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Abstract—Gate sizing and threshold voltage selection is an
important step in the VLSI physical design process to help reduce
power consumption and improve circuit performance. Recent
asynchronous design flows try to directly leverage synchronous
EDA tools to select gates, which have a lot of limitations due to
the intrinsic difference between asynchronous and synchronous
circuits. This paper presents a new simultaneous gate sizing
and Vth assignment approach for asynchronous designs. We
formulate the asynchronous gate version selection problem con-
sidering both leakage power consumption and cycle time. Then,
the optimization is performed based on a Lagrangian relaxation
framework. A fast and effective slew updating strategy is also
proposed to address the timing-loops of asynchronous circuits
during static timing analysis. Our approach is evaluated using a
set of asynchronous designs based on the pre-charged half buffer
(PCHB) template and compared with the Proteus asynchronous
design flow which is leveraging synchronous EDA tools. The
experiments show our approach can achieve much better quality
results in terms of both leakage power and cycle time compared
with the other approach.

I. INTRODUCTION

As the feature size of advanced fabrication process is down
to nanometer scale, the design of synchronous circuit is facing
more and more issues such as process variation and power
consumption. Asynchronous design provides a very attractive
alternative to synchronous design due to its robustness, lower
power consumption and higher operating speed. Its advantages
have been demonstrated by many fabricated chips [1] [2] [3].
However, asynchronous design is still not widely adopted in
the industry because of its long learning curve and the lack of
asynchronous EDA tools.

Gate sizing and Vth assignment have been shown to be very
effective techniques to optimize the power and performance
of synchronous circuits. We expect these techniques to have
similar impact on asynchronous circuits. In particular, we want
to minimize the leakage power, as in advanced process it
contributes to a large part of total power consumption which
has become an important design objective nowadays due to
the limited battery life of the widely used portable devices.
For asynchronous design, leakage power minimization can
be even more critical because of its higher gate count than
synchronous design. Therefore, in this paper, we are focusing
on the problem of leakage power and cycle time minimization
for asynchronous design by selecting gates of different sizes
and Vth from a standard cell library.

Both gate sizing and Vth assignment techniques for syn-
chronous circuits have been extensively studied for decades [4]
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[5] [6] [7]. However, for asynchronous circuits, there are only
very few works on it. Most of the automatic synthesis flows
for asynchronous circuits try to directly leverage synchronous
EDA tools [8] [9]. As the circuit structure, performance
metric and timing constraints for asynchronous circuits are
quite different from those for synchronous circuits, these
approaches require to break the timing-loops and add explicit
timing constraints the number of which is exponential to the
circuit size. For large scale designs, the complicated timing
constraints are beyond the ability of synchronous EDA tools
to handle thus inferior results are generated. In [10], a genetic
algorithm based simultaneous gate sizing and Vth assignment
technique specific for asynchronous circuits has been proposed
to minimize the leakage power while maintaining the perfor-
mance requirements. However, genetic algorithms usually have
long runtime and are not scalable, which makes it unsuitable
for large scale circuits.

A fast and accurate static timing analysis (STA) method
is essential to guide the gate selection algorithm to achieve
a good solution within a short amount of runtime. For
synchronous circuits, this can be done by a simple graph
traversal as the corresponding combinational logic network can
be represented as a directed acyclic graph (DAG). However,
for asynchronous circuits, the way to perform STA is not
straightforward due to its more general circuit structure which
might contain internal combinational loops. In [11], a STA
flow on pre-charged half buffer (PCHB) and Multi-Level
Domino (MLD) templates has been proposed, which leverages
a commercialized synchronous timing analyzer. However, this
approach is limited to template based designs as automatically
finding the cut points requires a regular circuit structure. Also,
the achieved timing value is not accurate as time borrowing
across the broken segments is not allowed.

This paper presents a new simultaneous gate sizing and Vth
assignment approach for asynchronous circuits. We formulate
the gate selection problem to minimize both the leakage power
and cycle time while satisfying various type of asynchronous
timing constraints. A Lagrangian relaxation framework is
applied on the formulated problem to transform it into a
sequence of Lagrangian relaxation subproblems (LRS). In
particular, the arrival time based linear constraints allow us to
simplify LRS using Karush-Kuhn-Tucker (KKT) conditions
[12]. This simplified LRS can then be easily solved using
an effective greedy algorithm. The proposed gate selection
approach considers discrete cell sizes and threshold voltages
from the standard cell library, and is implemented based on
the accurate non-linear delay model (NLDM). In addition, to



overcome the obstacle of STA for asynchronous circuits, we
propose an iterative slew update algorithm which is accurate
and guarantees fast convergence with library-based timing
models.

We evaluate our flow using a set of asynchronous designs
based on the PCHB templates and compare it with a latest
asynchronous design flow Proteus [8]. Our flow is shown
to be consistently better and we have achieved significant
improvements in both the cycle time and leakage power. Our
approach is more effective than those which twist and trick
synchronous EDA tools to generate a functional circuit as it
directly handles timing loops, which means time borrowing
along the loop is allowed and the number of constraints is
polynomial in circuit size.

The rest of this paper is organized as follows. In Section
II, we give an overview about the synchronous gate selection
techniques. Several timing issues related to asynchronous
circuits are discussed and the gate selection problem is then
formulated. In Section III, a Lagrangian relaxation based
approach is presented to solve the gate selection problem. In
Section IV, we discuss the proposed STA approach for asyn-
chronous circuit. In Section V, we summarize the implemented
asynchronous gate selection flow. Finally, the experimental
results are shown in Section VI.

II. PRELIMINARIES

A. Gate Selection Techniques for Synchronous Circuits

The discrete gate sizing problem is proved to be NP-
hard [13]. Therefore, various heuristic algorithms like convex
programming [14], sensitivity based algorithms [15] and so on
have been proposed by researchers to assign proper sizes and
threshold voltages for gates in synchronous circuits. There are
even organized gate sizing contests [16] [17] to help expose the
challenges faced in modern industrial designs to the academic
field. One powerful heuristic approach adopted by leading
synchronous gate selection algorithms [18] [19] is to apply
the Lagrangian relaxation (LR) technique. In [6], foundations
for LR-based gate sizing approach is first established, which
considers continuous sizing and simple delay models. The LR-
based approach is then continuously got improved as people
are combining it with library-based timing model, discrete gate
sizing, Vth assignment, dynamic programming and network
flow algorithms [18] [19] [20] [21]. The advantage of LR-
based approach is that it can be easily modified to handle
different objectives and various complex design constraints.
Even though convexity cannot be claimed for the discrete
gate sizing problem, the LR-based approach is shown to have
fast convergence in practice and is practical to large scale
problems. Although extensive research has been done for the
LR-based gate selection algorithms of synchronous circuits,
whether it is applicable and effective to asynchronous circuits
is still not being explored.

B. Full Buffer Channel Net Model

Here we use the Full Buffer Channel Net (FBCN) [22] to
model our asynchronous circuits. A FBCN is a specific form

of timed marked graph. The idea is to model each leaf cell as
a transition and asynchronous channels between cell ports are
modeled with a pair of places which are annotated with delay
information. Please note that here we treat the asynchronous
circuits as unconditional. For conditional asynchronous cir-
cuits modeled using FBCN, the circuit performance can be
guaranteed conservatively as proved in [23].

As an example, a simple ALU design is shown in Fig.
1 and the corresponding marked graph based on the FBCN
model is shown in Fig. 2. Here, tmul1 and tmul2 represent the
two-stage multiplication cells and tadd represents the addition
cell. All the places are denoted as circles. In particular, places
containing tokens are represented by circles marked with a
black dot. Two channels on the left are assumed to be in the
full state and have tokens assigned on the forward places. The
rest of the channels are assumed to be empty and have tokens
assigned on the backward places.

Fig. 1: Asynchronous ALU.

Fig. 2: Marked graph representation for Asynchronous ALU.

C. Asynchronous Performance Analysis

There are many existing algorithms which are able to
capture the cycle metric of asynchronous circuits. In this paper,
we adopt a linear programming based approach [24], as it
can be easily incorporated in to our Lagrangian relaxation
framework.

For any asynchronous circuit modeled with FBCN, the
cycle time τ can be obtained by solving the following linear
program:

Minimize τ

Subject to ai +Dij −mijτ ≤ aj ∀(i, j)

where ai and aj are the arrival time associated with transi-
tions ti and tj . Dij is the delay associated with a place p
between two neighboring transitions ti and tj . mij = 1 if the
corresponding place p contains a token and 0 otherwise.

Please note that in practice, there can be multiple delay
values such as the rising and falling delay associate with



a place p, The different delay values can be considered by
simply extending the existing constraints. Here we ignore these
details in order to make our presentation more concise.

D. Asynchronous Timing Constraints

Compared with synchronous circuits which only have setup
and hold time constraints, asynchronous circuits can have
some totally different timing constraints depending on the
timing assumptions made by the specific asynchronous logic
implementation style. For the bounded-delay asynchronous
designs [25], two-sided timing constraints need to be enforced
which require both a minimum and maximum allowable delay
of a specified gate or wire. Instead, for the quasi-delay-
insensitive (QDI) design style such as WCHB, PCHB, MLD
template, relative delay constraints referred to as relative
timing [26] need to be enforced, which dictate the relative
delay of two paths that stem from a common point of diver-
gence. These two design categories cover most of the existing
timing constraints specific to asynchronous circuits. We will
show how to incorporate these constraints into our problem
formulation in Sec. II E.

E. Asynchronous Gate Sizing and Vth Assignment

In this subsection, we formulate the asynchronous gate
selection problem considering the performance and timing
constraints. For an asynchronous circuit modeled with FBCN,
let T be the set of transitions and P be the set of places
in the timed marked graph. In particular, we use p(i, j)
to denote the place between neighboring transitions ti and
tj . Let a = {a1, a2, ..., a|T |} be the set of arrival times
corresponding to T . Let g = {g1, g2, ..., g|T |} be the set of
gates corresponding to T and we use vji to represent a specific
selected version j for gate gi. Let g0 be the initial set of
selected gates before optimization and τ0 be its corresponding
cycle time. In addition, we use Pb to denote the set of places
annotated with two-sided delay bounds. We use Prt to denote
the set of places annotated with relative timing constraints.
Then the problem of minimizing both total leakage power
consumption and cycle time subject to timing constraints can
be formulated as:

Minimize leakage(g)/leakage(g0) + ατ/τ0

Subject to ai +Dij −mijτ ≤ aj ∀ p(i, j) ∈ P (1)
Lij ≤ aj − ai ≤ Uij ∀ p(i, j) ∈ Pb (2)

|(ai − ak)− (aj − ak)| ≤ Iij ∀ p(i, j) ∈ Prt (3)

where the constant α can be chosen to adjust the tradeoff
between minimizing the normalized leakage power and the
normalized cycle time. Lij and Uij denote the minimum
and maximum bounded delay. Iij denotes the relative delay
stemming from transition tk and forking into two transitions ti
and tj . leakage(g) captures the summation of leakage power
for the set of gates g with selected versions.

We can rewrite the timing constraints in Equations (2) and
(3) into the same form with the performance constraints in

Equation (1) as follows:

(ai + Lij ≤ aj) ∧ (aj − Uij ≤ ai) (4)
(aj − Iij ≤ ai) ∧ (ai − Iij ≤ aj) (5)

Then, combining Equation (1) with the reformulated Equa-
tions (4) and (5), we can get a more concise representation of
our primal problem:

PP : Minimize leakage(g)/leakage(g0) + ατ/τ0

Subject to ai + D̂ij − m̂ijτ ≤ aj ∀(i, j)

where D̂ij represents Dij , Lij , −Uij or −Iij depending on the
corresponding places annotated with performance or timing
constraints. Also, we have m̂ij = mij for all performance
constraints and m̂ij = 0 for all timing constraints. ∀(i, j)
represents all the i, j pairs corresponding to p(i, j) ∈ P ∪
Pb ∪ Prt.

III. SIMULTANEOUS GATE SIZING AND VTH ASSIGNMENT
BY LAGRANGIAN RELAXATION

In this section, we propose our LR-based approach to solve
the formulated asynchronous gate selection problem PP . In
Sec. III A, the Lagrangian relaxation subproblem (LRS)
which provides a lower bound to the solution of PP is
obtained by applying LR technique to PP . In Sec. III B, we
first simplify LRS using applying KKT conditions. Then, an
effective greedy algorithm is proposed Sec. III C to solve this
simplified LRS. In Sec. III D, we solve the Lagrangian dual
problem (LDP) to achieve a solution of PP by iteratively
solving a sequence of simplified LRS.

A. Lagrangian Relaxation Subproblem (LRS)
First, we apply Lagrangian relaxation to the primal problem.

We attach a set of nonnegative Lagrangian multipliers λ =
{λij | ∀(i, j)} to all the constraints in PP and relax these
constraints into the objective function. Then the Lagrangian
relaxation subproblem we get is:

LRS : Mimimize leakage(g)/leakage(g0) + ατ/τ0

+
∑
∀(i,j)

λij(ai + D̂ij − m̂ijτ − aj)

The relaxed problem becomes an unconstrained optimiza-
tion problem. Please note that the variables we have for LRS
are g, a and τ while λ is a given parameter. For any given
set of λ ≥ 0, solving LRS will provide a lower bound to the
optimal solution of PP [12].

B. Simplified Lagrangian Relaxation Subproblem (LRS∗)
Similar to [6], we rearrange terms here and the LRS can

be rewritten as:

Mimimize leakage(g)/leakage(g0) + (α−
∑
∀(i,j)

λijm̂ij)τ/τ0

+
∑
k∈T

(
∑
∀(k,j)

λkj −
∑
∀(i,k)

λik)ak

+
∑
∀(i,j)

λijD̂ij



The idea behind this rearrangement is to group all the
coefficients associated with cycle time variable τ and arrival
time variables a, which make them easier to be removed as
we will show in the next step.

Let L(g,a, τ) be the objective function of LRS. The KKT
stationarity conditions imply ∂L/∂ai = 0 for 1 ≤ i ≤ |T | and
∂L/∂τ = 0 at the optimal solution of the primal problem.
Then we can get the following optimality conditions:

KKT : α =
∑
∀(i,j)

λijm̂ij∑
∀(k,j)

λkj =
∑
∀(i,k)

λik ∀ k ∈ T

Apply the optimality conditions into LRS, we can obtain
a simplified Lagrangian relaxation subproblem as follows:

LRS∗ : Minimize leakage(g)/leakage(g0) +
∑
∀(i,j)

λijD̂ij

After the simplification, variables τ and a are removed. The
only variables left are the set of selected gates g associated
with transitions. It can be seen that LRS∗ is equivalent to
LRS and it is much easier to solve.

C. Solving LRS∗

Algorithm 1 shows our algorithm to solve LRS∗. First,
we assign an initial version to each gate and insert all the
gates into a set G. Then, we pick any gate gi from G and
use Algorithm 2 to find a better version for it, i.e., picking a
different size or threshold voltage for that gate. If the selected
new version vki of gi is different from its old version vji , we
assign vki to the gate and insert all its fanout gates not in G into
G. Otherwise, we do not reevaluate its downstream cells if they
are not in G. In particular, if the gate has been visited more
than a certain number (n) of times, we also do not reevaluate
its downstream cells in order to save runtime. The algorithm
terminates when G is empty.

Algorithm 1 Solve LRS∗

Ensure: a proper version for each gate which minimize LRS∗
1: Initially assign all the gates with a version;
2: Insert all the gates into a set G;
3: while G 6= ∅ do
4: Pick one gate gi from G. Let its current version be vji ;
5: Select a new version vki for gate gi; /* Algorithm 2 */
6: if vji 6= vki then
7: Assign gi with this new version vki ;
8: if gi is visited less than or equal to n times then
9: Insert all gates /∈ G and directly driven by gi into G;

10: end if
11: end if
12: Remove gi from set G;
13: end while

The algorithm to select a new gate version is shown in
Algorithm 2. For each possible version vji of a specific gate
gi, we first update the gate to this new version.

Next, we need to estimate the timing impact made by this
gate version change. Instead of doing STA for the entire circuit

which can be very time consuming, we perform a local timing
update here. In particular, we update the output load of all the
fanin gates (fanin(gi)) which is driving gi and the input slew
of all the fanout gates (fanout(gi)) which is driven by gi. We
also update the input slew of all the side gates (side(gi)) which
are defined as all the gates driven by fanin(gi) except gi.
Then we recompute the delay for all the timing arcs associated
with gi and its fanin, fanout and side gates.

Let Arci = timingArcs(gi ∪ fanin(gi) ∪ fanout(gi) ∪
side(gi)) be the set of updated timing arcs. After the local
timing update, we can evaluate the cost to objective value of
LRS∗ as follows:

Cost(gi) = leakage(gi) +
∑

(u,v)∈Arci

λuvD̂uv

After all the possible options for the current gate have been
evaluated, the one providing the minimum cost will be returned
as the best choice.

Algorithm 2 Gate Version Selection
Ensure: Best version for the gate gi which minimize LRS∗

1: for each available option vji for the gate gi do
2: Assign vji to gi;
3: Local timing update;
4: if Cost(gi) < bestCost then
5: bestVersion = vji ;
6: bestCost = Cost(gi);
7: end if
8: end for
9: return bestVersion;

D. Lagrangian Dual Problem (LDP)

In Sec. III A, we mention that a lower bound to the optimal
solution of PP can be obtained by solving LRS for any given
set of λ ≥ 0. Now we discuss how to find the specific λ
that gives us the maximum (i.e., tightest) lower bound. It is
formulated as the Lagrangian dual problem as follows:

LDP : Maximize LRS
Subject to λ ≥ 0

Please note that g, a, τ along with λ are all variables for
the Lagrangian dual problem. Solving LDP will provide the
best solution to the primal problem.

Instead of maximizing LRS, we want to incorporate the
optimality conditions and maximize the equivalent yet simpler
problem LRS∗. Thus, the Lagrangian dual problem can be
rewritten as:

Maximize LRS∗

Subject to λ ≥ 0, λ ∈ KKT

E. Solving LDP
LDP can be solved by iteratively solving a sequence of

LRS∗. A commonly used strategy is the subgradient optimiza-
tion method [12]. However, this method requires a projection
for λ after each iteration in order to maintain λ within the



feasible region of LDP . For synchronous circuits, this can
be done by simply traversing the circuit in topological order.
For asynchronous circuits, it will not be easy to redistribute
λ as the corresponding circuit structure contains loops. In
addition, achieving a good convergence using this subgradient
optimization method is difficult and usually requires a careful
choice of initial solution and step size.

To resolve these issues, we apply a direction finding ap-
proach inspired by [21] to solve LDP , which is shown to
have better convergence and no projection is needed.

Let q(λ) denotes the optimal objective value of LRS∗ for
a given set of λ. The direction finding approach wants to find
an improving feasible direction ∆λ and a step size β such
that at each step we have:

q(λ+ β∆λ) > q(λ)

In particular, the improving feasible direction ∆λ can be
found by solving the following linear program:

DF : Maximize
∑
∀(i,j)

∆λijD̂ij

Subject to λ ≥ 0, λ ∈ KKT
max(−u,−λij) ≤ ∆λij ≤ u

where u is used to bound the objective function and avoid it
goes to infinity, similar to [21].

After we find the improving feasible direction, the step size
β can be obtained by optimizing along this direction using
any line search technique.

The detailed algorithm to solve LDP is presented in Al-
gorithm 3. It starts from an initial dual feasible λ, which
is non-negative and satisfies the optimality conditions. Then
the method iteratively improves q(λ) by finding an improving
direction and performing a line search to find the best step
size. The algorithm terminates when q(λ) is not improving or
the total number of iterations exceeds the limit.

Algorithm 3 Solve LDP
Ensure: λ which maximizes LRS∗

1: n = 1; /* loop counter */
2: λ = initial non-negative value satisfy optimality conditions;
3: while n < limit do
4: Solve DF to obtain improving direction ∆λ;
5: while line search not terminate do
6: Compute β based on specific line search technique;
7: λ′ = λ + β∆λ;
8: Solve LRS∗ to obtain q(λ′);
9: if q(λ′) > bestObj then

10: bestStep = β;
11: bestObj = q(λ′);
12: end if
13: end while
14: if bestObj ≤ q(λ) then /* q(λ) is not improving */
15: exit loop;
16: end if
17: λ = λ + bestStep ∗∆λ; /* move one step further */
18: Solve LRS∗;
19: n = n+ 1;
20: end while

IV. STATIC TIMING ANALYSIS FOR
ASYNCHRONOUS CIRCUITS

An efficient asynchronous STA method is necessary for us
to compute the delay values and cycle time τ using library-
based timing model. In order to do the STA, we first find the
output slew values of each gate using an iterative slew rate
update approach described in Sec. IV A. Then, D̂ij can be
achieved by lookup table interpolation in the same manner as
synchronous STA. Finally, the cycle time can be computed
using the linear program described in Sec. II C.

A. Iterative Slew Update Approach

The algorithm to implement the iterative slew update ap-
proach is presented as Algorithm 4. It is similar to Algorithm
1 which solves LRS∗. Here, we also keep a set G of gates. A
gate is in G if its current output slew is potentially inconsistent
with its current input slews. In particular, we define an output
slew to be inconsistent, if the resulting output slew might be
larger than the current one when we evaluate it based on the
current input slews. We define it to be “larger than” as we are
trying to find an upper bound of all the slews.

In the beginning, we initialize the output slew of all gates
to 0. Thus, all gates should be in the set G because all of them
are potentially inconsistent. In each step, we pick any gate gi
from the set and update its output slew. If the new output slew
snew is larger than the current one sold, we update the output
slew of gi to snew and put all gates driven by this gate while
not in G into the set G. When G is empty, i.e., the output slews
of all gates are consistent, the algorithm terminates.

Algorithm 4 Iterative Slew Update
Ensure: A tight upper bound of the output slew for all the gates;

1: Initialize the output slew to 0 for all the gates;
2: Insert all the gates into a set G;
3: while G 6= ∅ do
4: Pick one gate gi from G. Let its current output slew be sold;
5: Compute new output slew snew of gi based on its input slew;
6: if snew > sold then
7: Update the output slew of gi to snew;
8: Insert all gates /∈ G and directly driven by gi into G;
9: end if

10: Remove gi from set G;
11: end while

B. Convergence of the proposed approach

We can easily use induction technique to prove that the
output slew of every gate will be monotonically increasing
throughout the execution of Algorithm 4. Since all the slew
values are upper-bounded, we know the proposed algorithm
always converges. Let S = {s1, ..., s|T |} be the set of slew
values computed by the proposed algorithm. Then, we can
have the following theorem:

Theorem 1. For each gate, its corresponding output slew
value in S is a tight (i.e., smallest) upper bound of all its
output slew values during the operation of the circuit.

Proof: We prove this using contradiction. Assume the slew
values computed by Algorithm 4 are not tight, which means



there exists gates whose corresponding slew value in S is
larger than its maximum achievable slew value during the
circuit operation. Let gi be the first gate during the iterative
slew evaluation process such that its output slew is set to si
which is larger than its maximum achievable slew value. Based
on the slew evaluation process, we know the output slew of
gi is computed based on the output slew of one of its fanin
gates gj . Since si is unachievable, the current output slew sj
of gate gj must also be unachievable. This makes gi not the
first gate the output slew of which is set to an unachievable
value, which contradicts our assumption. Therefore, we can
conclude that the computed slew in S is a tight upper bound
of all the slew values.

C. Extension to a tight lower bound

A tight upper bound for all the slew values will guaran-
tee the design satisfies performance constraints as shown in
Equation (1). However, for other type of constraints such as
the two-sided timing constraints in Equation (2), we might
need a tight low bound in order to conservatively satisfy them.
This can be achieved by a simple modification of Algorithm
4. Instead of setting all the slew values to 0 in the beginning,
here we initialize all of them to the maximum possible slew
value in the cell timing library. Then at line 6, we change the
condition to snew < sold, which makes the output slew of
every gate monotonically decrease throughout the execution.
Similar to the proof of Theorem 1, the modified algorithm will
give us a tight lower bound of all the slew values.

V. ASYNCHRONOUS GATE SELECTION FLOW

We summarize our flow for asynchronous gate sizing and
Vth assignment in Fig. 3.

Fig. 3: Asynchronous Gate Selection Flow.

The input to our flow is the characterized cell timing library
and the netlist. Initially, STA is run for the whole circuit to
update the timing and an initial set of λ ≥ 0 satisfying the
optimality conditions is found. Next, we enter the loop to solve
the LDP similar to Algorithm 3. The final output of our flow

is a gate sizing and Vth assignment solution with both cycle
time and leakage power being minimized.

VI. EXPERIMENTS

The proposed gate sizing approach is implemented in C++
and runs on a Linux PC with 8 GB of memory and 2.4 GHz
Intel Core i7 CPU.

We are using the Proteus standard cell library [8] which is
based on an implementation of the PCHB template. Cell delay
and slew values are calculated using the static timing analysis
method described in Sec. IV with the accurate non-linear
delay model lookup tables from the cell timing library. Cell
interconnections are modeled as simple lumped capacitance
in our experiment. The lumped capacitance value is obtained
from the SPEF file generated by Proteus flow after placement
and routing. As the leakage power is not available in Proteus
standard cell library, we assign it to be proportional to cell
area, which is the same strategy used in ISPD 2013 discrete
gate sizing contest benchmarks [17].

In order to show the effectiveness on the power saving after
applying the Vth assignment techniques, we also extends the
Proteus standard cell library into a multi-Vth library, as the
original library only considers single Vth. We scale the leakage
power value and look up tables according the ratio between
different Vth cells in the cell library provided by the ISPD
2013 gate sizing contest. In particular, based on the original
cells, we generate a set of low threshold voltage cells with
4X more leakage power but 0.9X smaller delay. Similarly,
we generate a set of high threshold voltage cells with 0.25X
leakage power but 1.15X larger delay.

We evaluate our approach using two sets of benchmarks.
First is a set of asynchronous designs transformed from
ISCAS89 benchmarks, which have flip-flops mapped as token
buffers and combinational gates mapped as logic cells using
Proteus. We also have a set of specific asynchronous designs
developed using Verilog and synthesized into gate level netlist
using Proteus. Different bit widths are applied to some of the
benchmarks to create designs with different sizes.

We need to set the parameter α, which is the tradeoff
between leakage power consumption and circuit performance.
As our flow starts optimization with all cells assigned with the
minimum cell size which have the minimum possible leakage
power, we set α = 2 to put a similar effort on optimizing
power and cycle time of the given circuit. The limit for the
total number of iterations is set to be 50, which is shown to be
able to provide enough improvement within a short amount of
runtime. We do not perform any benchmark specific parameter
tuning during our experiment. After running the gate selection
flow, we run our STA algorithm until convergence to measure
the cycle time and the leakage power consumption of our gate
selection result.

First, we do the experiment by running our flow using the
original single-Vth library in order to compare with Proteus.
Both flows use the same input netlist starting with cells
assigned with minimum size. Comparison results on the trans-
formed ISCAS89 benchmarks are shown in Table I. “Total itr.”



column shows the total number iterations performed for each
benchmarks until termination. PPobj denotes the achieved
objective value for the primal problem. LRSobj denotes the
achieved objective value for the LRS. “Gap” column shows
the duality gap which helps us to know how close our solution
is to the optimal solution. The duality gap here is calculated us-
ing (PPobj−LRSobj)/PPobj . “Init” columns show the initial
cycle time and leakage power, which all the cells are assigned
with the minimum size. “Proteus” and ”Ours” columns show
the cycle time and leakage power for gate sizes generated
by the Proteus flow and our flow respectively. The results
show our approach is consistently better in both cycltime
and power consumption for all benchmarks. For the cycle
time, on average, our approach is 2.19X better than the initial
minimum sized circuit and 21.3% better than the gate sizing
results from Proteus. For the leakage power consumption, our
approach is 9.5% better than Proteus and only consumes 3.7%
more power than the initial minimum sized circuits, which
have the minimum possible leakage value. Table II shows the
comparison results on the specific asynchronous benchmarks
and have achieved similar improvements. Proteus does not
have a separate gate sizing step and makes us not able to
measure the time it spends only for gate sizing. On average,
the runtime of our algorithm is around 5 minutes, which is
less than 10% of the total runtime of the entire Proteus flow.
This indicates our flow runs fast enough and will not be a
runtime bottleneck during the entire design process.

Next, we run our flow using the expanded multi-Vth library.
The results are shown in the “Multi-Vt” columns in Table
I and Table II. In Table I, compared with running our flow
on the single-Vth library, the Vth assignment technique using
multi-Vth library can save 70.5% of total leakage power
consumption with only 2.4% increase on the cycle time.
Similar improvement is shown in Table II.

The convergence sequence of our largest circuit s38417 is
shown in Fig. 4, which is generated by running the flow on
single-Vth library without limiting the total number of itera-
tions. The corresponding changes of cycle time and leakage
power at each iteration is shown in Fig. 5. It can be seen
that our algorithm converges smoothly and the final results
are very close to the optimal solution. It also shows that the
improvement after 50th iteration is small and suggests that
terminating the algorithm earlier can save a large amount of
runtime without sacrificing the quality too much.

VII. CONCLUSIONS

This paper proposes a gate selection flow for asynchronous
circuits. To solve the gate selection problem, we incorporate
the linear-programming-based performance evaluation method
with the Lagrangian relaxation framework. The relaxed prob-
lem is simplified and the LRS can then be easily solved. We
also proposed an iterative slew updating approach for the static
timing analysis of asynchronous circuits. Our STA approach
is simple yet effective which can directly handle timing loops.
We compared our approach with an asynchronous design flow

Fig. 4: The convergence sequence of s38417.

Fig. 5: Cycle time and leakage power trends of s38417.

which is leveraging synchronous EDA tools and significant
improvement is achieved.
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