Fast Lagrangian Relaxation Based Gate Sizing using
Multi-Threading

Ankur Sharma', David Chinneryi, Sarvesh Bhardwaji, Chris Chut
Towa State University Computer Engineering’, Mentor Graphics*
Emails: {ankur,cnchu}@iastate.edu’, {david_chinnery, sarvesh_bhardwaj} @mentor.com*

Abstract—We propose techniques to achieve very fast multi-threaded
gate-sizing and threshold-voltage swap for leakage power minimization.
We focus on multi-threading Lagrangian Relaxation (LR) based gate
sizing which has shown both better power savings and better runtime
compared to other gate sizing approaches. Our techniques, mutual
exclusion edge assignment and directed graph-based netlist traversal,
maximize thread execution efficiency to take full advantage of the inher-
ent parallelism when solving the LR subproblem, without compromising
the leakage power savings.

With 8 threads, our multi-threading techniques achieve on average
5.23x speedup versus our single-threaded (sequential) implementation.
This compares well to the maximum achievable speedup of 5.93x by
Amdahl’s law due to 5% of the execution not being parallelizable. To
highlight the problems with load imbalance and poor scheduling, we also
propose a simpler approach based on clustering and topological level-
by-level netlist traversal, which can achieve only 3.55x speedup.

We also propose three simple yet effective enhancements - fast optimal
local resizing, early exit policy, and fast greedy timing recovery - to speed
up single-threaded LR-based gate-sizing without degrading the leakage
power. We test our gate sizer using the ISPD 2012 gate sizing contest
benchmarks and guidelines. Compared to other researchers’ state-of-the-
art LR-based gate sizer, our approach is 1.03x (with 1-thread) and 5.40x
(with 8-threads) faster and only 2.2% worse in leakage power.

[. INTRODUCTION

Power consumption of integrated circuits has increased substan-
tially with much larger circuits integrated on a single chip with
shrinking technology dimensions. Circuit performance is now limited
by power due to higher power densities and device limits. Reducing
power consumption is a high priority for circuit designers to allow
higher performance, to reduce cooling and packaging costs, and to
extend battery life in mobile devices.

In VLSI physical design, gate sizing is one of the most frequently
used circuit optimizations. Each logic gate has several possible
implementations in terms of size and threshold voltage (Vth) of
cell alternatives in a standard cell library. Different implementations
(cells) trade off area or power for delay. The task of a gate-sizer
is to choose a suitable cell for every gate to minimize power while
meeting the design timing constraints. With increasing design sizes
of a million gates and larger, optimization tools must be very fast
while not sacrificing the quality of results.

The discrete gate-sizing problem is NP-hard [1]. Also, cell delays
do not vary in a convex manner with area or power, because for
example internal capacitances vary with cell layout due to multiple
transistor fingers or fins to implement greater drive strengths. This
makes the gate-sizing problem very difficult to solve optimally.
Researchers have applied various techniques such as greedy iterative
sensitivity-based heuristics [2], [3], linear programming [4], [5],
convex programming [6] [7], Lagrangian Relaxation (LR) [8]-[15],
network flow [16] [17], dynamic programming (DP) [18]-[20], and
logical effort [21] [22].

Two major drawbacks of most of these works are inaccurate delay
models and the assumption that the gate sizes are continuous. In
academia, researchers often assume simplified delay models like the
Elmore delay model [8], or an input-slew independent delay-model
[4]. Alternatively, they approximate with a convex delay model [7],

such as a posynomial function [6]. Such delay models can be quite
inaccurate versus SPICE models or library lookup tables, as reported
in [5], [21]. Whereas, industry has mostly been using the table-
lookup based non-linear delay models that do not have nice properties
like convexity, but are fairly accurate. Continuous sizing followed
by mapping to the discrete space may not be able to satisfy the
timing constraints especially if the discrete gate sizes are of coarse
granularity in size [18]. Moreover, in most of the previous works, the
benchmark suites for evaluation either contained only small designs
or were proprietary, making a fair comparison difficult.

Some of these concerns were addressed with the ISPD 2012
[23] and ISPD 2013 Discrete Gate Sizing Contests [24], which
provided a common platform for fairly comparing different gate-
sizing approaches. The objective is to minimize leakage power
while meeting the timing constraints. Since then, several works have
utilized the contest framework to compare their gate sizers [3], [13]—
[15], [22]. We observe that some of the fastest approaches with
competitive solution quality' use LR as the main technique [13]—
[15]. LR achieves excellent results as it provides a global optimization
avoiding local minima, and Karush-Kuhn-Tucker (KKT) optimality
conditions [8] greatly prune the search space.

Significant further speedups in LR based gate-sizers can be
achieved by smartly multi-threading different blocks of the LR
framework. Liu et al. use a GPU to accelerate their DP-based gate-
sizer [20]. DP-based gate sizing is optimal for tree topologies but it
is known to exhibit suboptimal behavior due to path reconvergence.
Li et al. very briefly talk about multi-threading their iterative LR
framework [13]. Their multi-threading strategy in each iteration is to
simultaneously resize the gates that are either in the same topological
level or three levels apart. (We shall refer to topological levels as lev-
els in the rest of the paper.) While three level separation might avoid
inaccuracies in slew and capacitance computation, on the downside,
only one-third of the gates are resized in each iteration which results
in slow convergence and/or higher leakage. We propose techniques
that consider all the gates in each iteration without compromising
accuracy, and yet achieve high thread utilization. Compared to Li et
al. [13], on ISPD2012 contest benchmarks, our sizer is 7.8x faster
and, on average, saves 12% more leakage power.

In this paper, we focus on developing techniques that enable effi-
cient multi-threading to realize a very fast gate sizer. With 8 threads,
our multi-threading techniques achieve on average 5.23x speedup
versus our sequential implementation, without degrading the leakage
power. This compares well to the maximum achievable speedup
of 5.93x by Amdahl’s law due to only 5% of the execution not
being parallelizable. To highlight the problems with load imbalance
and poor scheduling, we also propose a simpler set of approaches
based on clustering and topological level-by-level netlist traversal.
Our major contributions are summarized below:

« We propose mutual-exclusion edge (MEE) assignment to avoid
inaccuracies in capacitance computation. In contrast with clus-

'Up until now, [15] presents the best results for both leakage and runtime
for all of the ISPD 2012 gate-sizing benchmarks.

tering, MEE greatly improves the load balancing.

o We use directed acyclic graph (DAG) netlist traversal (DNT)
to systematically propagate the slew. In contrast with leveling,
DNT does not require threads to synchronize at each level.

« We provide three enhancements to the sequential approach:
a fast optimal local resizing (Fast-OLR) and an early exit
policy to speedup the parallelized sequential runtime, and a
fast greedy timing recovery (Fast-GTR) to reduce the non-
parallelized sequential runtime. Due to Fast-GTR we are able
to reduce the unparallelized sequential runtime to a mere 5%.

This paper is organized as follows. In Section II, we formulate
the problem. Section III presents our sequential LR approach. There
we describe the overall flow of our gate-sizer. In Section IV, we
present MEE assignment and DAG-based netlist traversal. Section V
details our enhancements to reduce sequential runtime. We discuss
the experimental results in Section VI and conclude in Section VIIL.

II. PROBLEM FORMULATION

Following the ISPD 2012 contest guidelines, we assume that 1)
only combinational gates can be resized, whereas sequential gates
have a fixed size, and 2) a lumped capacitance model is used for
modeling interconnect capacitance. Consequently, all nodes of a net
(one driver and one or more sinks) share the same timing information
(slew, arrival and required times).

Throughout this work, 7" is the clock period; node ¢ is the driver
node of the net i; ¢+ — j denotes the timing arc from node ¢ to node
J; a; and g, are the actual and required arrival times (AAT and RAT)
at node 4, respectively; and d;—, ; is the delay of the timing arc ¢ — j.

The objective is to choose suitable cells for every gate so that the
total leakage power (sum of leakage powers of individual gates) is
minimized under three types of timing constraints: 1) worst path delay
< T'; 2) maximum output capacitance < mazcap; and 3) maximum
output slew < maxslew. This minimization is over all the available
cells for every gate in the library. In our approach, we guarantee
to satisfy the second and the third constraints throughout, so we do
not formalize them mathematically below. We do model rise and fall
timing constraints separately, but we have omitted them here for clear
presentation. The original problem is formulated as follows:

minimize leakage
cell,a Z g

gates (1)
subject to a; + di—; < a;, for each timing arc ¢ — j

ar < T for each primary output k

We apply the Lagrangian Relaxation technique to Equation (1) to
include all the constraints into the objective. To avoid constraint
violations, a positive penalty term is introduced per constraint,
called the Lagrangian multiplier (LM, A). This gives the Lagrangian
Relaxation Subproblem (LRS):

mi{gilrlr’l(ize ; leakage + Z Aissj (ai + disyj — ay)
ates 11—
! ’ @)
+ Z Ak (ax, —T)
k
By applying KKT conditions [8], the LRS can be simplified to
mirlierlrllize Z leakage + Z Aisjdisg 3)

gates i—J

The Lagrangian Dual Problem (LDP) is shown in (4).

Solve LDP
Update LMs ‘< w

Greedy Post-pass

Initialize

sizes and [m) =) 7

Figure 1: Gate-sizing algorithm flowchart

Recover Timing

maximize (minimize E leakage+§)\i_n-di_”-)
A cell

gates i—]

u€ fanin(i) VE fanout(i)

Ai—w, for each node 4

@

subject to Ausi =

The term Y \;—,;jd;—; is referred to as the lambda-delay [15].

I1I. SEQUENTIAL APPROACH

In this section we present a brief overview of our sequential gate-
sizer. As shown in Figure 1, the algorithm has three stages: the
initialization; the LDP solver; and the final greedy stage.

A. Initialization

In the initialization stage, each gate is assigned its minimum
leakage library cell. However, that might violate all three types
of timing constraints. Gates are minimally upsized to satisfy the
maximum load capacitance and maximum slew constraints. This is
done by traversing the netlist in reverse topological order and upsizing
the gates that have capacitance violations; followed by a forward
topological traversal to upsize the gates to satisfy the slew constraints,
where necessary. The LMs are all initialized to 1.

B. LDP solver

This is an iterative stage to approximately solve (4). In each
iteration, the LM update and the LRS solver alternate to update the
LMs for the given cells and update the cells for the given LMs,
respectively.

1) LM update: The LDP solver begins with the static timing
analysis (STA) and updating of the LMs according to the criticality
of the corresponding timing arc. We developed our own static timer
and verified its accuracy against Synopsys PrimeTime, as per the
contest guidelines. For updating the LMs, a common strategy is to
increase the LMs in proportion to their timing criticality [9]. We use
an exponential factor cexp to emphasize the LMs (see the pseudo code
in Figure 2). Although the use of cexp was originally presented in
[15], details were not provided therein on how to update it, except for
a few hints. In our experience, the update method for cexp is crucial to
the final solution quality, so we explicitly show it in the pseudo code.
As long as the design violates the relaxed delay target (r % 1T7), we
increase cexp. By the time the design satisfies the relaxed delay target,
cexp is usually very large because we started out with the minimum
power solution instead of a minimum delay solution. Therefore, in
order to accelerate the power recovery, we rapidly reduce cexp by
using the factor k. KKT projection ensures that LMs satisfy the KKT
conditions [9]. Both STA and LM update are highly parallelizable
sub-blocks (discussed in Section IV), though they contribute only a
small fraction of the total runtime.

2) LRS solver: The LRS solver approximately solves (3) by
optimal local resizing (OLR) of one gate at a time, assuming all the
other gates are fixed. Gates are traversed in forward topological order
from the primary inputs (PIs) to the primary outputs (POs), i.e., OLR
of a gate begins after all its fanin gates have been processed [14].
Such an order can be precomputed and stored. To optimally resize a

Algorithm: LM-update

// WPD: Worst path delay

cexp =1

if (WPD>r+T)

web
T

//r=1.01
cexp *=
else
cexp += (1 +k o+
endif
foreach timing arci — j
_ 4 —4qj
10 Ainj+= (1+257)
11 endfor
12 KKT projection

WPI?*T«T) // }.{ — 10

=T

O 0 NN U WwWN =

cexp

Figure 2: Pseudo code for LM update

B T =

Rest of the
farout:cone

11:

6 Reference gate

Figure 3: Local arcs include fanin-arcs: 1-5, 2-5, 5-7, 3-6, 4-6; gate-arcs:
7-8, 5-8, 6-8; fanout-arcs: 8-10, 8-11; side-arcs:5-9. Drain-nets: 10, 11;
side-nets: 9.

gate, the lambda-delay-cost is computed for all the valid cells® of that
gate and the cell with the lowest cost (lambda-delay-cost + leakage)
is chosen. The lambda-delay-cost approximates lambda-delay. To
exactly compute lambda-delay, an incremental timing analysis is
needed which becomes prohibitively expensive when done for several
cells of every gate. To limit the runtime overhead when analyzing
alternate cells, timing of only the local arcs is recomputed [13]. To
improve the accuracy, Flach et al. [15] proposed global delay/slew
sensitivity functions to approximate the change in lambda-delay for
the rest of the fanout cone (the second term in eq.(5)). Therefore, the
lambda-delay-cost for a cell ¢ can be computed as follows:

lambda-delay-cost(c) =
Z Aisjdisj +

i—j€local—arcs(c)

AD)

(5)
where AD; is the lambda-delay change in the net n due to the
change in output slew of the gate driving the net [15]. Local-arcs
constitute fanin-arcs, gate-arcs, side-arcs and fanout-arcs, as shown in
Figure 3 along with the drain-nets and the side-nets. The LRS solver
is the most expensive sub-block. It also offers great parallelism since
multiple gates can be processed simultaneously.

>

nedrain—nets(c)Uside—nets(c)

C. Greedy post-pass

The last stage combines two greedy heuristics: greedy timing
recovery (GTR), and greedy power recovery (GPR). The least power
solution obtained from LDP is the starting point for the greedy post-
pass. If the starting solution satisfies the timing, GTR is skipped then
GPR tries to squeeze out as much power as possible by greedily
downsizing the most sensitive gates without violating any constraint
[3]. GTR very effectively complements LR, as GTR allows the final
solution at the end of LDP to have small timing violations. Owing to
its global view, LR is not very efficient in recovering timing exactly.
To resolve the remaining timing violations, LR ends up expending

2A cell is invalid if it causes capacitance or slew constraint violations.

1 Algorithm: MT-LRS via Clustering and Leveling
2 foreachlevell
3 readyQ = cluster(l)
4 // Each thread executes in parallel
5 while (1)
6 # critical section
7 if (readyQ.empty()) break
8 z = readyQ.next()
9 # endcritical
10 process_cluster(z)
11 endwhile
12 barrier()
13 endfor

Figure 4: Pseudo code for MT-LRS by the simple approach.

more power than a more localized greedy approach like GTR. The
GTR algorithm will be discussed in Section V-C. Both GPR and GTR
lack parallelism, hence they are left sequential in this work.

IV. MULTI-THREADED APPROACH

We propose techniques to parallelize the following sub-blocks:
LRS solver, STA, and LM update. Parallelization of the LRS is our
key focus since its the most runtime expensive of all, so we discuss
it first. We shall refer to multi-threaded LRS as MT-LRS.

A. Requirements for Multi-threading the LRS

As mentioned above, LRS involves OLR of all the gates and
several gates can be processed simultaneously. We shall use OLR
and “processing” interchangeably. Simultaneous OLR of two or more
gates requires all of them to satisfy two properties that we have
identified as follows:

Property 1: None of them should have a fanin in common.
Otherwise, when two or more gates sharing a fanin are being resized,
some of them might witness an unexpected change in the fanin’s
load while they are in the middle of OLR. Even worse, the fanin
maxcap constraint might be violated if gates commit their new sizes
simultaneously. This would require one or more gates to redo OLR,
which can become very expensive and therefore should be avoided.

Property 2: None of them should lie in the fanout cone of a
gate undergoing OLR. Otherwise, the gate in the fanout cone might
be using the stale values for input slew. This can be easily avoided by
following a forward topological order as used in the sequential ap-
proach (see Section III-B2). However, unlike the sequential execution,
precomputing an order with multiple threads is undesirable because
processing time of the gates is not known a priori. Therefore, instead
of a precomputed order, a dynamic structure like a queue of ready
gates whose fanins have already been resized needs to be maintained.

To ensure both of the above properties, we first propose a simple
approach, followed by the MEE assignment and the DNT.

B. A Simple Approach - Clustering and Leveling

To ensure the first property, we propose to cluster all the gates that
share fanins and process them by a single thread. If gate A shares a
fanin with gate B, and B shares a fanin with gate C, then all three
gates should be clustered, even if A and C do not share any fanin.
Note that the clusters are always disjoint. The advantage of clustering
is that it is simple to implement and the clusters can be precomputed,
but the disadvantage is that it can cause heavy load imbalancing if
the cluster sizes are highly non-uniform.

To ensure the second property, we propose to group all the clusters
by their topological level (PIs being at level 0) and process one level
at a time. We refer to this as leveling. If a cluster spans multiple levels,
it can be safely broken down into that many sub-clusters. When all

Figure 5: (a) One possible MEE assignment: Fanouts of A - {D.E,F}
are chained by MEEs (dashed lines). Similarly, fanouts of C - {F,G} are
chained. With MEEs, the fanouts of A will be processed in the following
order: F then E then D. (b) An incorrect MEE assignment as it forms
the cycle D-F-E. Edges D-F and F-E are MEEs, and the edge E-D is a
netlist edge - due to D being a fanout of E.

the clusters at a level have been processed, all the clusters in the next
level at once become ready. The advantage of leveling is that it does
not require any book-keeping to determine when a cluster becomes
ready, whereas the disadvantage is that threads need to wait for every
other thread to finish before moving onto the next level.

Figure 4 shows the pseudo code for MT-LRS with this approach.
At each level, a queue (readyQ) of ready clusters is initialized with
the clusters at that level. Then, each thread enters a critical section
to retrieve a cluster from the readyQ. In a critical section a mutually
exclusive (mutex) lock is used to ensure that no other thread writes
or reads the data that is being updated. Other threads wanting to
read/write that data stall until the first thread exits the critical section.
Threads process their respective clusters and re-enter the critical
section. When the readyQ is empty, threads exit and wait at the
barrier for the other threads to finish. In multi-threaded programming,
barrier is used to synchronize all the threads at that point.

C. Mutual Exclusion Edge Assignment - An Alternative to Clustering

As noted above, clustering can cause heavy load imbalancing due
to non-uniform cluster sizes. If we want to avoid clustering, we need
an alternative mechanism to ensure the first property. We propose
to chain the fanouts of every gate by additional edges, referred to
as mutual exclusion edges (MEE), thereby ensuring that the fanouts
of the same gate are not processed simultaneously. An example is
shown in the Figure 5(a).

If the fanouts are arbitrarily chained then either cycles (Figure 5(b))
or very long chains might get created. While cycles would lead to
deadlock, long chains would adversely affect the performance.

We propose a randomized algorithm for MEE assignment to avoid
cycles and probabilistically reduce the maximum chain length. Its
pseudo code is shown in Figure 6. It consists of two stages: (1)
assignment of random IDs to each gate, and (2) assignment of MEEs.
Random IDs are assigned such that the gates at the higher topological
level have larger IDs. Then in the second stage, for every gate, its
fanouts are sorted in ascending order of their IDs and an MEE is
assigned between every consecutive pair of sorted fanouts - from
the lower ID fanout to the higher ID fanout. Thus, the fanouts are
chained. MEEs are assigned once and it has linear time complexity.
In reference to the pseudo code, s[i] is referred to as a pseudofanin
of s[i + 1] and s[¢ 4 1] is a pseudofanout of s[i]. In our scheme of
MEE assignment, this strategy guarantees cycle-free assignment.

If during the ID assignment stage we do not ensure larger IDs
for gates at higher levels (PIs are at level 0), then an MEE may
get assigned from a higher to a lower level fanout. This may create
cycles involving the netlist edges that are always from the lower to
the higher levels.

While MEE can achieve much better load balancing than clus-
tering, it creates additional edges which means more precedence

1 Algorithm: MEE Assignment
2 // Assign random ID
3 maxID =0
4 forlevel l = 0 to maxlevel
5 x = maxID
6 foreach gate g in level [
7 g.1D = x
8 while (g.ID is not unique)
9 g.-1D = x + rand()
10 endwhile
11 if (g.1D > maxID)
12 maxID = g.ID
13 endif
14 endfor
15 endfor
16 // Assign MEE
17 foreach gate g
18 s = sort fanouts of g by ascending IDs
19 fori=0to (s.size() — 2)
20 MEE(s[i] = s[i +1])
21 endfor
22 endfor

Figure 6: Pseudo code for MEE assignment.

constraints that limit the parallelism. We empirically show that the
thread idling time is actually very small for larger designs.

D. DAG Based Netlist Traversal - An Alternative to Leveling

Though leveling is a simple idea, it has two disadvantages: 1) a
barrier at the end of each level causes thread idling, and 2) within a
level, parallelism is limited by MEEs. The repercussions of barrier
are more visible with the clustering where loads can be highly
imbalanced. With an increasing number of threads, this barrier and
the limited parallelism worsen the thread utilization. An alternative
approach to leveling is DAG based netlist traversal (DNT). By some
book-keeping, we can track the gates as they become ready, and keep
pushing them into the readyQ. As long as the readyQ is non-empty,
threads need not wait.

Pseudo code for two book-keeping functions needed to im-
plement the DNT are shown in Figure 7. The first function,
init_precedence_count(gate g), initializes the precedence count (pre-
Count) of the gate g. preCount is the number of predecessors
which can be either fanins or pseudofanins. The second function,
identify_ready_gates(gate g), is invoked when the gate g has been
processed. It decrements the preCount of each one of its fanouts
as well as pseudofanouts. Those fanouts or pseudofanouts whose
preCount reaches zero are returned as ready gates.

The disadvantage of DNT over leveling is that it requires book-
keeping to track the ready gates. This needs to be done inside a
critical section because multiple threads might want to simultaneously
read/write the preCount of the same gate. However, a critical section
is in any case required to update the ready(Q. Therefore, by merging
the two critical sections, we can optimize away the additional thread
idling.

Next, we present a better approach for MT-LRS with MEE
assignment and DNT.

E. Modified Approach - An Alternative to the Simple Approach

This modified approach replaces clustering and leveling by MEE
assignment and DNT, respectively. Like clustering, the MEE as-
signment is also required only once in the beginning. On the other
hand, the DNT must perform book-keeping every time MT-LRS is
invoked. Figure 8 shows the pseudo code of MT-LRS via the modified
approach. Firstly, the preCount of each gate is initialized. The gates

1 Algorithm: init_precedence_count (gate g)
2 g.preCount = |g. fanins| + |g.pseudofanins|
1 Algorithm: identify_ready_gates (gate g)

2 readyG =0 // Ready gates

3 foreach x € (g. fanout U g.pseudofanout)
4 x.preCount = x.preCount — 1

5 if (x. preCount == 0)

6 readyG.push_back(x)

7 endif

8 endfor

9 returnreadyG

Figure 7: Pseudo codes for two book-keeping functions of DNT.

Algorithm: MT-LRS via MEE Assignment and DNT|
foreach gate g
init_precendence_count(g)
endfor
init_readyQ()
// Each thread executes in parallel
critical section
if (all_gates_done()) return
g = readyQ.next()
10 # endcritical
11 while (1)

OO Ul W =

Na)

12 process_gate(g)

13 # critical section

14 x = identify_ready_gates(g)
15 update_readyQ(x)

16 if (all_gates_done()) return
17 g = readyQ.next()

18 # endcritical

19 endwhile

Figure 8: Pseudo code for the MT-LRS via the modified approach.

with zero preCount are the ready gates and they form the readyQ.
Then, each thread retrieves a ready gate (more gates can also be
retrieved) from the readyQ and processes it. Processed gates identify
new ready gates, if any, and update the readyQ. If all the gates have
been processed, the thread exits, otherwise it retrieves the next ready
gate and processes it. Note that unlike in the leveling, an empty
readyQ does not imply all the gates are processed, rather it means
that some threads are still working and they might soon generate new
ready gates.

FE Parallelizing STA and LM update

Parallelizing the STA and the LM update is much more straight-
forward than parallelizing the LRS. In STA, gate timings are updated
in the forward topological order; whereas in LM update, gate LMs
are updated in the reverse topological order. We apply the leveling
idea for topological traversal. Note that the clustering is not needed
in either STA or LM update, because gates are not being resized.
Therefore, at each topological level, there is total freedom to update
any number of gates simultaneously and in any order. We form groups
of ten gates at each level and feed them to the threads whenever
threads become available. When all the gates at a level are updated,
we go to the next level. Note that the STA and the LM update do
not involve much computation and the time spent updating a group
of gates is more or less the same across all the groups. Therefore, an
explicit barrier at the end of each level does not degrade the thread
utilization much.

V. ENHANCEMENTS IN SEQUENTIAL APPROACH

To complement the multi-threading performance improvements,
the sequential approach should be free from sub-optimality as far

1 Algorithm: Fast-OLR
2 candidates = @
3 currw = current width
4 for current Vth, one Vth higher and one Vth lower
5 ¢ = cell(currw,Vth)
6 bestcost = cost(c)
7 bestcell = ¢
8 forw = currw: maxw
9 c = cell(w,Vth)
10 Ensure c is valid
11 if cost(c) < bestcost
12 bestcost = cost(c)
13 bestcell = ¢
14 else break
15 endfor
16 candidates. insert(bestcell)
17 // Repeat lines 5-16 and
18 // replace maxw by minw
19 endfor
20 Apply min cost(c) such that
cecandidates
21 local slack does not worsen

Figure 9: Pseudo-code for Fast-OLR.

netcard_fast 0%
netcard_sloyy | —— 0%
leon3mp_fast —— ()%,

leon3mp_slow —— ()7
10 fast ——— 11%
b1 slow | —— 1%

vea_lcd_fast | ———————— 4%
vga_lcd_slow —] 0
des_perf_fast 5%

des_perf_s| o —— 7%
PCi_bridge3 2 fast | —— 2%
PG ric g e 3 2 s oy — 1%

DMA_fast 6%
DMA_slow —— 6%
0.00 1.00 2.00 3.00

M Reduction in cell evaluations

Reduction in LRS runtime

Figure 10: The bar chart shows the reductions in the cell evaluations and
the LRS runtime due to Fast-OLR. The numbers on the right of each bar
denote the power savings after the LDP stage, relative to OLR.

as possible. Although the recent LR-based gate sizers have been
demonstrated to be the fastest on the ISPD 2012 benchmarks,
at several places in the general strategy we observe sub-optimal
performance. For example: during the OLR of a gate, [13]-[15]
suggest evaluating all the cells, but this may not be necessary in all the
iterations. While [14] executes a fixed number of LDP iterations, [15]
does not define convergence criteria for when LDP can be terminated.
To address these issues and more, we propose the following three
enhancements.

A. Fast-OLR

During the OLR, a gate is resized to the cell that has the lowest
cost (lambda-delay-cost + leakage). To determine such a cell, [13]-
[15] suggest evaluating all the valid alternatives. However in practice,
we observed that the cost function almost always has a single local
minimum considering a fixed Vth and varying sizes. Therefore, by
searching for the optimal cell locally, we can reach the globally
optimal cell most of the time. Although this may be an artifact

= = Fast-OLR TNS

= = OLR TNS

Iteration
O mnaemamremT e mm sy 14
7 50 100 l: |\| 150
g
.3 -20
> Q I g
Lo
= ! g
o -40 | o
= | o
|
1

-60

e F25t-OLR power === QLR power

Figure 11: Comparing TNS and power profiles due to Fast-OLR and
OLR, on b19_fast. After 100 iterations, TNS destabilizes due to OLR.
Consequently, OLR cannot focus on power recovery, and ends up with
11% higher power.

of the ISPD 2012 contest library, there is another advantage of
local searching which is library independent. Local searching induces
incremental changes to the current solution, whereas jumping to the
globally optimal cell may significantly perturb the current solution.
Large perturbations during the last few iterations tend to destabilize
the solution, preventing convergence and degrading the results.

Figure 9 shows the pseudo code of our proposed algorithm, Fast-
OLR. A cell is characterized by its size (or width) and Vth. Since
we do local searching, we restrict our search to the current Vth, the
next higher Vth and the next lower Vth cells. For each of the three
Vth, we iterate over the cells with increasing sizes. We continue as
long as the cost is reducing, and store the least cost cell as a suitable
candidate. The same procedure is repeated for the decreasing sizes.
At the end, the least cost candidate that does not worsen the local
slack much is applied.

Before choosing the least cost cell, Flach et al. suggested [15]
computing the change in the slack of the driver and the sink nets
because the locally optimal cell, whether found by local searching or
otherwise, might significantly worsen the TNS. We apply this check
as we recover power, after the design timing is within 1% of the
target delay.

In Figure 10, we compare the Fast-OLR against OLR for the
following three metrics: the number of cell evaluations, the LRS
runtime, and the power after LDP. Results are from single-threaded
execution. On average, the cell evaluations reduce by 3.3x and the
LRS runtime reduces by 3.0x. We also observe an average 3%
reduction in the power due to the better solution stability offered by
local searching, as discussed above. In Figure 11, we demonstrate
destabilization of TNS due to OLR after 100 iterations for the
b19_fast benchmark. If the local slack worsens significantly that
further adds to the instability.

B. Early Exit Policy

When the timing constraint has almost been met, the early-exit
policy determines if it is likely that power will reduce in future
iterations or not. It can be used as a rule of thumb to terminate the
LDP iterations before the maximum number of iterations are reached.
The LDP solver can be terminated if neither the average power,
nor the minimum power solution found thus far, improve during two
consecutive sets of iterations.

The early exit policy is derived based on the following empirical
observations: power averaged over a few iterations (5, in this work)
reduces before stabilizing; in general, power is not a monotonic
function of the number of iterations; and, in some cases, power may
oscillate around a value. If the power is oscillating, we may never
observe power degradation for two consecutive sets of iterations. So
there must be a reduction in the minimum power found thus far to
justify continuing. Our experiments showed that some designs (large,
as well as small) terminate LDP after 35 iterations, whereas some

required up to 160 iterations. The benchmarks required on average
95 iterations to converge, with a standard deviation of 49.

C. Fast-GTR

The GTR applied in the last phase of the optimization serves to fix
small timing violations without expending much power. At this stage
timing degradation is not allowed. Although different researchers
refer to it by different names like Slack Legalization [3] and Timing
Recovery [15], the basic algorithm is the same. It’s an iterative
algorithm: in each iteration, the critical gates are sorted by some
criterion like slack, or change in the delay after upsizing; then the
most critical gate is upsized; followed by an incremental STA. If
the TNS degrades, the change is undone. GTR terminates when all
timing violations have been fixed.

The sub-optimality here is that the incremental STA can be a
significant waste of CPU cycles if the TNS degrades. One of the
solutions is to have a metric that can predict if the timing is going to
degrade. Hu et. al. [3] developed one such metric for their approach.
However, it may generate false negatives, thereby causing a wasteful
incremental STA nonetheless. We propose a very simple heuristic,
referred to as Fast-GTR. It is based on the empirical observation
that the gates that fail to improve the timing in the current iteration,
are unlikely to improve the timing in the future iterations as well,
unless one of its side gates (a gate that shares a fanin) is successfully
upsized. Therefore, we simply skip such gates until then.

In general, Fast-GTR improves the parallelized fraction of the total
runtime by speeding up the greedy post-pass stage which directly
benefits the multi-threaded speedup (discussed in Section VI-C). In
particular, we observed that Timing Recovery [15] can consume up
to 50% of the total runtime on the benchmarks like des_perf, whereas
Fast-GTR consumes less than 5% of runtime without degrading the
results or causing any timing constraint violations.

VI. EXPERIMENTAL RESULTS

Our gate-sizer is implemented in C++. Experiments are performed
on a server with two 2.67GHz Intel(R) Xeon(R) X5650 CPUs. Each
CPU has six cores and each core has two hyperthreads. Aggregate
memory is 48GB. For multi-threading, OpenMP [25] is used. We use
ISPD 2012 gate-sizing contest benchmarks to test our sizer. All of our
reported results are averaged over 5 runs and all the final optimized
designs satisfy the timing constraints.

We compare our results against works of the other researchers,
namely [15] and [13]. [15] used a single thread on a faster machine,
a 3.40GHz Intel(R) Core(TM) 17-3770 CPU. [13] employed 8 threads
on a server like ours with two 2.67GHz CPUs with 6 cores and 72GB
memory. Since we do not have access to their source code, results
are cited from their respective works.

In this section we shall discuss results pertaining to different types
of executions. Their nomenclature is defined as follows: the modified
approach + Fast-GTR is referred to as Fast-Fast (FF); the modified
approach + Timing Recovery [15] is Fast-Slow (FS); and, the simple
approach + Fast-GTR is Slow-Fast (SF). When z threads are used,
they are respectively referred to as FFx, FSz and SFzx. All of them
are equipped with the Fast-OLR (we switch from OLR to Fast-OLR
at the fifth iteration) as well as the Early Exit policy.

A. Comparing Power and Performance Against Previous Works

Referring to Table I, we first compare FF1 against [15]. FF1 is at
par with [15], averaging 3% faster and 2.5% higher leakage power. On
benchmarks with more than 500K gates, FF1 is 23% faster, primarily
due to the early exit policy. Consequently, FF1 provides an excellent
baseline to showcase the multi-threaded speedup that can be achieved.
Compared to [15], FF8 is on average 5.40x faster (multiply the last

TABLE I: Comparing quality and performance of our single-threaded (FF1) and 8-threaded (FF8) against results in [13] and [15].

Benchmark Total Leakage Power (W) Total Runtime (min)

Cells [[13] [157 FF1_ FFS FF1/[15] FFS/FF1 | [13] [15] FF1 FF8 [15/FF1 FF1/FF8
DMA_slow 25301 | 0.153 0.132 0.136 0.135 1.027 0.995 0.60 079 064 0.15 1.23 4.28
DMA _fast 25301 | 0281 0238 0.250 0.250 1.050 0.999 0.60 0.92 1.48 0.34 0.62 4.37
pei_bridge32_slow | 33203 | 0.111 0.096 0.099 0.100 1.036 1.003 1.20 0.87 1.78 0.34 0.49 5.29
pei_bridge32_fast 33203 | 0.167 0.136 0.143 0.143 1.053 1.000 1.20 0.92 1.95 0.37 0.47 5.21
des_perf_slow 111229 | 0.671 0570 0.597 0.595 1.048 0.996 6.00 25.31 1.79 0.51 14.11 3.53
des_perf_fast 111229 | 1.930 1.395 1457 1457 1.045 1.000 6.60 16.37 5.82 1.38 2.81 4.23
vga_lcd_slow 164891 | 0375 0328 0330 0.330 1.007 1.000 7.80 567 9.08 1.61 0.62 5.64
vga_lcd_fast 164891 | 0460 0413 0432 0432 1.046 1.000 10.20 837 11.70 1.94 0.72 6.04
b19_slow 219268 | 0.604 0.564 0.568 0.569 1.007 1.001 1020 9.15 20.55 3.45 0.45 5.95
b19_fast 219268 | 0.784 0.717 0.734 0.734 1.024 0.999 12.00 11.75 21.88 3.60 0.54 6.08
leon3mp_slow 649191 | 1400 1.334 1333 1.334 0.999 1.000 43.80 38.98 26.75 4.53 1.46 5.91
leon3mp_fast 649191 | 1.640 1.443 1445 1.442 1.002 0.998 54.60 46.62 33.55 5.94 1.39 5.65
netcard_slow 958780 | 1.780 1.763 1.763 1.763 1.000 1.000 48.00 34.39 37.07 5.86 0.93 6.32
netcard_fast 958780 | 2.180 1.841 1.849 1.850 1.004 1.001 88.80 47.41 41.82 7.38 1.13 5.67
Average 0.895 0.784 0.796 0.795 1.025 0.999 20.83 17.68 15.42 2.67 1.037 5.237

i - - - -
Geometric mean. The geometric mean has been used to compare speedups due to the wider range in values.

M dling Critical Useful

100%
80%
60%
40%

20%

% LRS runtime

SF8 I
SF8 N
SF8 I

SF I

O% - — I- I- —_—-— —_—— |- |- I I I
0] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 ol 00 00
o2k 22 22 22 22 P2 P2 22 2P 22 22 22 22
L G GL Go GL GL GL BLE 6L GLo 6L GLE 6o 6o
Ml - » “ w . « = © “— «n o] “—
< | { I { { (R { { { { {
f £ o 9 £ £ B 8 g 9 g 2 T T

@ @ -_) o ©
3 2 = = g 2 | (1 o E 5 g °
a R i s B c c T B
8 8 3 3 > > 9 9 c <
o o —_ —_

Figure 12: Comparing the MT-LRS runtime breakdown for the modified
approach (FF8) and the simple approach (SF8).

two columns) with only 2.2% higher power. Runtime improvement
is likely to be even more than 5.40x as Flach et al. [15] use a faster
machine.

Compared to [13], which also used 8 threads, FF8 spends 7.80x
lesser runtime (= 20.83/2.67) to execute all the benchmarks and
saves 12% more power. With FF8 we demonstrate an average speedup
of 5.23x over FF1 without degrading results. In comparison, Li et al.
[13] reported an overall speedup of only 2.2x with 8 threads, mainly
because 40% of their algorithm’s runtime is unparallelized.

B. Comparison Against the Simple Approach

To compare the modified (FF8) and the simple approach (SF8),
we analyze the runtime of MT-LRS for both of them in Figure 12.
A thread executing LRS would either be idling, executing a critical
section, or doing useful work, i.e., resizing. For SF8, we observed
that on 10 out of 14 benchmarks, threads could be idling for >35%
of the LRS runtime. This is mainly the waiting time at the barrier
caused by heavy load imbalancing, which is caused by the clustering
approach. The worst cluster sizes at a given level can have up to
46% of the gates at that level. On des_perf benchmark where SF8’s
idling time is only 1%, the worst cluster sizes were no bigger than
1%. In the worst case for FF8, threads idle for only < 3% of the
LRS runtime.

The time spent in the critical section by SF8 threads is negligible.
On the other hand, FF8 threads can expend up to 3% of the LRS
runtime in the critical section. This is due to book-keeping to track the
ready gates and updating of the readyQ. Across all the benchmarks,
the average thread utilization for FF§ threads is 97%, and for SF8
threads it is only 59%. As a result, the FF8§ MT-LRS is on average
1.73x faster than SF8 MT-LRS.

TABLE II: Overall runtime speedup with Fast-GTR (FF8) versus Timing
Recovery (FS8). Speedups are roughly correlated with the parallelized
runtime fractions. Major improvements are highlighted in bold.

Benchmark Speedup Parallel Fraction
FS1/FS8 | FF1/FF8 FS1 FF1
DMA _slow 4.62 4.28 0.93 0.91
DMA _fast 4.86 4.37 0.96 0.96
pei_bridge32_slow 5.72 5.29 0.98 0.97
pei_bridge32_fast 5.50 5.21 0.97 0.97
des_perf_slow 1.83 3.53 0.27 0.90
des_perf_fast 2.38 4.23 0.65 0.94
vga_lcd_slow 5.83 5.64 0.98 0.97
vga_led_fast 5.86 6.04 0.97 0.97
b19_slow 5.82 5.95 0.98 0.98
b19_fast 6.17 6.08 0.98 0.98
leon3mp_slow 5.82 591 0.92 0.94
leon3mp_fast 5.09 5.65 0.88 0.95
netcard_slow 6.43 6.32 0.97 0.97
netcard_fast 4.40 5.67 0.90 0.88
Geometric Mean 4.77 5.23 0.84 0.95

C. Impact of Fast-GTR on the Overall Speedup

In Table II we compare the speedup in the total runtime achieved
by FF8 (with Fast-GTR) and FS8 (without Fast-GTR) with respect
to their corresponding single-threaded versions. On average, FF8 is
5.23x faster than FF1, whereas FS8 is 4.77x faster than FS1. FF is
faster due to the improvement in the parallel fraction of the sequential
runtime, from 0.84 for FS8 to 0.95 for FF8. On des_perf and
leon3mp, Fast-GTR significantly reduces the time spent in the greedy
post-pass as shown in the same table. We observed larger speedup
with FF in netcard_fast despite slightly lower parallel fraction. This
is supposedly due to the runtime noise caused by server loading.

D. Scalability Analysis

In this subsection, we analyze how the speedup scales as the
number of threads grow and what factors contribute to the loss of
the speedup. In Table III, we show the speedups obtained from FF2,
FF4, FF8, FF12, FF14 and FF16 with respect to FF1.

We see a performance saturation from 12 to 14 threads, and
slight performance degradation from 14 to 16 threads. The average
speed-up with 16 threads is 6.04x which is significantly smaller
than the theoretical upper bound of 9x predicted by Amdahl’s law.
There are two primary factors for this gap: 1) limitations of the
hardware architecture, and 2) increase in overhead. The server has 2
CPUs each with 6 cores with 2 hyper threads. The two hyperthreads
per core do not provide much additional speedup due to hardware
resource contention between threads [26]. As a result speedup begins
saturating as threads exceed the physical cores. Our experiments on a

TABLE III: Speedup for different threads with respect to FF1.

Benchmark FF1 | FF2 | FF4 | FF8 | FF12 | FF14 | FF16
DMA_s 1.00 | 1.71 | 2.77 | 428 | 5.36 4.62 4.40
DMA_f 1.00 | 1.64 | 2.75 | 437 | 5.89 5.52 4.86
pci_bridge32_s | 1.00 | 1.95 | 3.13 | 529 | 6.18 6.00 5.56
pci_bridge32_f | 1.00 | 1.96 | 3.19 | 5.21 6.58 6.16 5.63
des_perf_s 1.00 | 1.57 | 2.37 | 3.53 4.15 4.39 3.93
des_perf_f 1.00 | 1.66 | 2.73 | 4.23 3.06 4.90 4.72
vga_led_s 1.00 | 1.88 | 3.10 | 5.64 | 7.85 7.48 6.75
vga_led_f 1.00 | 1.76 | 2.89 | 6.04 | 6.25 6.12 6.63
b19_s 1.00 | 1.83 | 3.11 | 595 7.57 7.63 7.65
b19_f 1.00 | 1.66 | 3.23 | 6.08 | 7.96 7.75 7.69
leon3mp_s 1.00 | 1.70 | 3.14 | 591 7.75 7.46 7.34
leon3mp_f 1.00 | 1.85 | 2.86 | 5.65 7.03 7.18 7.08
netcard_s 1.00 | 1.95 | 297 | 632 | 797 8.13 8.05
netcard_f 1.00 | 1.97 | 2.86 | 5.67 | 5.21 6.08 6.37
Geom Mean 1.00 | 1.79 | 293 | 523 | 6.14 6.27 6.04

synthetic completely parallel code showed that we could only achieve
a 12x speed-up using 16-threads. In other words, we effectively have
only 12 threads. Considering this, we would expect the upper-bound
of the achievable speed-up on our multi-threaded application to be
7.74x, which is closer to our achieved result. With an increase in the
number of threads, 1) thread idling increases, and 2) critical section
overhead increases. Additionally, we suspect runtime overhead due
to increased communication to keep memories synchronized.

VII. CONCLUSION

Today’s designs with millions of gates require very fast gate-
sizing and threshold voltage assignment, as it is a crucial circuit
optimization that is performed at multiple steps in the design flow.
We have shown the effectiveness of our proposed techniques to
speed up multi-threading of Lagrangian relaxation-based gate sizing;
mutual exclusion edge assignment and DAG-based netlist traversal
help achieve 97% thread utilization with 8 threads. In contrast, the
simpler multi-threading strategies - clustering and topological level-
based traversal, allow only 59% thread utilization. To complement
our multi-threading techniques, we also propose fast optimal local
resizing, early-exit policy, and fast greedy timing recovery, all of
which are simple yet highly performance effective enhancements to
the sequential LR-based gate sizing approach. We combine all these
to realize a very fast and high quality gate sizer. Compared to the
state-of-the-art (both in runtime as well as power) algorithm [15], our
gate sizer using 8 threads is 5.40x faster and has only 2.2% higher
power, without any timing constraint or other violations, on the ISPD
2012 Disrete Gate Sizing Contest benchmarks.

VIII. ACKNOWLEDGMENT

This work is partially supported by NSF under grant CCF-
1219100 and by Mentor Graphics. We would also like to thank Ivailo
Nedelchev from Mentor Graphics for his valuable guidance.

REFERENCES
[1

—

W Ning. Strongly NP-hard discrete gate-sizing problems. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
13(8):1045-1051, 1994.

JP Fishburn. TILOS: A posynomial programming approach to transistor
sizing. In Proc. of IEEE International Conference of Computer-Aided
Design, Nov. 1985, 1985.

[31 J Hu et al. Sensitivity-guided metaheuristics for accurate discrete
gate sizing. In Computer-Aided Design (ICCAD), 2012 IEEE/ACM
International Conference on, pages 233-239. IEEE, 2012.

D Nguyen et al. Minimization of dynamic and static power through joint
assignment of threshold voltages and sizing optimization. In Proceedings
of the 2003 international symposium on Low power electronics and
design, pages 158-163. ACM, 2003.

[5] DG Chinnery and K Keutzer. Linear programming for sizing, Vth and
Vdd assignment. In Proceedings of the 2005 international symposium
on Low power electronics and design, pages 149-154. ACM, 2005.

[2

—

[4

=

[6]

[7

—

[8

[t}

[9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

K Kasamsetty, M Ketkar, and SS Sapatnekar. A new class of convex
functions for delay modeling and its application to the transistor sizing
problem [CMOS gates]. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 19(7):779-788, 2000.

S Roy, CC-P Chen, and YH Hu. Numerically convex forms and their
application in gate sizing. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 26(9):1637-1647, 2007.

C-P Chen, CCN Chu, and DF Wong. Fast and exact simultaneous gate
and wire sizing by Lagrangian relaxation. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 18(7):1014—
1025, 1999.

H Tennakoon and C Sechen. Gate sizing using Lagrangian relaxation
combined with a fast gradient-based pre-processing step. In Proceedings
of the 2002 IEEE/ACM international conference on Computer-aided
design, pages 395-402. ACM, 2002.

J Wang, D Das, and H Zhou. Gate sizing by Lagrangian relaxation
revisited. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 28(7):1071-1084, 2009.

MM Ozdal, S Burns, and J Hu. Gate sizing and device technology
selection algorithms for high-performance industrial designs. In Pro-
ceedings of the International Conference on Computer-Aided Design,
pages 724-731. IEEE Press, 2011.

Y-L Huang, J Hu, and W Shi. Lagrangian relaxation for gate implemen-
tation selection. In Proceedings of the 2011 international symposium on
Physical design, pages 167-174. ACM, 2011.

L Li et al. An efficient algorithm for library-based cell-type selection
in high-performance low-power designs. In Computer-Aided Design
(ICCAD), 2012 IEEE/ACM International Conference on, pages 226-232.
IEEE, 2012.

VS Livramento et al. Fast and efficient lagrangian relaxation-based
discrete gate sizing. In Proceedings of the Conference on Design,
Automation and Test in Europe, pages 1855-1860. EDA Consortium,
2013.

G Flach et. al. Effective Method for Simultaneous Gate Sizing and V-th
Assignment Using Lagrangian Relaxation. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 33(4):546-557,
2014.

V Sundararajan, SS Sapatnekar, and KK Parhi. Fast and exact tran-
sistor sizing based on iterative relaxation. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 21(5):568-581,
2002.

H Ren and S Dutt. A Network-Flow Based Cell Sizing Algorithm. In
The International Workshop on Logic Synthesis, 2008.

S Hu, M Ketkar, and J Hu. Gate sizing for cell library-based designs. In
Proceedings of the 44th annual Design Automation Conference, pages
847-852. ACM, 2007.

Y Liu and J Hu. A new algorithm for simultaneous gate sizing and
threshold voltage assignment. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 29(2):223-234, 2010.

Y Liu and J Hu. GPU-based parallelization for fast circuit optimiza-
tion. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 16(3):24, 2011.

M Rahman, H Tennakoon, and C Sechen. Library-Based Cell-Size
Selection Using Extended Logical Effort. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 32(7):1086—
1099, 2013.

T Reimann et al. Simultaneous gate sizing and vt assignment using
fanin/fanout ratio and simulated annealing. In Circuits and Systems
(ISCAS), 2013 IEEE International Symposium on, pages 2549-2552.
IEEE, 2013.

MM Ozdal et al. The ISPD-2012 discrete cell sizing contest and
benchmark suite. In Proceedings of the 2012 ACM international
symposium on International Symposium on Physical Design, pages 161
164. ACM, 2012.

MM Ozdal et al. An improved benchmark suite for the ISPD-
2013 discrete cell sizing contest. In Proceedings of the 2013 ACM
international symposium on International symposium on physical design,
pages 168-170. ACM, 2013.

L Dagum and R Menon. OpenMP: an industry standard API for shared-
memory programming. Computational Science & Engineering, IEEE,
5(1):46-55, 1998.

A Valles. Performance Insights to Intel(r) Hyper-Threading Technology.
Technical report, http://software.intel.com/en-us/articles/performance-
insights-to-intel-hyper-threading-technology, 2009.

