
An Efficient Shift Invariant Rasterization Algorithm for
All-Angle Mask Patterns in ILT

Yixiao Ding
Iowa State University

Ames, IA 50010
yxding@iastate.edu

Chris Chu
Iowa State University

Ames, IA 50010
cnchu@iastate.edu

Xin Zhou
Synopsys Inc

Mountain View, CA 94043
Xin.Zhou@synopsys.com

ABSTRACT
Lithography simulation is an essential technique to guide the
design of inverse lithography technology (ILT) masks. To re-
duce the complexity in modern lithography simulation, a widely
used approach is to first rasterize the ILT masks before they
are inputted to the simulation tools. Currently, there is no high
performance technology to handle the rasterization of all-angle
polygons, which are very common in modern ILT masks. Tra-
ditional rasterization technology is very expensive in term of
runtime and memory usage. In this paper, we propose an effi-
cient rasterization algorithm for all-angle polygons based on a
pre-computed lookup table (LUT). We expect that the convolu-
tion for a majority of large pixels can be performed in a single
lookup table query, which decreases the overall runtime dramat-
ically. The experimental results demonstrate that our proposed
algorithm can speed up rasterization process by almost 500×
while maintaining small variations in CD. Meanwhile, the time
for pre-computing the lookup table and the size of it can be kept
within very reasonable limits.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids

General Terms
Algorithms, Design, Performance

Keywords
Inverse Lithography Technology (ILT), rasterization, Look-up

table (LUT)

1. INTRODUCTION
Rasterization of polygons, also known as scan conversion, is a

fundamental technique of geometric data processing widely used
in the electronic design automation (EDA) industry in partic-
ular, and many other industries in general. A set of polygons
in EDA (for example, the shapes defining the physical design of
an integrated circuit) is usually represented in GDSII or OASIS
format as arrays of vertices, and the rasterization process seeks
to represent them by grayscale pixels on a grid.

One important application of polygon rasterization is in the
simulation of projection lithography [1]. The image at the wafer
level is the foundation of any lithography process modelling at
the core of optical proximity correction (OPC). The manufac-
turing of IC chips using optical lithography involves project-
ing COG (Chrome on Glass) circuit masks onto coated silicon

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC ’15 June 07 - 11, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3520-1/15/06$15.00.
http://dx.doi.org/10.1145/2744769.2744797

wafters. The optics that performs the projection inevitably dis-
torts the shapes on reticle, as the imaging process cuts off all the
high-frequency content limited by the numerical aperture (NA)
of the lens system. Other factors, including chemical effects,
cause additional distortions in the final wafer shapes. In order
to improve the fidelity of the figures at the wafer level compared
to the original intent of circuit designer, we have to apply OPC
to the figures at the mask level.

Figure 1: Example of ILT mask.

In the past, mask shapes with OPC consisted mostly of Man-
hattan polygons, i.e., polygons made up of horizontal and ver-
tical edges (no arbitrary angles). As chip makers push below
20nm node, masks using an aggressive form of OPC called in-
verse lithography technology (ILT) are becoming more popular.
Fig. 1 is an example of what an ILT mask could look like. Note
that the shapes contain many curved features, and almost none
of the edges are aligned to a multiple of 45 degrees. In principle,
the lithography simulation can take any polygon figures as input
directly. But when the figures are getting more numerous and
more complex, as in the case of ILT masks, taking rasterized
mask as input becomes more efficient than the direct method
[2].

In order to preserve the fidelity of the original mask polygons,
the size of fill pixels in the rasterized representation should be
very small (say 1nm× 1nm). In other words, the ideal rasteri-
zation procedure should be undertaken on a grid of very small
fill pixels. On the other hand, lithography simulation takes the
rasterized image as input to generate wafer image. In order to
keep the input data volume and runtime reasonable for lithog-
raphy simulation, we would like to use larger(i.e., fewer) pixels
to present the rasterized image. In practice, a suitable pixel size
for lithography simulation is on the order of 10nm, and the size
of image could be around 1024× 1024 pixels.

The challenge of using large pixels in rasterization is that
the result should preserve shift-invariance, which means that
changes in the position of input polygons relative to the pixel
sampling grid should cause very minimal variations in the corre-
sponding output data. This property is critical in chip manufac-
turing. For example, in the core of a memory chip, an arrayed

pattern of bitcells repeats itself millions or even billions of times,
and the wafer image for each repeated cell must be as consistent
as possible. If the mask representation shows any significant
asymmetry or distortion, the resulting distortions on the wafer
will likely be amplified due to the mask error enhancement fac-
tor (MEEF) effect at advanced nodes. A common approach
for preserving shift-invariance is to preprocess the input mask
patterns with an anti-aliasing filter before rasterization in large
pixel level. Anti-aliasing removes the frequencies in the input
polygons that are too high to be accurately captured at the
sampling rate of rasterization, so that they do not appear in the
samples improperly at a lower frequency (a phenomenon called
aliasing). The software challenge is how to perform filtering and
rasterization on a large amount of all-angle polygon data very
quickly, while preserving accuracy of lithography simulation.

Traditional EDA rasterization tools deal with large volume of
data of mostly Manhattan geometry, and very small percentage
of 45-degree-angled polygons. There are established techniques
to handle rectangular figures efficiently and accurately, and they
have been extended to handle figures with 45/135 degree edges,
and even figures with a limited set of predefined angles (e.g., 22.5
degrees). [3] is the state-of-the-art of Manhattan rasterization
by look-up tables. For non-Manhattan patterns, [4] explains an
area-coverage technique and a significant refinement by cone-
filter anti-aliasing, which are not based on look-up tables. Un-
fortunately, there is no published technique that handles truly
all-angle figures with a known performance on par with the best
rectangle-processing algorithms. To the best of our knowledge,
there is also no mature technology to handle all-angle polygon
rasterization in industry.

In this paper, we propose to solve the problem of all-angle
polygon rasterization with a lookup table-based approach. In
this approach the convolution for a majority of the large pixels
can be done in a single lookup table query. The experimental
results demonstrate that our proposed algorithm can speed up
rasterization by several orders of magnitude over conventional
methods. Meanwhile, the time for pre-computing the lookup ta-
ble and the memory for storing it can be kept within reasonable
limits.

The remainder of the paper is organized as follows. In Section
2, we present a description of the problem and overview of our
proposed algorithm. In Section 3, we describe our proposed
algorithm in detail. In Section 4, we show our experimental
results. Finally, Section 5 is the conclusion of this paper.

2. PROBLEM DESCRIPTION
2.1 Overview of traditional rasterization approach

Rasterization is the task of taking an image described in a
vector graphics format (shapes) and converting it into a raster
image (pixels) for output. Given mask patterns which have been
applied OPC, we want to represent them on a pixel grid. In
order to preserve the fidelity of the original patterns during
the rasterization process, we ideally should use a grid of very
small fill pixels. We denote such small fill pixels as small pix-
els. Fig. 2(a) shows an all-angle mask pattern (triangle) and a
small pixel grid. Then, a scan conversion algorithm [5] is ap-
plied upon the mask patterns to obtain a bitmap on the small
pixel grid. It is shown in Fig. 2(b). Even though we can take
this bitmap directly as the input to lithography simulation, it is
enormous and undesirable. In order to preserve shift invariance,
the bitmap should goes through a convolution process under a
properly-designed anti-alising filter. Since the convolution pro-
cess is undertaken on the small pixel level, the output image is
represented in grayscale on a grid of small pixel. As shown in the
Fig. 2(c), the grayscale value for each small pixel is represented
by its color lightness. To reduce the computation load of lithog-
raphy simulation, we would like to increase the size of pixel for
the output image while keeping certain degree of resolution. We
denote pixels with increased size for the output image as large

pixels. The grayscale value of large pixel is computed by averag-
ing out the grayscale values of all small pixels contained inside.
Fig. 2(d) shows the grayscale result based on large pixels. This
grayscale image is a shift-invariance preserving representation
of the original mask in Fig. 2(a) and is the input to lithography
simulation tools.

Figure 2: Traditional rasterization approach. (a) Pat-
tern and small pixel grid. (b) Bitmap generation by
scan conversion. (c) Pattern after convolution. (d)
Grayscale results based on large pixels.

There is a problem associated with the traditional rasteriza-
tion approach. In order to preserve the fidelity of input mask
patterns, the convolution process is undertaken on the small
pixel level. Besides, the filter used in the convolution process
can be large for industrial applications. Even though the tradi-
tional rasterization approach is ideal, it is expensive in term of
runtime and memory usage. In this paper, we solve this problem
by applying the idea of lookup table. By taking advantage of a
pre-computed lookup table, the whole filtering and rasterization
process can be undertaken on the large pixel level without loss
of accuracy. Meanwhile, the patterns within one large pixel can
be handled with just one lookup table query. This dramatically
speeds up the rasterization process.

2.2 Problem formulation
Given a set of all-angle polygon patterns represented by arrays

of vertices and the size of large pixels according to the require-
ment of the lithography simulation, the problem is to convert
the polygon patterns into a grayscale image at the large pixel
level. The result should preserve shift-invariance, which means
translation of input data causes very small difference in output
data. The objective is to process large amount of these kinds of
data very quickly but still accurately.

3. ALGORITHM
3.1 Algorithm overview

Figure 3: The overall algorithm flow.

The algorithm overview is shown in Fig. 3. The program takes
a GDSII file as input. Firstly, a small pixel grid is constructed
for input polygon patterns on a specific layer. Meanwhile, as-
sume the size of large pixels is a multiple of the size of small
pixels. Then, clipping configurations of input polygon patterns
to each large pixel are captured. Based on clipping configura-
tion, each large pixel is identified which categories it belongs to:

non-exception or exception. Non-exception refers to the large
pixel which is only cut through by at most one polygon edge
and the rest of large pixels are exception. The pre-computed
and stored grayscale results in the lookup table can be taken
advantage for convolution process. If it is a non-exception large
pixel, only one lookup table query is required for convolution
process. If it is an exception large pixel, multiple lookup table
queries are required. A heuristic method is applied here in order
to speed up this process. After completion of convolution for all
large pixels, the program outputs a grayscale image.

3.2 Definitions of small and large pixel

Figure 4: Small pixel and large pixel.

In order to preserve fidelity of mask patterns, the fill pixels
in rasterization process should be very small. We define such a
small fill pixel as a small pixel. In practise, 1nm × 1nm small
pixels are small enough to capturing fine fragments of mask
patterns. However, if we directly take the grayscale image which
is represented by small pixels to the lithography simulation, the
input data volume is prohibitive. Thus, we would like to use
increased size of pixels to represent the grayscale image. We
define the pixel with increased size as a large pixel. In practice,
10nm×10nm large pixel is a appropriate choice such that we can
keep a reasonable data volume while having enough resolution
for grayscale image. The Fig. 4 shows the small pixel with size
of 1nm× 1nm and the large pixel with size of 10nm× 10nm.

3.3 Key observation

Figure 5: Non-exception large pixel and exception large
pixel.

With appropriately chosen size of large pixel, we have a key
observation for a given polygon under the large pixel grid: a ma-
jority of large pixels are only cut through by zero or one polygon
edge. We define those large pixels as non-exception large pixels.
For the rest of large pixels, we define them as exception large pix-
els. Thus, by acquiring clipping configuration of input polygon
patterns to each large pixel, we can identify whether it belongs
to non-exception large pixel or exception large pixel. As shown
in Fig. 5, the top-right large pixel is an exception large pixel
which containing a polygon corner, and the large pixel below it
is a non-exception large pixel which is only cut through by a
polygon edge. In general case, unless the given set of polygons
have many extremely thin or tiny parts, the number of excep-
tion large pixels is O(n) where n is the total number of vertices
for given set of polygons.

3.4 LUT approach for non-exception large pixels
For each large pixel with certain clipping configuration, we ap-

ply the traditional rasterization approach. Fig. 6 illustrates the
whole process. Given a large pixel with clipping configuration

shown in Fig. 6(a), its bitmap will be firstly computed based on
small pixel grid which is shown in Fig. 6(b). Then, the bitmap
will go through convolution process under a pre-design filter.
The result is shown in Fig. 6(c). After that, grayscale value of
each small pixel projects back to the corresponding large pixel.
Finally, grayscale results are generated based on large pixels
which is shown in Fig. 6(d). Note that the convolution process
is conducted on the small pixel level and the size of filter can be
very large for industrial applications. Besides, some large pixels
with same clipping configuration will probably appear multiply
times, thus the computation of grayscale result for each time are
repeated. As a result, even though this procedure is ideal, it is
relatively expensive in term of runtime and memory usage.

Figure 6: Ideal procedure for large pixel rasterization.
(a) Given a large pixel with certain clipping configura-
tion. (b) Bitmap generation for the large pixel based
on small pixel grid. (c) Convolution process based on
small pixel grid. (d) Grayscale results based on large
pixel grid after projection.

However, if we pre-compute and store the grayscale results in
the look-up table for all different clipping configurations of non-
exception large pixels, time spent on computing grayscale results
is saved. The total runtime will decrease dramatically since non-
exception large pixels account for a majority of large pixels.
Fortunately, the number of all different clipping configurations
for non-exception large pixel is limited with given sizes of large
and small pixel. Suppose the size of large pixel is n × n small
pixel. If the non-exception large pixel is only cut through by one
polygon edge, two out of four boundary edges of square pixel will
intersect with the polygon edge. For each boundary edge, there
are n different locations for a intersection point. Provided that
either side of polygon edge could be within the polygon interior,
the total number of clipping configurations for non-exception
large pixel is 12n2. If considering the symmetric property of
all the clipping configuration, the total number can be further
reduced to 6n2. For industrial applications, we usually have
small pixel with size of 1nm × 1nm and large pixel with size
of 10nm × 10nm. Consequently, the number of entries used
to store grayscale results for non-exception large pixels in the
lookup table is 600.

3.5 Technique to handle exception large pixels

Figure 7: Technique to handle exception large pixels.
(a) Given an exception large pixel and compute its
bitmap Bexp. (b) Find the corresponding non-exception
large pixel and compute its bitmap Bnon−exp. (c) Com-
pute the different between two bitmaps and denote as
Bdiff .

For each non-exception large pixel, we can easily obtain its
grayscale results from lookup table. Next, we propose our tech-

nique to deal with exception large pixels. As shown in Fig. 5,
exception large pixels could have various clipping configurations,
such as containing a polygon corner or cut through by two poly-
gon edges. Even though exception large pixels only account for
a small percentage, we are reluctant to directly apply traditional
rasterization approach due to the long runtime. Meanwhile, we
want to take full advantage of the lookup table. The idea of
our technique is trying to use corresponding non-exception large
pixel in the lookup table together with small pixels to reconfig-
ure exception large pixel. In this case, we also pre-compute
and store the grayscale results in the lookup table for each sin-
gle small pixel within the large pixel. This will only increase
the number of entries of lookup table by n2. Fig. 7 illustrates
this idea. Given an exception large pixel, we firstly compute its
bitmap Bexp which is shown in Fig. 7(a). Then, we try to find a
non-exception large pixel in the lookup table whose bitmap has
highest similarity with that of the exception large pixel. We de-
note the bitmap of the corresponding non-exception large pixel
asBnon−exp. It is shown in Fig. 7(b). GivenBexp andBnon−exp,
we compute the difference between two bitmaps which is de-
noted as Bdiff . It is shown in Fig 7(c). In order to obtain
accurate grayscale results for the exception large pixel, we need
to add/subtract grayscale results of Bdiff to/from grayscale re-
sults of Bnon−exp. The grayscale results of Bnon−exp can be
easily acquired by one lookup table query. The grayscale results
of Bdiff also can be acquired by adding/subtracting grayscale
results of its non-zero entries. Each non-zero entry in Bdiff cor-
responds to one lookup table query of single small pixel. Con-
sequently, we can compute grayscale results of exception large
pixel by multiple lookup table queries.

Figure 8: An inappropriate choice of non-exception
large pixel will cause unnecessary lookup table queries
and computational time. (a) Given an exception large
pixel. (b) An inappropriate choice of corresponding
non-exception large pixel. (c) Bdiff with relatively more
number of non-zero entries.

The number of non-zero entries in Bdiff determines the num-
ber of lookup table queries in order to accurately compute grayscale
results of the exception large pixel. Meanwhile, the number
of non-zero entries in Bdiff is greatly affected by the choice
of corresponding non-exception large pixel. Fig. 8 illustrates
the importance of good choice of corresponding non-exception
large pixel. Given an exception large pixel in Fig. 8(a), if we
choose the corresponding non-exception large pixel in Fig. 8(b),
the Bdiff in Fig. 8(c) has relatively more number of non-zero
entries than that in Fig. 7(c). Each one of non-zero entries
in Bdiff requires one lookup table query and an operation of
adding/subtracting grayscale results to/from grayscale results
of corresponding non-exception large pixel. We can see an inap-
propriate choice of non-exception large pixel will cause unnec-
essary lookup table queries and computational time. Therefore,
the current problem is how to find corresponding non-exception
large pixel for given exception large pixel which results in as
few non-zero entires in Bdiff as possible. We propose a smart
heuristic for this problem.

For each clipping configuration of non-exception large pixel
stored in the lookup table, we quadrisect its bitmap and record
number of non-zero entries for each quadrant. We denote the

Figure 9: Fast heuristic to find corresponding non-
exception large pixel in lookup table. (a) Given an ex-
ception large pixel. (b) Non-exception large pixel with
diversity degree of

√
101. (c) Non-exception large pixel

with diversity degree of
√

986.

four records as NI , NII , NIII , and NIV . Thus, four records are
associated with each entry in the lookup table. Given an excep-
tion large pixel, we also quadrisect its bitmap and calculate N ′I ,
N ′II , N ′III , and N ′IV for each quadrant. We define the diversity
degree between the given exception large pixel and non-exception
large pixel stored in the lookup table as

∑4
i=1 |Nß −N ′ß|. The

corresponding non-exception large pixel can be obtained by find-
ing a entry in the lookup table whose has minimum diversity
degree. Fig. 9 gives an example. Consider an exception large
pixel in Fig. 9(a), the non-exception large pixel in Fig. 9(b)
which has diversity degree of 11 is a better choice than the non-
exception large pixel in Fig. 9(c) which has diversity degree of
44.

3.6 Cost of lookup table
As we have mentioned above, the number of entries for non-

exception large pixel in lookup table is 6n2 with additional n2

number of entry for single small pixels. We also pre-compute
and store grayscale results of a large pixel in the lookup table
for the case which is entirely within polygon interior. In sum,
the total number of lookup table entries is 7n2 + 1. The size
of lookup table can be kept within a reasonable manner and
the time spent on building lookup table is due before start of
program. Once the program starts, only one lookup table query
is needed for each non-exception large pixel and each large pixel
which is entirely within polygon interior. For exception large
pixel, one lookup table query of corresponding non-exception
large pixel and several lookup table queries of single small pixel
are needed. In practice, the number of lookup table queries of
single small pixel is small due to the proposed heuristic.

3.7 Technique to obtain clipping configuration
In order to correctly identify each large pixel as non-exception

large pixel or exception large pixel, we should firstly obtain clip-
ping configuration of each large pixel with given set of poly-
gons. This is actually the problem of polygon clipping where
large pixel is the clipping window and given set of polygons
are the clipping polygons. We adopt WeilerâĂŞAtherton clip-
ping algorithm [4, 6] in our implementation to solve this prob-
lem. The Weiler-Atherton algorithm is capable of clipping a
concave polygon with interior holes to the boundaries of an-
other concave polygon, also with interior holes. The polygon
to be clipped is called the subject polygon (SP) and the clip-
ping region is called the clip polygon (CP). The algorithm has

Table 1: Performance of our proposed algorithm

Benchmarks Percentage of Runtime of Runtime of Runtime of Handling exception large pixels
Non-ex (%) clipping (s) convolution (s) algorithm (s) #Ex #LUT queries Runtime (s)

gdsii1 99.55 0.12 2.26 2.38 48 5.77 0.22
gdsii2 98.74 26.31 171.81 198.12 3400 5.39 6.99
gdsii3 95.09 25.63 189.22 214.85 7396 5.30 15.02
gdsii4 97.49 25.75 213.26 239.01 3796 16.62 18.40
gdsii5 97.50 27.89 232.05 259.94 3793 15.77 19.23
gdsii6 97.54 31.97 239.40 271.37 3789 13.44 16.90
gdsii7 97.61 44.24 270.46 314.70 3798 11.59 14.20
gdsii8 97.39 46.41 278.22 324.63 4154 10.47 13.81
gdsii9 97.49 25.44 210.9 236.34 3799 17.02 18.49
gdsii10 95.09 28.24 222.01 250.25 7395 5.29 17.47
Average 97.35 28.20 202.96 231.16 4136.8 10.67 14.07

four major steps: (1)Determine the intersections of the subject
and clip polygons; (2)Process non-intersecting polygon borders;
(3)Create two intersection vertex lists; (4)Perform the actual
clipping. Due to the page limit, we do not explain the detail of
this algorithm.

4. EXPERIMENTAL RESULTS
We implement our algorithm in the C/C++ programming

language. We run all experiments on a machine with an Intel
Core i5 2.66GHz CPU and 4GB of memory. All ten benchmarks
are provided by Synopsys in the format of GDSII. Except for the
first benchmark, the dimensions of all other nine benchmarks
are approximately 10µm × 10µm. The size of small pixel is
defined as 1nm × 1nm and the size of large pixel is defined as
10nm × 10nm. The size of 2D filter that we are using during
the convolution process is 500nm× 500nm.

In Section 4.1, the performance of our proposed algorithm is
demonstrated. In Section 4.2, our proposed algorithm is com-
pared with the other two rasterization approaches. One is small
pixel approach, the other is area coverage approach. In Section
4.3, the property of shift invariance of our proposed approach is
evaluated.

4.1 Performance of our proposed algorithm
Before the start of the program, we firstly build up the lookup

table. The time spent on building lookup table is 607.1s which
is reasonable. Table I shows the performance of our proposed
algorithm. Column 2 shows percentages of non-exception large
pixel among all large pixels in the output image. For all the
benchmarks, the percentages are more than 95% and on aver-
age 97.35% which confirms the key observation in our algorithm.
The runtime of our proposed algorithm consists of two parts:
one is capturing clipping configuration of input polygon pat-
terns to each large pixel and the other is convolution process for
all large pixels in the output grayscale image. Column 3 shows
the runtime of the first part and column 4 shows the runtime
of the second part. Column 5 shows the total runtime of our
proposed algorithm. We can see that the convolution process
takes most of algorithm runtime. Traditional 2D convolution
operation requires 4 levels of nested loops to go through every
pixel of the image and every element of the filter matrix. It is
usually slow unless one uses small filter. Bigger filters can be
applied with much faster runtime, if one uses the Fast Fourier
Transform (FFT). Thus, the ideal approach is firstly to use FFT
to handle large pixels which are not cut by polygon boundary.
Then, using LUT to take care of large pixels which are cut by
polygon boundary and refine in spatial domain the image gen-
erated by FFT. However, we do not implement FFT since it
is not the focus of this paper. For each exception large pixel
in the output grayscale image, the convolution process requires
multiple lookup table queries. Columns 6, 7 and 8 demonstrate
experimental results of handling exception large pixels. Column
6 shows the number of exception large pixels in output image

for each benchmark. Due to the proposed heuristics, the num-
ber of lookup table queries for each exception large pixel stays
within a reasonable number, which is on average 10.67 as shown
in Column 7. Thus, handling all the exception large pixels does
not take too long, which is on average 14.07s.

4.2 Compared with other rasterization approaches
In this subsection, we compare our approach with the other

two rasterization approaches, which do not apply the idea of
lookup table. One is small pixel approach, the other is area
coverage approach. For the small pixel approach, both the scan
conversion and convolution process are undertaken in the small
pixel level. The grayscale result of each large pixel in the output
image is obtained by averaging out all the small pixels contained
inside. For this approach, the runtime is expected to be ex-
tremely high. Thus, we modified each gdsii benchmark in Table
1 and generated smaller scale testcase to perform experiments
for this part. For the area coverage approach, the grayscale
value for each large pixel is directly determined by the percent-
age of area covered by the input polygons. Thus, the runtime is
expected to be very fast. As shown in Table 2, compared with
small pixel approach, our algorithm on average has almost 500×
speedup. Besides, our proposed algorithm does not do any ap-
proximation for the whole process. Thus, the grayscale value
of each large pixel in the output image is exactly the same as
that computed by the traditional rasterization approach. The
area coverage approach has even faster runtime However, since
no anti-alising filter is applied for area coverage approach. The
shift invariance property can be damaged. We will show this in
the next subsection.

Table 2: Runtime comparision

Testcases
Small pixel

(s)
Area cover

(s)
Ours (s)

testcase1 240.19 0.11 0.22
testcase2 614.29 0.35 0.60
testcase3 244.04 0.30 0.52
testcase4 239.75 0.32 0.51
testcase5 307.76 0.34 0.55
testcase6 307.44 0.43 0.65
testcase7 321.06 0.62 0.90
testcase8 283.58 0.73 1.14
testcase9 255.40 0.30 0.53
testcase10 238.30 0.26 0.51
Average 305.18 0.37 0.51
Normalized 497.84 0.73 1

4.3 Evaluation of shift-invariance property
As we have already mentioned before, shift-invariance is a crit-

ical factor which should be considered during the rasterization
process. We evaluate the quality of shift-invariance by analyz-
ing variation of critical dimension (CD) error due to rotation

Table 3: CD error variation caused by rotation

Small pixel approach Area coverage approach Ours
Benchmarks Rotation (◦) Ave. wcde (nm) Ave. hcde (nm) Ave. wcde (nm) Ave. hcde (nm) Ave. wcde (nm) Ave. hcde (nm)
Benchmark1 0 0.191 0.6068 6.6339 1.6699 0.0536 0.5179
Benchmark2 1 0.4606 0.4456 6.8844 2.1603 0.4308 1.5508
Benchmark3 3 1.3556 2.5336 7.5850 2.9584 1.3039 3.6488
Benchmark4 10 2.1633 2.7312 7.5064 2.8858 1.7591 2.9286
Benchmark5 30 2.7658 0.4925 8.5512 2.6745 2.3684 1.8378
Benchmark6 45 5.0739 2.0091 11.6156 3.9560 5.9772 2.0257
Benchmark7 89 0.9059 0.6035 7.3052 1.8888 0.8238 1.7438
Benchmark8 90 0.2106 0.5667 6.6389 1.6699 0.0706 0.5705

SD 2.2645 1.5576 7.9904 2.5907 2.4239 2.1044
Normalized SD 1 1 3.53 1.66 1.07 1.35

Figure 10: CD error distribution of the three approaches

of input polygons. In order to demonstrate our proposed algo-
rithm has a good quality of shift-invariance, we also compare
with both small pixel and area coverage approaches. For the
small pixel approach, the convolution process is undertaken in
the small pixel level and the output grayscale image is also based
on small pixels. The CD error variation is expected to be very
small when the input polygons are rotated. Thus, this approach
provides the baseline CD error variation for us to evaluate the
other two approaches. However, its runtime and memory us-
age is prohibited in practice. For the area coverage approach,
the grayscale value for each large pixel is directly calculated by
the percentage of area covered by the input polygons. No anti-
alising filter is applied. Thus, the CD error variation is probably
very large. All the eight benchmarks are provided by Synopsys
and each consists of an array of aligned rectangles rotated by
a different degree. The width of each rectangle is 79nm and
height is 167nm. “Ave. wcde”/“Ave. hcde” is the average CD
error in width/height over all the input rectangles. “SD” is the
standard deviation of “Ave. wcde or “Ave. hcde” over all eight
benchmarks. As shown in Table 3, compared with small pixel
approach, our approach has a little bit more CD error variation
when rectangles are rotated. Meanwhile, the area coverage ap-
proach has much more variation on CD error when the rotations
occur. This demonstrates that our proposed algorithm has good
quality of shift-invariance. Besides, Fig. 10 is a plot presenting
CD errors in both width and height of each rectangle for Bench-
mark4 from Table 3. Each circle represents a rectangle in the
benchmark. We can see that the CD error distribution of our
approach is similar to that of small pixel approach, while CD
error distribution of area coverage approach is really far away.

5. CONCLUSION
In this paper, we propose an efficient rasterization algorithm

for all-angle polygons. The algorithm is based on a pre-computed
lookup table. By taking advantage of lookup table, the whole
rasterization process can be undertaken on the large pixel level
without loss of any accuracy. Meanwhile, for a majority of large
pixels, the patterns within them can be handled with only one

lookup table query. Experimental results show that our pro-
posed algorithm can speed up by almost 500× compared with
accurate small pixel approach. Meanwhile, our proposed algo-
rithm demonstrates a good quality of shift-invariance property.
In the future work, we want to explore the application of FFT
in the convolution process and further speed up the whole ras-
terization process.

6. REFERENCES
[1] Alfred Kwok-Kit Wong. Optical Imaging in Projection

Microlithography, volume 66 of SPIE Tutorial Texts. SPIE
Publications, Vancouver, Washington, 2005.

[2] Yong Liu, Dan Abrams, Linyong Pang, and Andrew Moore.
Inverse lithography technology principles in practice:
unintuitive patterns. In Proc. of SPIE 5992, 2005.

[3] Michael L. Rieger, Micheal Cranford, and John P.
Stirniman. Flash-based anti-aliasing techniques for
high-accuracy high-efficiency mask synthesis, Jan 2011.
Patent.

[4] John F. Hughes, Andries van Dam, and et al. Computer
Graphics: Principles and Practice (3rd edition).
Addison-Wesley Professional, Readings, Massachusetts,
2013.

[5] Marc Levoy. Introduction to computer graphics:
Raterization algorithm.
http://graphics.stanford.edu/courses/cs248-
08/scan/scan1.html, Autumn Quarter 2008. Lecture
notes.

[6] Kevin Weiler and Peter Antherton. Hidden surface removal
using polygon area sorting. In Proc. of SPIE 5992,
volume 11, pages 214–222, New York, NY, 1977.

