holt, Rinehart and Winston, New
York, 1976.

[15] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter,
and M. Yildiz, “The ISPD2005 Placement Contest and
Benchmark Suite,” in ISPD 2005.

[16] R. E. Tarjan, “Shortest Paths,” Tech reports, 1981.

[17] B. V. Cherkassky, A. V. Goldberg, and T. Radzik,
“Shortest Paths Algorithms: Theory and
Experimental Evaluation,” Mathematical
programming, vol. 73, no. 2, pp. 129–174, 1996.

[18] Gurobi Optimizer: http://www.gurobi.com.

