
POLAR 2.0: An Effective Routability-Driven Placer

Tao Lin
Iowa State University
Ames, Iowa 50011
tlin@iastate.edu

Chris Chu
Iowa State University
Ames, Iowa 50011

cnchu@iastate.edu

ABSTRACT
A wirelength-driven placer without considering routability
would lead to unroutable results. To mitigate routing con-
gestion, there are two basic approaches: (1) minimizing the
routing demand; (2) distributing the routing demand prop-
erly. In this paper, we propose a new placer POLAR 2.0
emphasizing both approaches. To minimize the routing de-
mand, POLAR 2.0 attaches very high importance to main-
taining a good wirelength-driven placement in the global
placement stage. To distribute the routing demand, cells
in congested regions are spread out by a novel routability-
driven rough legalization in a global manner and by a his-
tory based cell inflation technique in a local manner. The
experimental results based on ICCAD 2012 contest bench-
mark suite show that POLAR 2.0 outperforms all published
academic routability-driven placers.

1. INTRODUCTION
Placement is one of the most important and ancient prob-

lems in Electronic Design Automation (EDA). Its quality
has been greatly improved during the last two decades. How-
ever, with the gradually increasing scale of design, a high
quality while extremely fast placer is still in urgent need.
Besides, [1, 2] pointed out that the commonly used wire-
length metric might not capture the key aspects of solution
quality. Overemphasis of wirelength as in traditional place-
ment formulation inevitably results in bad quality in other
metrics such as power, timing and routability, although op-
timizing wirelength is beneficial to those metrics to some
extent.

Among varieties of metrics, routability is now becoming
more and more important due to a significant mismatch be-
tween the objectives of wirelength and routing congestion.
A wirelength-driven placer without considering routability
usually leads to irresolvable routing congestion problem. In
the recent years, a series of contests (ISPD 2011, DAC 2012,
ICCAD 2012) were held to promote the research in routability-
driven placement, and some academic routability-driven plac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’14, June 01 - 05 2014, San Francisco, CA, USA
Copyright 2014 ACM 978-1-4503-2730-5/14/06 ...$15.00.

ers [3–9] such as coPR [4], Ripple 2.0 [7] and NTUplace4h
[9] were produced. Besides, SRP [10] and Ropt [11] try to
refine routability-driven placement by using the routing in-
formation feedbacked by global router.

There are two challenges in routability-driven placement
problem. The first challenge is that the routing conges-
tion is expected to be detected accurately in short run-
time. Since directly invoking the whole routing process in
the global placement stage is very time consuming, many
routing congestion estimation methods were proposed. Fast
global routers such as FastRoute [12] and BFG-R [13] have
been incorporated into some placers [3–5, 7] to achieve rel-
atively accurate estimation. RUDY [14] adopts a L-shaped
probability model and half perimeter wirelength (HPWL) to
estimate the actual routing demand. Ripple [5] and NTU-
Place4h [9] further extend RUDY’s method. Ripple uti-
lizes rectilinear minimum spanning tree (RSMT) to replace
HWPL, while NTUPlace4h applies Guassian smoothing to
smooth the L-shaped approximation model. The second
challenge is that the cells within routing congestion region
should be spread out to balance the routing supply and rout-
ing demand. Many placers [3–7, 15–17] apply cell inflation.
CROP [18] adjusts the boundary of each G-Cell to make
sure it has enough available area and routing supply. NTU-
Place4h formulates routing congestion as an additional con-
straint into its non-linear programming framework.

In this paper, we propose a new routability-driven placer,
POLAR 2.0, which mitigates routing congestion by the fol-
lowing two basic approaches: (1) minimizing the routing
demand; (2) spreading the routing demand properly. To
minimize the routing demand, the new placer attaches very
high importance to maintaining a good wirelength-driven
placement in the global placement stage. To distribute the
routing demand, cells in congested regions are spread out
by a novel routability-driven rough legalization in a global
manner and by a history based cell inflation technique in a
local manner. Experimental results on ICCAD 2012 Contest
benchmark suite show that POLAR 2.0 outperforms all pub-
lished academic routability-driven placers. Compared with
SimPLR [3], CoPR [18], Ripple 2.0 [7] and NTUPlace4h [9],
our placer respectively achieves 5.1%, 3.0%, 2.8% and 1.1%
improvement on the scaled HPWL.

The key ideas of this paper are highlighted as follows.

• Maintaining a good wirelengh-driven placement is at-
tached very high importance in our routability-driven
optimization flow, in order to minimize the routing de-
mand.

• A novel routability-driven rough legalization is applied

to distribute the routing demand. In this technique,
routing congestion on the horizontal and vertical di-
rections are handled separately, and the routing con-
gestion regions are effectively spread out in a global
manner.

• A history based cell inflation is adopted as a comple-
ment in a local manner. Different from some previous
cell inflation techniques, the inflation amount is accu-
mulated and kept until the global placement is finished.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the preliminaries. Section 3 presents the
framework of POLAR 2.0. Section 4 illustrates POLAR
2.0’s algorithm. Section 5 shows the experimental results.
Finally, Section 6 are the conclusions.

2. PRELIMINARIES
The routability-driven placement relies on the traditional

wirelength-driven placement engine. A circuit can be repre-
sented by a hypergraph G = (V,E), where V is the set of
cells and E is the set of nets. The placement tries to deter-
mine the physical positions of the cells without violating the
placement density constraints. We denote the x-coordinates
of cells by a vector x =

(
x1, x2, · · · , x|V |

)
, and y-coordinates

by y =
(
y1, y2, · · · , y|V |

)
, the objective is to minimize the

half-perimeter wirelength (HPWL):

HPWL(x,y) = Σe∈E [max
i∈e

xi−min
i∈e

xi+max
i∈e

yi−min
i∈e

yi] (1)

POLAR 2.0 is a natural extension of POLAR [19]. PO-
LAR adopts the rough legalization idea [20], but rough le-
galization is realized in a different manner: for each den-
sity hotspot, POLAR enumerates the optional reasonable
windows to find the smallest one that can accommodate all
the cells within it, and then a tree-based bisection method
spreads the cells evenly.

A good wirelength-driven placement is beneficial to router,
since the wirelength has direct influence on the routing de-
mand. Usually, better total wirelength means less total rout-
ing demand. However, excessively optimizing the wirelength
would lead to routing congestion, since the cells which have
lots of connections are pulled together resulting into that the
local routing demand substantially exceeds the local routing
supply.

Routability-driven placement essentially is to distribute
the routing demand rationally according to the routing sup-
ply. To simplify the routability formulation, the routing re-
sources are given by a 2-D m× n mesh, since 3-D mesh can
be easily transformed to 2-D mesh by accumulating the rout-
ing resources of different layers. The grid in the 2-D mesh
is usually called G-Cell, which is denoted by a coordinate
(x, y), where 0 ≤ x < m and 0 ≤ y < n. For any pair of ad-
jacent horizontal G-Cells, the connecting routing channel is
called H-edge, while for any pair of adjacent vertical G-Cells,
the connecting routing channel is called V-edge. Therefore,
for each G-Cell, it is at most associated to two H/V-edges
respectively. And the number of trunks in each H/V-edge is
fixed as the routing supply. As shown in Fig. 1(a), it is a
4 × 4 2-D mesh, for the G-Cell (1, 2), the two associated H-
edges are coloured red, while the two associated V-edges are
coloured blue. The horizontal/vertical routing supply(H/V-
supply) of G-Cell is defined as the total number of trunks
in its associated H/V-edges. The horizontal/vertical routing

demand(H/V-demand) of G-Cell is defined as the number of
wires that goes through its associated H/V-edges, as shown
in Fig. 1(b), the H-demand and V-demand of G-Cell (2, 2)
are respectively 2 and 2.

(0,0)

x

Y
H-edge

V-edge

(0,3) (3,3)

(0,0) (3,0)

x

Y

(a) (b)

Figure 1: The 2-D routing mesh

To capture a clear picture of design routability, [21] intro-
duced average congestion of G-Cell edges(ACE). Optimizing
ACE not only minimizes the total routing overflow but also
produces rational distribution of the routing demand. In
this paper, the same as previous works [3, 4, 7, 9], the ob-
jective of routability-driven placement is to minimize both
HPWL and ACE.

3. OVERVIEW
There are two basic approaches to optimize the routabil-

ity: (1) minimizing the routing demand; (2) spreading the
routing demand properly. On one hand, since routing over-
flow is calculated by routing demand minus routing supply,
roughly speaking, minimizing routing demand is beneficial
to decrease routing overflow. On the other hand, for each
H/V-edge, its routing demand is expected to be not higher
than its routing supply. Therefore, the distribution of rout-
ing demand should be done properly based on the known
distribution of routing supply.

Initial placement

Wirelengh-driven rough

leglization

Quadratic programming
Add pseudo nets

Wirelength-driven

placement

 seed generation

Routing analysis &
Update H/V-demands of cells

Quadratic programming
Add pseudo nets

Routability-driven rough
legalization

5 times

Routability optimization

Wirelengh-driven rough
legalization

Congestion & HPWL
is converged?

No

Displacement-driven
legalization

HPWL gap < 15% &

#iters >= 50

No

Yes

Congestion aware
detailed placement

Simultaneous
Placement & Routing

Refinement

Final placement

Post-global
placement

Yes

History based cell inflation

Figure 2: The overview of the new placer.

POLAR 2.0 targets on the above two approaches to op-
timize the routability. Its overview is presented in Fig. 2.

The whole placement is partitioned into three stages: (1)
wirelength-driven seed placement generation; (2) routability-
driven cell spreading; (3) post-global placement.

To minimize the routing demand, in POLAR 2.0, main-
taining a good wirelength-driven placement is attached very
high importance. In the first stage, POLAR [19] is used
to generate a good wirelength-driven seed placement: the
global placement loop of POLAR is not stopped until the
number of iterations is greater than 50 and the gap between
the upper bound wirelengh and the lower bound wirelength
is less than 15%. Besides, in routability-driven cell spread-
ing stage, for each round of routing analysis, the steps of
quadratic programming and routability-driven rough legal-
ization are iterated 5 times to maintain a good wirelength-
driven placement.

In the routability-driven cell spreading stage, routing anal-
ysis is applied to calculate H/V-demands of G-Cells, and to
model the migration of routing demand, H/V-demands of G-
Cells are amortized to H/V-demands of movable cells. Based
on movable cells’ H/V-demands, POLAR 2.0 simultaneously
distributes area demand, horizontal routing demand and
vertical routing demand by the following two approaches.
Firstly, in a global manner, we propose a routability-driven
rough legalization which is a natural extension of POLAR’s
[19] rough legalization idea. During routability-driven rough
legalization, both area and routing congestion hotspots are
detected. For each hotspot, the smallest window (expan-
sion region) which has enough area and routing resources
to satisfy all demands of the enclosed cells is searched by
enumeration. Then a tree based bisection spreading tech-
nique is applied to distribute those cells within the window.
Secondly, to avoid local routing congestion when distribut-
ing the cells within the window, a history based cell inflation
technique is proposed. The details of this stage are presented
in Section 4.

Finally, in the post-global placement stage, we adopt the
same method as Ripple 2.0’s [7], which has three compo-
nents: (1) displacement-driven legalization, (2) congestion
aware detailed placement and (3) simultaneous placement
and routing refinement [10].

4. ROUTABILITY OPTIMIZATION

4.1 Routing analysis

4.1.1 Routing supply calculation
3-D routing can easily be transformed to 2-D routing by

accumulating the total routing resources of all metal layers.
Since different metal layers have different wire pitches, we
need to sum up the number of tracks of each metal layer. In
addition, there are many fixed routing blockages occupying
the routing resources on the metal layers, the supply of H/V-
edges need to exclude these blocked routing resources. The
work [7] gives the details about the transformation from 3-D
routing to 2-D routing.

4.1.2 Routing demand estimation
Different from the routing supply, the routing demand re-

lays on the placement and routing solution. To calculate
the exact routing demand, legalized placement and detailed
routing are necessary. However, invoking legalization and
detailed router during the global placement stage is very
time consuming. Therefore, in POLAR 2.0, the routing de-

(a) (b)

Figure 3: The congestion map of benchmark
superblue16 with/without using routability-driven
rough legalization. (a) is the one with PO-
LAR’s [19] rough legalization instead of POLAR
2.0’s routability-driven rough legalization during
routability-driven cell spreading stage. Note that
the congestion value is scaled from -40 to 40, higher
value means more congestion. The congestion map
was drew based on the results of FastRoute’s pattern
routing [12].

mand is estimated based on roughly legalized placement and
global routing instead: we use roughly legalized placement
to calculate the pin locations, and then the congestion aware
pattern routing of FastRoute [12] is applied to estimate the
routing demand.

When the cells are moved, routing demand would be mi-
grated. During the routability optimization, POLAR 2.0
maintains a good wirelength-driven placement, in which the
relative positions of cells are only allowed to modified a lit-
tle bit. Under this condition, for most of the cells, moving
around would not change its H/V-demand much.

To trade off accuracy and runtime, we perform routing
demand estimation infrequently. As shown in Fig. 2, the
routing demands are updated only once every five times
the placement solution is refined. To model the migration
of routing demands, we associate the demands to movable
cells by introducing two new attributes, the horizontal and
vertical routing demand (H/V-demand), for each movable
cell. Consider a movable cell i located in G-Cell j. Let the
H/V-demand of G-Cell j be denoted by HDj and V Dj , re-
spectively, and the number of movable cells within G-Cell j
be denoted by kj . Then the H/V-demand of cell i, denoted
respectively by hdi and vdi, is given by Formulas (2) and
(3):

hdi =
HDj

kj
(2)

vdi =
V Dj

kj
(3)

4.2 Routability-driven rough legalization
After routing analysis, each movable cell has three at-

tributes: area demand, H-demand and V-demand. And the
routability-driven placement essentially is to distribute these
three demands based on the given supplies (available area,
horizontal routing supplies, vertical routing supplies). To
realize this goal in a global manner, we propose a novel
routability-driven rough legalization technique.

The pseudo code of routability-driven rough legalization

Algorithm 1 Routability-driven rough legalization

Require: The H/V-demands of movable cells are known, place-
ment is rough legalized.

Ensure: Good wirelengh is maintained, routability is optimized.
1: Detect the area/routing congestion hotspots; . The method

is similar to POLAR’s [19]
2: for each hotspot s do
3: Γ = ∅;
4: for each window w whose geometrical center is the same

as s do
5: as = the available area of w;
6: hs = total H-supplies of the G-Cells contained by w;
7: vs = total V-supplies of the G-Cells contained by w;
8: ad = total areas of the movable cells located in w;
9: hd = total H-demands of the movable cells located in

w;
10: vd = total V-demands of the movable cells located in

w;
11: rt = the aspect ratio of w;
12: if as ≥ ad && hs ≥ α × hd && vs ≥ α × vd &&

rt ∈
[
1
3
, 3

]
then

13: Γ = Γ ∪ {w};
14: end if
15: end for
16: Distribute the cells within the minimal window of Γ by

tree based bisection [19].
17: end for

is presented in Algorithm 1. In the original POLAR’s [19]
rough legalization, for each placement density hotspot, a
minimal expansion window is found by enumerating the
ones which have enough available area and reasonable as-
pect ratio, and then the cells are spread out evenly by a
tree-based bisection within the chosen window. While, in
the routability-driven rough legalization, not only placement
density hotspots, but also routing congestion hotspots are
detected. Besides, any expansion window w should have
enough Horizontal and vertical routing supplies by satisfy-
ing the following two additional constraints.

Σj∈wHSj ≥ α× Σi∈whdi (4)

Σj∈wV Sj ≥ α× Σi∈whdi (5)

Where HSj and V Sj are respectively the routing supplies
of the associated H-edges and V-edges of G-Cell j, α is a pa-
rameter due to the inaccuracy of routing estimation. When
α is higher than 1, it means that the routing congestion
is underestimated; on the contrary, α is less than 1 means
that the routing congestion is overestimated. Experimental
results verify that α is less than 1, mainly because the time
consuming maze routing is not used during routing analysis
in POLAR 2.0.

This routability-driven rough legalization technique can
effectively distribute the routing demand by mitigating the
routing demand to the places which have enough routing
supply without being used. Fig. 3 shows the congestion map
of benchmark superblue16 with/without this technique. It
can be seen that with this technique, the routing conges-
tion is spread out so that the scaled HPWL is significantly
improved.

4.3 History based cell inflation
For any design, the distribution of area supply/demand,

horizontal routing supply/demand and vertical routing sup-

(a) (b)

(c) (d)

Figure 4: (a) and (b) are respectively the global
placement just before/after routability optimiza-
tion.(c) and (d) are the congestion map of bench-
mark superblue7 just before/after routability opti-
mization. Note that the congestion value is scaled
from -30 to 50, higher value means more congestion.
The congestion map was drew based on the results
of FastRoute’s pattern routing [12].

ply/demand are usually not the same. The tree based bisec-
tion spreading technique used in routability-driven rough le-
galization only distributes cells evenly according to area sup-
ply/demand. Therefore, for some G-Cells, there are enough
available areas to accommodate its enclosed cells, but may
no enough horizontal/vertical routing resources to satisfy
the routing demands of its enclosed cells. To avoid local
routing congestion that routability-driven rough legalization
cannot resolve, similear to previous works, the routing de-
mands of some cells are transformed into inflated area by a
history based cell inflation.

The pseudo code of history based cell inflation is presented
in Algorithm 2. The principle is that only the movable cells
located in the most congested G-Cells are inflated by a small
ratio and the inflation is accumulated until the routability
cannot be improved. Its insight is derived from the history
based global routing technique [22] (In global routing, de-
tour is not preferred, but usually inevitable. To route a
design, [22] adds a big penalty to detour at the beginning
to see whether all the nets can be routed without overflow.
If the answer is no, then the detour penalty is decreased
slightly and rerouteing is performed. This process is contin-
ued until all the nets are finally routed without overflow.)
This approach is similar to other cell inflation techniques [3–
7, 15–17] functionally. It is simple and works well according
to our experimental results.

5. EXPERIMENTAL RESULTS
POLAR 2.0 was implemented in C++ and complied by

g++-4.7.2. The benchmarks of ICCAD 2012 contest [23] are
ran on a Linux PC with Intel Xeon X5550 2.67GHz CPU and
16GB RAM to verify the efficiency of POLAR 2.0. Routabil-
ity evaluation is performed by official script in the ICCAD

Algorithm 2 History based cell inflation

Require: Routing analysis is just done intermediately.
Ensure: The movable cells located in the most congested G-Cells

are inflated by a small ratio.
1: φ = ∅;
2: for any G-Cell j do
3: HDj = the H-demand of G-Cell j;
4: V Dj = the V-demand of G-Cell j;
5: HSj = the H-supply of G-Cell j;
6: V Sj = the V-supply of G-Cell j;
7: if HDj > HSj then
8: add the ordered pair (j,HDj −HSj) into φ;
9: end if

10: if V Dj > V Sj then
11: add the ordered pair (j, V Dj − V Sj) into φ;
12: end if
13: end for
14: Sort the φ based on the overflow (the second item of ordered

pair) in descending order;
15: for each ordered pair t in the top 10% of sorted φ do
16: for each movable cell i in G-Cell t.first do
17: Inflate the area of cell i by 10%;
18: end for
19: end for

2012 contest [23]. The placement solution is routed by the
designate global router-NCTRgr [24]. The scaled wirelength
is calculated according to HPWL and ACE [21] penalty.

5.1 Runtime analysis
The runtime of our placer is shown in Table I. It is bro-

ken down into three components: wirelengh-driven place-
ment seed generation, routability optimization which in-
cludes routing analysis, history based cell inflation and win-
dow based cell spreading, and post-global placement. On
average, routability optimization seed generation takes 47%
of the total runtime, while wirelengh-driven placement seed
generation and post-global placement respectively takes 27%
and 26% of the the total runtime. And during the routabil-
ity optimization, routing analysis uses 6% , window based
cell spreading uses 26%, and the rest (such as cell inflation
and quadratic programming) uses 15% of the total runtime.

Besides, compared with pure wirelength-driven placer PO-
LAR [19], the proposed routability-driven placer is only 2.26×
slower. Considering the fact that routablity-driven place-
ment problem is much more complex than pure wirelength-
driven placement, POLAR 2.0 is very fast.

5.2 Compared with previous works
The solution quality (including HPWL and ACE [21]) of

POLAR 2.0 is shown in Table II. It can be seen that the
ACE [21] penalty is decreased to a very low level, which
means that POLAR 2.0 can effective immigrate the routing
congestion. Fig. 4 shows the global placement and routing
congestion map of benchmark superblue7 just before/after
the routability optimization stage, it can be seen that the
shape of wirelengh-driven placement seed is roughly main-
tained, while the routing congestion is significant spread out.

As shown in Table III, our placers outperforms other aca-
demic routability-driven placers on ICCAD 2012 benchmark
suite [23]. Considering the scaled HPWL, on average, our
placer respectively achieves 5.1%, 3.0% , 2.8% and 1.1% im-
provement versus SimPLR [3], coPR [4], Ripple2 [7] and
NTUPlace4 [9]. Considering the runtime, on average, we
believe POLAR 2.0 is faster than SimPLR, coPR, Ripple2

Table 2: ACE [21] on ICCAD 2012 benchmarks [23].
Benchmark ACE(%) [21] RC HPWL sHPWL

0.50 1.00 2.00 5.00 (%) (×107) (×107)
superblue1 102.48 101.24 100.62 100.25 101.15 2.72 2.82
superblue3 102.29 101.15 100.57 100.23 101.06 3.23 3.33
superblue4 102.08 101.04 100.52 100.21 100.96 2.18 2.24
superblue5 101.51 100.76 100.38 100.15 100.70 3.44 3.51
superblue7 101.77 100.88 100.44 100.18 100.82 3.97 4.07
superblue10 102.40 101.20 100.60 100.24 101.11 6.01 6.21
superblue16 102.81 101.41 100.70 100.28 101.30 2.61 2.72
superblue18 103.17 101.58 100.79 100.32 101.47 1.61 1.69

and NTUPlace4. 1

6. CONCLUSIONS
In this paper, we propose a very simple and fast routability-

driven placer, POLAR 2.0, which targets on mitigating rout-
ing congestion by the following two basic approaches: (1)
minimizing routing demand by maintaining a good wirelength-
driven placement; (2) spreading the routing demand prop-
erly by a novel routability-driven rough legalization and a
history based cell inflation.

Experimental results show that even without applying
many techniques that others proposed (such as narrow chan-
nel blocking [6, 9], routing path based inflation [4, 7], and
reserving space around macros [11], etc), POLAR 2.0 yet
outperforms all published academic routability-driven plac-
ers. For future work, we will investigate the use of those
techniques.

Acknowledgments
This work is partially supported by NSF under grant CCF-
1219100.

References
[1] C. J. Alpert, Z. Li, M. D. Moffitt, G.-J. Nam, J. A.

Roy, and G. Tellez, “What makes a design difficult to
route,” ISPD ’10, pp. 7–12, 2010.

[2] J. A. Roy, J. F. Lu, and I. L. Markov, “Seeing the for-
est and the trees: Steiner wirelength optimization in
placemen,” ISPD ’06, pp. 78–85, 2006.

[3] M.-C. Kim, J. Hu, D.-J. Lee, and I. L. Markov, “A Sim-
PLR method for routability-driven placement,” ICCAD
’11, pp. 67–73, 2011.

[4] J. Hu, M.-C. Kim, and I. L. Markov, “Taming the
complexity of coordinated place and route,” DAC ’13,
pp. 150:1–150:7, 2013.

[5] X. He, T. Huang, L. Xiao, H. Tian, G. Cui, and E. F. Y.
Young, “Ripple: an effective routability-driven placer
by iterative cell movement,” ICCAD ’11, pp. 74–79,
2011.

1For SimPLR [3], Ripple 2.0 [7] and NTUPlace4h [9], their
results were referred from the ICCAD 2012 contest [23];
for coPR [4], its runtime was computed based on [4] which
claimed that it was 1.01 slower than SimPLR [3]. Besides,
the machine used in the ICCAD 12 contest [23] is with Intel
Xeon X7560 2.27GHz CPU(much more expensive and pow-
erful than the CPU used in our experimental environment)
and 16GB memory. Therefore, the datas in Table III are
relatively correct.

Table 1: Runtime breakdown on ICCAD 2012 benchmarks [23]. Runtime is measured in second.
Benchmark Wirelengh-driven Routability optimization Post-global Total runtime time ratio

seed generation Routing analysis cell spreading others placement POLAR 2.0/POLAR[19]
superblue1 411 84 564 273 280 1612 2.49
superblue3 425 75 534 295 431 1760 2.33
superblue4 240 58 490 267 205 1260 2.36
superblue5 328 55 162 141 414 1100 1.69
superblue7 814 61 375 252 361 1863 1.66
superblue10 579 119 316 243 1689 2946 3.09
superblue16 334 41 240 121 292 1028 1.83
superblue18 266 116 420 248 228 1278 2.59
Normalize 0.27 0.06 0.26 0.15 0.26 1.00 2.26

Table 3: Comparison on ICCAD 2012 benchmarks [23]. Runtime is measured in second.
Benchmark SimplR [3] coPR [4] Ripple2 [7] NTTPlacer4 [9] POLAR 2.0

sHPWL Time sHPWL Time sHPWL Time sHPWL Time sHPWL Time
superblue1 2.79 2319 2.86 2453 2.89 10213 2.79 8759 2.82 1612
superblue3 3.44 2706 3.46 2603 3.60 15114 3.67 7193 3.33 1760
superblue4 2.43 1257 2.37 1816 2.27 8575 2.31 4866 2.24 1260
superblue5 3.60 2154 3.51 2345 3.49 10833 3.59 7322 3.51 1100
superblue7 4.31 3249 4.36 3570 4.29 23017 3.96 15005 4.07 1863
superblue10 6.91 4837 6.51 5098 5.98 26312 6.17 12352 6.21 2946
superblue16 2.86 1797 2.80 1234 2.84 9494 2.78 6024 2.72 1028
superblue18 1.82 1645 1.68 1342 1.84 10989 1.64 4622 1.69 1278
Normalize 1.051 1.54 1.030 1.56 1.0282 8.83 1.0111 5.22 1.000 1.00

[6] J. Cong, G. Luo, K. Tsota, and B. Xiao, “Optimizing
routability in large-scale mixed-size placement,” ASP-
DAC ’13, 2013.

[7] X. He, T. Huang, W.-K. Chow, J. Kuang, K.-C. Lam,
W. Cai, and E. F. Y. Young, “Ripple 2.0: high quality
routability-driven placement via global router integra-
tion,” DAC ’13, pp. 152:1–152:6, 2013.

[8] M.-K. Hsu, S. Chou, T.-H. Lin, and Y.-W. Chang,
“Routability-driven analytical placement for mixed-size
circuit designs,” ICCAD ’11, pp. 80–84, 2011.

[9] M.-K. Hsu, Y.-F. Chen, C.-C. Huang, T.-C. Chen, and
Y.-W. Chang, “Routability-driven placement for hierar-
chical mixed-size circuit designs,” DAC ’13, pp. 151:1–
151:6, 2013.

[10] X. He, W.-K. Chow, and E. F. Young, “SRP: simultane-
ous routing and placement for congestion refinement,”
ISPD ’13, pp. 108–113, 2013.

[11] W.-H. Liu, C.-K. Koh, and Y.-L. Li, “Optimiza-
tion of placement solutions for routability,” DAC ’13,
pp. 153:1–153:9, 2013.

[12] Y. Xu, Y. Zhang, and C. Chu, “FastRoute 4.0: global
router with efficient via minimization,” ASP-DAC ’09,
pp. 576–581, 2009.

[13] J. Hu, J. A. Roy, and I. L. Markov, “Completing high-
quality global routes,” ISPD ’10, pp. 35–41, 2010.

[14] P. Spindler and F. M. Johannes, “Fast and accurate
routing demand estimation for efficient routability-
driven placement,” DATE ’07, pp. 1226–1231, 2007.

[15] W. Hou, H. Yu, X. Hong, Y. Cai, W. Wu, J. Gu, and
W. H. Kao, “A new congestion-driven placement algo-
rithm based on cell inflation,” ASP-DAC ’01, pp. 605–
608, 2001.

[16] U. Brenner and A. Rohe, “An effective congestion
driven placement framework,” ISPD ’02, pp. 6–11, 2002.

[17] J. A. Roy, N. Viswanathan, G.-J. Nam, C. J. Alpert,
and I. L. Markov,“CRISP: congestion reduction by iter-
ated spreading during placement,” ICCAD ’09, pp. 357–
362, 2009.

[18] Y. Zhang and C. Chu,“CROP: fast and effective conges-
tion refinement of placement,” ICCAD ’09, pp. 344–350,
2009.

[19] T. Lin, C. Chu, J. R. Shinnerl, I. Bustany, and
I. Nedelchev, “POLAR: Placement based on novel
rough legalization and refinement,” ICCAD ’13, 2013.

[20] M.-C. Kim, D.-J. Lee, and I. L. Markov, “SimPL: an
effective placement algorithm,” ICCAD ’10, pp. 649–
656, 2010.

[21] N. Viswanathan, C. Alpert, C. Sze, Z. Li, and Y. Wei,
“GLARE: global and local wiring aware routability eval-
uation,”

[22] L. McMurchie and C. Ebeling, “PathFinder: A
negotiation-based performance-driven router for fpgas,”
FPGA ’95, pp. 111–117, 1995.

[23] N. Viswanathan, C. Alpert, C. Sze, Z. Li, and Y. Wei,
“ICCAD-2012 CAD contest in design hierarchy aware
routability-driven placement and benchmark suite,” IC-
CAD ’12, pp. 345–348, 2012.

[24] W.-H. Liu, W.-C. Kao, Y.-L. Li, and K.-Y. Chao,
“Multi-threaded collision-aware global routing with
bounded-length maze routing,” DAC ’10, pp. 200–205,
2010.

