
POLAR 3.0: An Ultrafast Global Placement Engine

Tao Lin
Iowa State University

tlin@iastate.edu

Chris Chu
Iowa State University
cnchu@iastate.edu

Gang Wu
Iowa State University
gangwu@iastate.edu

Abstract—Placement is one of the most important problems in
electronic design automation. Although it has been investigated
for several decades, a more efficient core engine is critically
needed for the following reasons: (1) design scale becomes huge;
(2) placement is typically run again and again to explore the
design space at early design stages (e.g., physical synthesis);
(3) placement core engine is called many times to iteratively
optimize other objectives (e.g., timing and routability). In this
paper, we propose a new ultrafast global placement engine
called POLAR 3.0, which explores parallelism in state-of-the-
art quadratic placer. POLAR 3.0 can make full use of multi-
core system and it delivers 7-30× speedup over state-of-the-art
academic placers by using a 8-core CPU, while the solution quality
is competitive.

I. INTRODUCTION

Placement is considered to be one of the most important
problems in electronic design automation (EDA). Although
it has been extensively studied for decades, it is still a very
challenging problem and more efficient placers are critically
needed. Firstly, the scale of placement is increasing continu-
ously to tens of millions cells nowadays. Secondly, placement
is used in early design stages (e.g., physical synthesis) to
guide the design process, and it is typically run many times
to explore the design space. Last but not least, multiple
objectives, such as wirelength, timing and routability, should
be optimized simultaneously, and the typical approach is to
transform the problem into a sequence of wirelength-driven
placement problems. Therefore, [1] indicates that placement
is still a hot topic and [2] emphasizes the importance of
developing a high performance placement core engine, which
minimizes wirelength.

Problem scale has significant impact on the evolution of
global placement core engine. In the early age, simulated
annealing based placers (e.g., Timberwolf [3]) perform very
well for small design. Then industry switches to min-cut based
placement techniques (e.g., Capo [4] and Dragon [5]) for
medium design. When design scale arrives at hundreds of
thousands cells or even several millions, analytical placers [6–
16] are considered the only effective method . However, when
we are talking about huge design which might have tens of
millions cells, the existing placers are still not fast enough
considering modern design flow is iterative and placement
should be performed many rounds.

To catch up with continuously increasing design scale,
multi-threading has been widely used in EDA industry. How-
ever, it is challenging to achieve high parallelism for placement
problem. For quadratic placer, such as SimPL [12] and POLAR
[13], wirelength is minimized by quadratic programming (QP),
which is solved as a sparse symmetric positive definite linear

system by a preconditioned conjugate gradient (PCG) method.
Wirelength minimization by QP dominates the total runtime of
global placement stage. Since the x- and y-directed wirelengths
are independent of each other, the two directions of wirelength
optimization can be easily parallelized with two threads, one
thread for each direction. However, PCG is known to be hard
to parallelize [17] due to limited memory bandwidth and data
dependency. Speedup does not scale well with more CPU
cores.

For nonlinear placers [6, 8, 10, 15, 16], nonlinear program-
ming consumes most of CPU runtime. In nonlinear placer,
all the constraints are transformed into penalty functions.
As a result, the cost function is not decomposable into two
independent functions as in quadratic placers. Therefore, it is
even more difficult to parallelize nonlinear placers.

In this paper, we systematically study the performance
bottleneck of parallelism in quadratic placer. We propose an ul-
trafast global placement engine called POLAR 3.0. To achieve
high scalability that previous works have not reached, the
global placement iterations are divided into a series of frames,
in which partitioning is applied based on cells’ locations and
then placement of each partition is performed simultaneously.
To reduce loss of solution quality, frames are configured to
allow varied partitioning, in order to prevent cells from being
restricted in the same partition. Experimental results show that
POLAR 3.0 can make full use of multi-core system and it
delivers 7-30× speedup over state-of-the-art academic placers
with competitive solution quality by using a 8-core CPU. The
main contributions of this paper are concluded as follows.

• We systematically study the performance of state-of-
the-art quadratic placers and point out that paralleliz-
ing global placement with high scalability is a very
challenging rather than simple problem.

• We propose a new global placer to make full use of
multi-core system. It is almost one order of magni-
tude faster than state-of-the-art academic placers, with
competitive solution quality.

The rest of this paper is organized as follows. Section 2
is a preliminary to global placement. In Section 3, we point
out the inherent challenges of parallelizing global placement
with high scalability. In Section 4, we illustrate the ultrafast
global placement engine POLAR 3.0. Experimental results are
presented in Section 5. Finally, in the Section 6, we make
conclusions.

II. PRELIMINARY

In placement problem, a circuit can be represented by a
hypergraph G = (V,E), where V =

{
v1, v2, . . . , v|V |

}
is



the set of cells and E =
{
e1, e2, . . . , e|E|

}
is the set of

nets. Global placement tries to determine physical positions
of cells without violating density constraints. We denote the
x-coordinates of cells by a vector x =

(
x1, x2, · · · , x|V |

)
, and

the y-coordinates by y =
(
y1, y2, · · · , y|V |

)
. The objective is

the half perimeter wirelength (HPWL), which is measured by
Formula (1).

HPWL(x, y) = Σe∈E [max
i∈e

xi−min
i∈e

xi+max
i∈e

yi−min
i∈e

yi] (1)

A. Quadratic placement

In quadratic placer, a multi-pin net can be decomposed into
a set of two-pin nets by bound2boubd (B2B) net model [9].
The Manhattan distance of two connected pins is approximated
by their squared Euclidean distance, so the cost function φ of
global placement can be defined in Formula (2).

φ =
1

2
xTQxx + cTx x +

1

2
yTQyy + cTy y + const (2)

where the connection matrices Qx and Qy are both sparse
symmetric positive definite. Minimizing φ is equal to solving
the linear systems (3) and (4).

Qxx = −cx (3)
Qyy = −cy (4)

To reduce cell overlapping, [18] proposed a simple way to
add spreading force by pseudo net connecting cell’s original
position to its anchor (i.e., desirable location). Then the linear
systems are updated and solved again.

Since quadratic placement formulation was first proposed,
there are many improvements in academic quadratic placers.
The most recent progress is a spreading approach called rough
(look-ahead) legalization [12]. Many placers [12, 13, 19–21]
based on rough legalization produce competitive results on the
placement contests [22–26].

III. CHALLENGE OF PARALLELIZATION

Parallelizing state-of-the-art quadratic global placers, such
as SimPL [12], to achieve high scalability is a very challenging
rather than simple problem. The common global placement
framework with rough legalization [12] is presented in Fig. 1.
The three most time consuming components are respectively
linear system generation by B2B model, solving linear system
by PCG and rough legalization.

Firstly, linear system generation is difficult to parallelize.
Without loss of generality, let us look into how to generate
linear system (3) for x-direction. Compressed row storage
(CRS) [17] is the most efficient format to store the non-zero
elements of sparse matrix in our application. Since Qx is
symmetric, we only need to store its lower triangular part.
For any non-zero element Qx[i][j] (i ≥ y), multiple nets
may contribute to it. For example, suppose there are two-pin
nets N1 and N2 connecting movable cells C1 and C2, N1

and N2 contribute a and b to the non-zero element Qx[2][1]
respectively, then Qx[2][1] = a + b. Therefore, nets have to
be scanned one by one to generate all the non-zero elements

1. Since linear systems (3) and (4) are independent of each
other, two threads can are used for generating them, one is for
(3) and the other is for (4). However, this is all where we can
apply parallelism. The experiments show that SimPL [27] can
only achieve 1.86× speedup in this step by using 8 threads.
In practice, the speed cannot be more than 2× speedup.

Fig. 1. The global placement framework with rough legalization. The three
most time consuming components are highlighted.

Fig. 2. Parallelizing Jacobi PCG solver in Intel MKL library in quadratic
placement application. The y-axis is speedup.

Secondly, rough legalization is intrinsically sequential,
since density hotspots are dealt with one by one. For each
hotspot, it should get through two steps: expansion region
search and cell spreading in expansion region. The runtime
bottleneck is the second step, and the runtime of the first
step can be ignored compared with that of the second step.
Although parallelism is applied in the second step, [27] shows
that SimPL only achieves 1.62× speedup in rough legalization
by using eight threads. For POLAR [13], parallelizing the
second step is even harder since it has already been highly
optimized for runtime by lazy update technique. Table 1 gives
the average runtime of rough legalization per global placement
iteration for SimPL and POLAR.

Thirdly, PCG is widely used in science and engineering and
there is still not effective algorithm to parallelize it so far [17].
To verify this, the performance of cutting edge PCG solver in

1Another method is to add lock for each non-zero element. Although
nets can be scanned parallelly, the overhead of adding/releasing locks would
overwhelm that benifet of parallelism and make the program extremely slow.



TABLE I. AVERAGE RUNTIME (S) OF ROUGH LEGALIZATION PER
GLOBAL PLACEMENT ITERATION. THE EXPERIMENT WAS PERFORMED ON

THE SAME MACHINE OVER ISPD2005 BENCHMARKS [22].

benchmark SimPL POLAR

adaptec1 0.52 0.12
adaptec2 0.61 0.16
adaptec3 1.87 0.31
adaptec4 1.57 0.36
bigblue1 1.79 0.21
bigblue2 1.65 0.28
bigblue3 3.79 1.01
bigblue4 9.87 1.72
Norm. 1.00 0.21

Intel MKL library [28] was measured by using a Intel Xeon
E5-2640 v3 CPU, which has 8 cores. We used B2B net model
to generate linear systems over ISPD2005 benchmarks [22],
and then solved them by using different number of threads.
The experimental results are presented in Fig. 2. It shows that
the speedup is less than 2× and is increasing extremely slowly
as the number of threads is increased. Note that, Running PCG
solver with 16 threads is even a little slower than that with 8
threads in the experiment. That is because a core can launch
2 hyper-threads and these two hyper-threads share the same
execution resources and are not truly parallel.

To further demonstrate the challenge by experiment, we
implemented POLAR [13] and parallelized it in the following
way using OpenMP: (1) parallelize every loop that can be
parallelized; (2) all the computation that related to x-direction
is parallel to that of y-direction. We set the number of threads
to 1, 2, 4, 8 and 16 respectively, and ran POLAR over
ISPD2005 benchmarks. Fig. 3 shows that we only get less
than 1.8× speedup. Note that, launching more threads even
slows down the program over some test cases. This is not
abnormal for complex applications, for example, the ones
whose bottleneck is memory bandwidth.

To sum up, existing methods [12, 13] has not reached to 2×
speedup, and how to break through this limit while maintain
good solution quality is the major challenge of this work.

Fig. 3. Run POLAR by multi-threading. The y-axis is speedup.

IV. POLAR 3.0

To resolve the above challenge, we resort to an ancient
while powerful strategy–divide and conquer. Divide and con-
quer used to be applied in global placement, such as partition-

ing based methods [4, 5, 7, 29–31]. However, since analytical
techniques were proposed, partitioning based approaches are
considered inferior. In POLAR 3.0, we show that partitioning
is not outdated and can be leveraged to speed up analytical
placer without sacrificing solution quality significantly.

We chose POLAR as our base engine and built up a new
global placer on it. The basic idea is to divide global placement
iterations into a series of frames, in which partitioning is ap-
plied based on cells’ locations and placement of each partition
can be performed independently by multi-threading.

Fig. 4. The global placement framework of POLAR 3.0.

A. Framework

The framework of POLAR 3.0 is presented in Fig. 4. The
first stage is initial placement, and then rough legalization. In
the next stage, global placement iterations are divided into a
series of frames. Each frame begins with a roughly legalized
placement. Partitioning is applied based on cells’ locations, and
then placement of each partition (also called sub-placement
in the rest of paper) is performed independently by multi-
threading. Each sub-placement goes through several iterations
of four processes: linear system generation, adding move force,
solving linear system and rough legalization. Once all the sub-
placements finish, POLAR 3.0 enters into synchronization,
where the locations of all the cells are updated. POLAR 3.0
continues until the wirelength is not improved.

B. Placement-driven partitioning

In each frame, POLAR 3.0 starts with a roughly legalized
placement. Partitioning is performed based on cells’ locations.
Therefore, we call it placement-driven partitioning. Different
from traditional partitioning based approaches, connection
information (i.e., netlist) is never used. The goal of placement-
driven partitioning is to divide the whole circuit into many
small partitions with similar size, while traditional methods,
such as hMETIS [32], try to minimize the number of connec-
tions among different partitions.

The whole circuit is divided into a set of partitions by
horizontal and vertical cut lines. A partitioning scheme is
represented by a tuple (xx, yy, dd), where xx− 1 and yy− 1
are respectively the number of horizontal and vertical cut
lines. If dd is 0, POLAR 3.0 applies horizontal cut first and



(a) Scheme: (5, 3, 1) (b) Scheme: (5, 3, 0)

Fig. 5. Two partitioning schemes.

A

C
B

G
H

I

D
E

F

J
K

L

(a) The whole circuit

A

C
B

D

I

J

L

(b) Top-left partition

Fig. 6. Pins are considered fixated at their current locations if they are outside
of partition.

then vertical cut. On the contrary, if dd is 1, vertical cut is
applied before horizontal cut. Fig. 5 gives two instances of
partitioning schemes, vertical cut is applied firstly in Fig. 5(a),
while horizontal cut is applied firstly in Fig. 5(b).

Each partition is composed of a region, a set of cells and
a set of nets, so it can be considered as a small instance
of circuit. For each partition, if a net connects at least one
cell inside of it, this net is kept in (belongs to) this partition.
Besides, pins are considered fixated at their current locations
if they are outside of partition. For example, as shown in Fig.
6, the whole circuit is divided into four partitions. The top-left
partition contains three cells A, B and C. There are three nets
associated with at least one of A, B and C. For the red net,
it connects to cell I, which is outside of top-left partition, so
cell I is considered fixated for the top-left partition. By above
setting, placements of partitions are independent of each other,
and each sub-placement is an placement instance. Note that,
once all the sub-placements finish, all the cells’ positions are
updated before going to next frame.

To maximize parallelism, each partition is expected to have
a similar number of cells. Otherwise, the placement of the
partition which has the most number of cells would become
the runtime bottleneck in all the sub-placements. Algorithm
1 gives the method of placement-driven partitioning. The
placement region is split into a set of uniformed bins by a
m × n grids. The number of cells in each bin is calculated,
and then a lookup table can be built to quickly return the
number of cells in any rectangular region which is composed
of bins. When a rectangular region (e.g., the whole placement)
is partitioned, the locations of cut lines can be easily computed
by Algorithm 22.

2Without loss of generality, Algorithm 2 presents how to compute the
locations of horizontal cuts. For vertical cuts, the method is similar.

Algorithm 1 Placement-driven partitioning
Require: Placement is split into a set of uniformed bins.
Require: A roughly legalized placement and a partitioning

scheme (xx, yy, dd).
Require: Horizontal (or vertical) cut line should be exactly

one of the lines that are used to split placement into bins.
Ensure: Each partition has similar number of cells.

1: Build up a lookup table to quickly return the number of
cells in any rectangular region;

2: Apply horizontal (or vertical) cut first if dd = 0 or 1;
3: for any rectangular region produced in the last step do
4: Apply vertical (or horizontal) cut if dd = 0 or 1;
5: end for

Algorithm 2 Find the locations of cut lines
Require: A rectangular region represented by (lx, ly, rx, ry)

in bin coordinate system, where (lx, ly) and (rx, ry) are
respectively the coordinates of its left-bottom and right-up
bins.

Require: : The number of horizontal cut lines, denoted by k.
Ensure: The locations of horizontal cut lines, stored in an

array p[1..k].
1: Initialize an array n[ly..ry] = 0;
2: for i = ly to ry do
3: n[i] = the number of cells in rectangular region

(lx, ly, rx, i);
4: end for
5: m =

n[ry ]
k+1 ;

6: for i = 1 to k do
7: find the index l and u, that satisfy n[l] ≤ m∗ i ≤ n[u];
8: if m ∗ i− n[l] < n[u] −m ∗ i then
9: p[i] = l;

10: else
11: p[i] = u;
12: end if
13: end for

C. Varied partitioning scheme

If placement-driven partitioning is only applied once and
then sub-placements are performed until the end of global
placement stage, it would result in significant quality loss
because each cell is restricted in the same partition and cannot
be migrated from one partition to another, which leads to
limitation of solution space. To resolve this issue, we introduce
the concept of varied partitioning scheme.

A frame is composed of a partitioning scheme and several
global placement iterations, so it can be represented as a tuple
(xx, yy, dd, n), while (xx, yy, dd) is the scheme of placement-
driven partitioning and n is the number of global placement
iterations applied in the frame. To prevent cells from being re-
stricted in the same partition, the frame configuration is varying
from one frame to next. For example, if frame (4, 4, 0, 5) is
used first and then (1, 1, 0, 1), it means that we apply a 4 × 4
placement-driven partitioning to get 16 partitions and perform
16 sub-placements in the next 5 global placement iterations,
and then one flat global placement iteration is performed to
allow cells to move outside of their partitions, in order to get
better locations.



The design of frame configuration is important for run-
time performance and solution quality. For example, If all
the frames are configured to (1, 1, 0, 1), then POLAR 3.0 is
degenerated to POLAR [13] and cannot leverage multi-core
system. However, if all the frames are configured to (5, 5, 0, 1),
then placement quality is significantly suffered. Therefore, the
design of frame configuration is a trade-off between runtime
performance and placement quality. In Section 5, we will
further discuss about how to choose proper configuration of
frames in the experiments.

D. Support partitioning efficiently

To make sub-placements run independently, a straight
forward idea is to reconstruct the data structures (such as nets
and cells) for each partition. It is the initial implementation
of POLAR 3.0. However, this idea has several performance
issues.

Firstly, memory usage is increased as the number of
partitions is increased. For one thing, the memory to store
a cell is doubled. One copy is for the whole circuit, and
the other is for the partition to which this cell belongs.
For another thing, which is even worse, a net (contains a
set of pins) which crosses over k partitions has k copies,
since each partition has one copy. Overall all, the whole
memory usage is increased by several times. Huge memory
footprint not only limits the scalability, but also slows down
the program (e.g., results in higher cache miss rate). Besides,
we observed that reconstructing netlist for each partition is
relatively time consuming (about 20% of total runtime in the
initial implementation).

To address the above issues, we redesigned the architecture
of POLAR [13] in order to support partitioning efficiently.
The key idea is to let partition share memory from the whole
circuit. Therefore, there is only one copy for each cell/net/pin
in the memory. By this new architecture, the runtime of
partitioning is reduced to less than 1% of total runtime in
the final implementation of POLAR 3.0, and can support
partitioning as many as possible.

Fig. 7 presents the memory footprints of the whole circuit
and the four partitions for the instance in Fig. 6. In the whole
circuit, as shown in the top table of Fig. 7, we have a cell list,
net list and pin list. Cells, nets and pins are stored in different
kind of structures maintaining their own variety of information
(e.g., width, height and location for cell, weight for net, offset
(or cell id that it may have) for pin). Each net has a pair of
values to store the start and end index of its pins in the pin
list. In the partition, for each cell (or net), which belongs to
this partition, only its id rather than its structure is stored. A
hash table is used to map cell id in the whole circuit to a
new id in the partition. This hash table has two functions: (1)
check whether a cell belongs to this partition; (2) used in linear
system generation, the new id of cell in its partition is exactly
the same as its row index in the matrix Qx (Qy). Besides, the
boundary of placement region should be stored for the whole
circuit and partitions.

Scanning netlist on circuit (or partition) is the most funda-
mental operation in placement algorithm. It is the basic to
implement a placer and widely used in many places, such
as generating linear system and calculating total wirelength.

Algorithm 3 shows how to scan netlist on partition. The hash
table is used to check the condition in line 6.

Algorithm 3 Scan netlist on a partition.
1: for any net id belongs to the partition do
2: fetch the corresponding net structure;
3: get the start and end index of its pins in the pin list,

denoted by s and e;
4: for i = s; i ≤ e; i = i+ 1 do
5: fetch the corresponding pin structure;
6: if this pin belongs to some cell in the partition then
7: //it is a movable pin;
8: else
9: //it is a fixed pin;

10: end if
11: end for
12: end for

Fig. 7. Memory footprints for supporting partitioning efficiently. The
placement instance is shown in Fig. 6.

V. EXPERIMENTAL RESULTS

POLAR 3.0 is implemented in C++, and OpenMP is used
to support parallelism. To verify the efficiency of POLAR
3.0, we obtained binaries of some state-of-the-art academic
placers, such as FastPlace [11], NTUplace3 [16], ComPLx
[19] and ePlace [10], and ran them over the same benchmarks
on the same platform. Besides, all the detailed placement are
performed by the detailed placer inside of NTUplace3.

The machine that was used in the experiments is a x86 64
Linux server, which has a Intel(R) Xeon(R) E5-2640 v3 CPU
(with 8 cores, 2.6GHz frequency and 20M cache) and 132 GB
RAM.

The benchmarks were downloaded from the official web-
sites of some contests, including ISPD2005 [22], ISPD2006



[23], ISPD2011 [24], DAC2012 [25]3. For those benchmarks
from routability-driven placement contests [24, 25], rout-
ing information is ignored since all the above placers are
wirelength-driven. The benchmarks from recent ISPD detailed
routing-driven placement contests [33, 34] are not used in
the experiments, because (1) all the above placers do not
have an interface to read lef/def format files; (2) those large
benchmarks are generated based on previous contests [24–26].
The target density is set to 1 for all the benchmarks.

In the experiments, we use the same frame configuration
for all the benchmarks. As mentioned in Section 4.3, the design
of frame configuration is to trade-off runtime and solution
quality. If many partitions are used in the previous frame,
then there are fewer partitions in the next frame to make up
quality loss. Besides, flat placement is tried to avoid as much
as possible, since it cannot make full use of multi-core system.
We tried several frame configurations and picked a pretty good
one for experiments. In this configuration, every four frames
(3, 5, 0, 5), (1, 1, 0, 1), (5, 3, 1, 5) and (1, 1, 0, 1) are defined as
a group and applied repeatedly. Each sub-placement would use
at most two threads, for example, when generating (or solving)
linear systems (3) and (4) simultaneously. Therefore, POLAR
3.0 launches at most 30 threads. Note that this configuration
of frames does not necessarily give the best average results for
all the benchmarks. Besides, the CPU used in the experiments
only has 8 cores. Theoretically speaking, POLAR 3.0 could
get more speedup by using a CPU which has more cores4.

The experimental results are presented in Table 2. We
reported the wirelength and runtime of both global and detailed
placement for each placer. ”G-WL” and ”G-RT” represent
the wirelength and runtime of global placement, while ”D-
WL” and ”D-RT” represent the wirelength and runtime of
detailed placement. FastPlace crashes on some benchmarks,
which are annotated ”crash”. ePlace does not converge on some
benchmarks, which are annotated ”fail”.

On average, compared with ePlace, POLAR 3.0 is about
4% worst on wirelength, while 31.8× faster. Compared with
FastPlace, NTUplace3 and ComPLx, it is at least not worse
or even better on solution quality, while significantly faster.
The average wirelength ratio among FastPlace, NTUplace3,
ComPLx and POLAR 3.0 is 1.07:1.04:1.00:1.00, and runtime
ratio is 6.88:32.9:7.55:1.00.

For all these placers, the runtime of detailed placement is
roughly comparable. To previous academic placers (not only
FastPlace, NTUplace3, ComPLx and ePlace), global placement
stage is more time consuming than detailed placement stage.
Besides, global placement stage has more impact on solution
quality compared with detailed placement stage. Therefore,
much less works pay attention to detailed placement. However,
for POLAR 3.0, on the contrary, detailed placement stage
uses much more runtime than global placement stage. From
runtime perspective, we hope that POLAR 3.0 would inspire
more research on detailed placement. Besides, we believe
that detailed placement stage is relatively easy to parallelize
compared with global placement stage and will parallelize
detailed placement stage in our future work.

3The benchmarks of ICCAD2012 contest [26] are the same as those of
ISPD2011 and DAC2012 contest.

4We currently do not have 16-core or 32-core CPU to verify this, but will
do it later.

A. POLAR 3.0 Runtime analysis

We analyzed the runtime of POLAR 3.0 by using different
number of threads. The method is to change the number of
partitions in frame. As shown in Table 3, for example, to mea-
sure the runtime of POLAR 3.0 using 8 threads, we can repeat-
edly apply frame group (2, 2, 0, 5), (1, 1, 0, 1), (2, 2, 1, 5) and
(1, 1, 0, 1). POLAR 3.0 launches maximally 8 threads, since
each partition would use 2 threads for generating (or solving)
linear systems (3) and (4) simultaneously. The experimental
results are shown in Table 4, where ”WL” is the wirelength
of detailed placement and ”G-RT” is the CPU runtime of
POLAR 3.0 in global placement stage. To measure the runtime
of 1-thread and 2-thread, placement-driven partitioning is not
applied. The difference between 1-thread and 2-thread is that
generating (or solving) linear systems (3) and (4) are parallel
(one thread for each direction) in 2-thread. Besides, we also
added a group of frames called ”speedy”. We can use speedy
to gain more speedup at the cost of sacrificing solution quality.

TABLE III. FRAME CONFIGURATION TO MEASURE RUNTIME OF
POLAR 3.0 BY USING DIFFERENT THREADS.

# of threads Configuration of frame group

1-thread (1,1,0,1) (1,1,0,1) (1,1,0,1) (1,1,0,1)
2-thread (1,1,0,1) (1,1,0,1) (1,1,0,1) (1,1,0,1)
4-thread (2,1,0,5) (1,1,0,1) (1,2,1,5) (1,1,0,1)
8-thread (2,2,0,5) (1,1,0,1) (2,2,1,5) (1,1,0,1)

16-thread (2,4,0,5) (1,1,0,1) (4,2,1,5) (1,1,0,1)
speedy (3,5,0,5) (5,3,1,5) (3,5,0,5) (5,3,1,5)
default (3,5,0,5) (1,1,0,1) (5,3,1,5) (1,1,0,1)

By using 2/4/8/16/30 threads, POLAR 3.0 can achieve
similar solution quality compared with POLAR, while gain
1.43/1.59/2.5/4.0× runtime speedup. Note that compared with
2-thread, 4-thread only gains little speedup. The main reason
is that the number of nets kept in each partition is very close
to that of whole circuit, so the runtime of generating (or
solving) linear systems is also very closed to that of the whole
placement.

VI. CONCLUSIONS

In this paper, we systematically study the problem of
parallelizing state-of-the-art quadratic placer. The main chal-
lenge is that the major runtime components, such as solving
quadratic problem, are difficult to parallel. Experiments show
that existing method can only achieve less than 1.8× speedup
by using 16 threads provided by a modern 8-core CPU.

To resolve this challenging problem, we built up a new
global placer (POLAR 3.0) based on POLAR to fully leverage
multi-core system. In POLAR 3.0, we propose placement-
driven partitioning and verify partitioning scheme to trade-
off runtime and solution quality. We demonstrate that by
reasonable designing of frames, POLAR 3.0 could achieve
competitive solution quality while reducing runtime signifi-
cantly.

Since POLAR 3.0 runs much faster than existing detailed
placement tools, detailed placement stage becomes the runtime
bottleneck. We will try to parallelize existing detailed place-
ment methods in our future work.



TABLE II. COMPARISON WITH THE STATE-OF-THE-ART ACADEMIC PLACERS. RUNTIME IS MEASURED IN SECONDS.

benchmark test case FastPlace NTUplace3 ComPLx ePlace POLAR 3.0
G-WL G-RT D-WL D-RT G-WL G-RT D-WL D-RT G-WL G-RT D-WL D-RT G-WL G-RT D-WL D-RT G-WL G-RT D-WL D-RT

ISPD05

adaptec1 80.6 73 79.2 44 81.5 217 80.3 33 80.2 92 78.1 40 73.1 190 75.6 82 78.6 12 78.9 34
adaptec2 94.7 107 93.6 64 91.4 245 90.2 49 90.7 103 90.0 53 83.5 250 84.9 46 86.5 15 86.8 48
adaptec3 214.5 209 215.5 112 239.8 570 233.8 105 206.0 261 206.2 96 193.9 906 196.5 82 206.1 26 207.2 92
adaptec4 201.9 208 198.7 131 222.5 689 215.0 134 186.5 221 184.3 113 178.1 956 179.0 94 187.0 28 188.6 95
bigblue1 100.7 103 97.6 70 96.2 432 98.7 49 96.2 175 94.3 51 89.6 298 91.0 41 95.0 16 95.2 48
bigblue2 160.4 205 155.7 177 162.9 998 158.3 163 147.7 242 145.3 159 139.8 504 142.0 137 144.1 29 145.3 142
bigblue3 371.8 487 373.4 329 351.3 1100 346.3 208 326.4 486 334.7 271 299.5 1432 308.2 207 324.2 64 329.6 340
bigblue4 855.2 1024 840.6 663 852.2 3233 829.1 539 796.1 1379 788.9 542 738.6 3682 752.8 416 805.7 160 808.0 492

ISPD06

adaptec5 329.0 473 366.6 405 345.8 1238 344.6 177 324.0 428 322.4 211 294.8 1074 301.1 171 327.1 57 329.6 198
newblue2 193.4 183 203.4 119 188.4 627 191.7 75 185.9 264 189.6 98 171.5 361 184.3 91 181.4 25 189.4 102
newblue3 298.8 185 293.1 177 284.4 505 275.9 175 265.9 216 261.4 153 259.4 585 262.6 134 266.7 20 264.8 162
newblue4 254.7 270 250.7 171 252.2 1036 247.6 149 237.1 328 232.9 138 216.1 882 222.9 114 238.2 38 239.0 127
newblue5 424.7 616 472.4 481 429.1 2080 426.9 299 411.6 707 406.2 331 372.0 1578 383.1 257 410.4 88 415.6 289
newblue6 516.1 595 506.3 376 505.0 1936 498.2 330 477.0 736 470.8 323 433.0 2136 443.1 255 478.1 88 479.6 291
newblue7 1086.4 1063 1072 958 1114.4 3886 1100.2 525 998.1 1907 989.8 776 937.8 2612 956.9 648 984.6 187 990.8 683

ISPD11

superblue1 292.4 280 287.1 328 271.9 1620 267.9 180 259.5 261 256.5 248 269 6589 250.3 178 253.2 48 253.5 221
superblue2 crash crash crash crash 615.0 2778 609.7 211 605.9 323 608.2 382 fail fail fail fail 592.8 52 592.5 273
superblue4 crash crash crash crash 217.8 757 216.5 121 214.4 187 212.3 152 fail fail fail fail 209.0 26 209.3 132
superblue5 358.6 242 355.1 237 352.9 1391 345.1 181 349.2 229 337.7 219 fail fail fail fail 338.8 37 336.5 184

superblue10 crash crash crash crash 557.7 1356 551.2 215 538.3 377 535.6 246 520.9 1644 527.8 204 531.6 54 534.8 212
superblue12 277.1 543 271.4 601 241.6 5804 238.7 333 242.9 642 237.8 479 206.5 3158 212.1 291 240.5 98 238.7 370
superblue15 313.5 264 310.1 240 295.8 2124 297.3 155 297.2 385 295.0 191 280.9 892 283.9 175 292.2 51 294.8 188
superblue18 157.0 190 152.2 169 139.1 1414 139.9 114 141.5 169 137.7 147 137.9 641 136.9 118 137.4 27 137.3 128

DAC12

superblue3 322.4 324 317.5 351 309.3 1493 302.9 219 314.1 267 304.8 282 fail fail fail fail 299.0 45 300.1 228
superblue6 crash crash crash crash 318.6 1819 319.8 209 319.5 358 318.5 291 fail fail fail fail 313.4 53 315.4 247
superblue7 404.7 541 395.6 422 379.8 3467 377.3 294 388.6 530 385.0 395 366.1 1788 368.6 301 375.7 83 375.7 318
superblue9 239.2 308 236.1 278 222.0 2285 221.8 204 219.7 305 217.2 233 fail fail fail fail 214.6 46 215.2 219

superblue11 crash crash crash crash 335.9 1465 335.7 179 334.9 277 337.4 202 774.6 5399 391.5 623 338.5 48 337.4 199
superblue14 236.4 197 234.7 202 224.2 1310 229.9 136 222.2 197 220.4 165 fail fail fail fail 218.6 28 219.1 156
superblue16 269.1 208 271.4 223 259.1 1662 262.8 120 253.9 192 256.7 190 fail fail fail fail 260.4 37 258.7 144
superblue19 154.1 204 155.8 216 143.9 1587 144.8 157 147.1 152 147.8 181 fail fail fail fail 145.7 25 145.3 164

Norm. 1.08 6.88 1.07 1.37 1.05 32.9 1.04 0.95 1.01 7.55 1.00 1.15 1.01 31.8 0.96 1.05 1.00 1.00 1.00 1.00

TABLE IV. COMPARISON OF POLAR 3.0 WITH DIFFERENT NUMBER OF THREADS. RUNTIME IS MEASURED IN SECONDS.

benchmark test case 1-thread 2-thread 4-thread 8-thread 16-thread default speedy
WL G-RT WL G-RT WL G-RT WL G-RT WL G-RT WL G-RT WL G-RT

ISPD05

adaptec1 76.9 59 76.9 42 77.7 32 79 20 79.1 14 78.9 12 85.9 9
adaptec2 86.5 72 86.5 51 87.5 39 86.2 24 86.8 17 86.8 15 91.1 10
adaptec3 200.1 128 200.1 89 199.3 63 202.7 41 204.8 33 207.2 26 241.5 20
adaptec4 181.6 129 181.6 88 184.9 64 185.4 40 188.4 30 188.6 28 201.2 18
bigblue1 95.7 80 95.7 56 92.9 42 93.7 26 95.4 20 95.2 16 106.1 11
bigblue2 143.3 133 143.3 93 143.9 73 144.9 44 145.6 32 145.3 29 147.5 18
bigblue3 320.4 311 320.4 220 322.9 171 326.2 112 326.1 73 329.6 64 362.5 42
bigblue4 787.7 704 787.7 508 795.3 426 800.5 260 811.4 188 808 160 835.4 108

ISPD06

adaptec5 313 258 313 181 320 154 319.6 98 324.6 65 329.6 57 363.2 40
newblue2 189.2 123 189.2 87 188 65 187.8 37 187.1 29 189.4 25 193.1 16
newblue3 262.7 93 262.7 63 263.3 51 264.3 32 265.5 25 264.8 20 267.6 15
newblue4 231.7 184 231.7 132 228.8 104 234 61 233.4 46 239 38 256.9 28
newblue5 407.7 407 407.7 298 404.5 225 406.9 149 410.6 107 415.6 88 432.6 64
newblue6 473 399 473 282 469.9 229 471.6 147 477.3 105 479.6 88 498.7 60
newblue7 986.8 841 986.8 603 982.1 472 978.6 300 980.4 223 990.8 187 1000.9 130

ISPD11

superblue1 251.3 208 251.3 144 249.3 114 251.5 74 251.5 49 253.5 48 258.7 30
superblue2 585 215 585 149 586.1 119 587.6 77 586.6 56 592.5 52 593.8 36
superblue4 207.5 114 207.5 79 205.6 58 207.9 42 208.3 31 209.3 26 214.8 17
superblue5 333.1 160 333 111 334.2 84 333.4 55 335.7 39 336.5 37 340.9 24

superblue10 534.7 220 534.7 149 532.6 132 533.6 87 534.1 61 534.8 54 540.1 38
superblue12 225.5 484 225.5 332 229.4 230 232.4 154 235.8 114 238.7 98 258.7 68
superblue15 294.7 210 294.7 145 290 134 291.1 82 295.8 61 294.8 51 311.7 38
superblue18 135.9 119 135.9 84 135.2 66 135.1 40 135.4 32 137.3 27 162.3 20

DAC12

superblue3 296.6 207 296.6 145 292.4 124 297.4 77 299.8 57 300.1 45 308.9 32
superblue6 311 229 311 160 311.1 142 313.2 88 312.2 62 315.4 53 320.6 39
superblue7 372.3 352 372.3 248 373.4 226 377.8 139 386.3 97 375.7 83 392.2 59
superblue9 210.6 207 210.6 147 213.9 123 221.1 78 221.6 55 215.2 46 236.6 32

superblue11 337.9 207 337.9 143 336.4 123 335.5 76 337 50 337.4 48 349.9 33
superblue14 219.1 135 219.1 94 219.9 83 218.9 49 218.2 35 219.1 28 222.9 21
superblue16 255.3 164 255.3 118 255.1 96 257.2 60 257.7 43 258.7 37 271.1 26
superblue19 145.1 120 145.1 83 145.2 63 145.7 43 147.2 31 145.3 25 150.9 17

Norm. 1.000 1.00 1.000 0.70 1.000 0.63 1.006 0.4 1.012 0.25 1.015 0.22 1.069 0.15



ACKNOWLEDGMENTS

This work is partially supported by NSF under grant CCF-
1219100 and by Mentor Graphics. Besides, we would like to
thank Dr. Ismail Bustany, Dr. Joseph Shinnerl and Ivan Kissiov
from Mentor Graphics for the discussion of techniques.

REFERENCES

[1] C. Alpert, Z. Li, G.-J. Nam, C. N. Sze, N. Viswanathan,
and S. I. Ward, “Placement: Hot or not?,” ICCAD ’12,
pp. 283–290, 2012.

[2] I. L. Markov, J. Hu, and M.-C. Kim, “Progress and
challenges in VLSI placement research,” ICCAD ’12,
pp. 275–282, 2012.

[3] W.-J. Sun and C. Sechen, “Efficient and effective place-
ment for very large circuits,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 14, no. 3, pp. 349–
359, 1995.

[4] J. A. Roy, D. A. Papa, S. N. Adya, H. H. Chan, A. N. Ng,
J. F. Lu, and I. L. Markov, “Capo: robust and scalable
open-source min-cut floorplacer,” in ISPD, pp. 224–226,
2005.

[5] M. Wang, X. Yang, and M. Sarrafzadeh,
“DRAGON2000: Standart-Cell placement tool for
large industry curcuits,” in ICCAD, pp. 260–263, 2000.

[6] A. B. Kahng, S. Reda, and Q. Wang, “APlace: A general
analytic placement framework,” ISPD ’05, pp. 233–235,
2005.

[7] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. Antre-
ich, “GORDIAN: VLSI placement by quadratic program-
ming and slicing optimization,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 10, no. 3, pp. 356–
365, 1991.

[8] J. Cong, G. Luo, K. Tsota, and B. Xiao, “Optimizing
routability in large-scale mixed-size placement,” ASP-
DAC ’13, 2013.

[9] P. Spindler, U. Schlichtmann, and F. M. Johannes,
“Kraftwerk2: A fast force-directed quadratic placement
approach using an accurate net model,” Trans. Comp.-
Aided Des. Integ. Cir. Sys., vol. 27, no. 8, pp. 1398–1411,
2008.

[10] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang,
C.-C. Teng, and C.-K. Cheng, “ePlace: Electrostatics
based placement using nesterov’s method,” DAC ’14,
pp. 121:1–121:6, 2014.

[11] N. Viswanathan, M. Pan, and C. Chu, “FastPlace 3.0:
A fast multilevel quadratic placement algorithm with
placement congestion control,” ASP-DAC ’07, pp. 135–
140, 2007.

[12] M.-C. Kim, D.-J. Lee, and I. L. Markov, “SimPL: an
effective placement algorithm,” ICCAD ’10, pp. 649–656,
2010.

[13] T. Lin, C. Chu, J. R. Shinnerl, I. Bustany, and
I. Nedelchev, “POLAR: Placement based on novel rough
legalization and refinement,” ICCAD ’13, 2013.

[14] U. Brenner, A. Hermann, N. Hoppmann, and
P. Ochsendorf, “BonnPlace: A self-stabilizing placement
framework,” ISPD ’15, pp. 9–16, 2015.

[15] W. Zhu, J. Chen, Z. Peng, and G. Fan, “Nonsmooth
optimization method for VLSI global placement,” Trans.
Comp.-Aided Des. Integ. Cir. Sys., vol. 34, no. 4, pp. 642–
655, 2015.

[16] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and
Y.-W. Chang, “NTUplace3: An analytical placer for
large-scale mixed-size designs with preplaced blocks and
density constraints,” Trans. Comp.-Aided Des. Integ. Cir.
Sys., vol. 27, no. 7, pp. 1228–1240, 2008.

[17] Y. Saad, Iterative Methods for Sparse Linear Systems.
2003.

[18] B. Hu, Y. Zeng, and M. Marek-Sadowska, “mFAR:
Fixed-points-addition-based VLSI placement algorithm,”
ISPD ’05, pp. 239–241, 2005.

[19] M.-C. Kim and I. L. Markov, “ComPLx: A competitive
primal-dual lagrange optimization for global placement,”
DAC ’12, pp. 747–752, 2012.

[20] X. He, T. Huang, L. Xiao, H. Tian, G. Cui, and E. F. Y.
Young, “Ripple: an effective routability-driven placer by
iterative cell movement,” ICCAD ’11, pp. 74–79, 2011.

[21] T. Lin and C. Chu, “POLAR 2.0: An effective routability-
driven placer,” DAC ’14, pp. 123:1–123:6, 2014.

[22] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter, and
M. Yildiz, “The ISPD2005 placement contest and bench-
mark suite,” ISPD ’05, pp. 216–220, 2005.

[23] G.-J. Nam, “ISPD 2006 placement contest: Benchmark
suite and results,” ISPD ’06, pp. 167–167, 2006.

[24] N. Viswanathan, C. J. Alpert, C. Sze, Z. Li, G.-J. Nam,
and J. A. Roy, “The ISPD-2011 routability-driven place-
ment contest and benchmark suite,” ISPD ’11, pp. 141–
146, 2011.

[25] N. Viswanathan, C. Alpert, C. Sze, Z. Li, and Y. Wei,
“The DAC 2012 routability-driven placement contest and
benchmark suite,” DAC ’12, pp. 774–782, 2012.

[26] N. Viswanathan, C. Alpert, C. Sze, Z. Li, and Y. Wei,
“ICCAD-2012 CAD contest in design hierarchy aware
routability-driven placement and benchmark suite,” IC-
CAD ’12, pp. 345–348, 2012.

[27] M.-C. Kim, D. Lee, and I. L. Markov, “SimPL: An
effective placement algorithm,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 31, no. 1, pp. 50–60,
2012.

[28] Intel, “Intel Math Kernel Library.” https://software.intel.
com.

[29] M. Can Yildiz and P. H. Madden, “Improved cut se-
quences for partitioning based placement,” DAC ’01,
pp. 776–779, 2001.

[30] A. Khatkhate, C. Li, A. R. Agnihotri, M. C. Yildiz,
S. Ono, C.-K. Koh, and P. H. Madden, “Recursive bisec-
tion based mixed block placement,” ISPD ’04, pp. 84–89,
2004.

[31] Z.-W. Jiang, T.-C. Cheny, T.-C. Hsuy, H.-C. Chenz, and
Y.-W. Changyz, “NTUplace2: A hybrid placer using par-
titioning and analytical techniques,” ISPD ’06, pp. 215–
217, 2006.

[32] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar,
“Multilevel hypergraph partitioning: Application in VLSI
domain,” in DAC, pp. 526–529, 1997.

[33] V. Yutsis, I. S. Bustany, D. Chinnery, J. R. Shinnerl,
and W.-H. Liu, “ISPD 2014 benchmarks with sub-45nm
technology rules for detailed-routing-driven placement,”
ISPD ’14, pp. 161–168, 2014.

[34] I. S. Bustany, D. Chinnery, J. R. Shinnerl, and V. Yutsis,
“ISPD 2015 benchmarks with fence regions and routing
blockages for detailed-routing-driven placement,” ISPD
’15, pp. 157–164, 2015.


