
POLAR: Placement based on Novel Rough
Legalization and Refinement

Tao Lin 1, Chris Chu 1, Joseph R. Shinnerl 2, Ismail Bustany 2 and Ivailo Nedelchev 2

1Department of Electrical and Computer Engineering, Iowa State University, IA
2Mentor Graphics Corporation, Fremont, CA

{tlin, cnchu}@iastate.edu, {joseph_shinnerl, ismail_bustany, ivailo_nedelchev}@mentor.com

Abstract—A new quadratic global placer called POLAR is
proposed. POLAR is based on novel techniques for rough
legalization and wirelength refinement. During look-ahead rough
legalization (LAL), relative positions of cells are maintained as
they are relocated with minimal displacement to relieve excess
area density. For each “hotspot” where placement overfill occurs,
an expansion region covering the hotspot is constructed. Then
the movable cells within each of these expansion regions are
evenly assigned to density bins inside the expansion region by
displacement-minimizing recursive bisection. In addition, a fast
density-preserving and wirelength-reducing discrete refinement is
applied to the first few LAL placements before each of these is
used to augment the quadratic model used to obtain the next
major placement iteration. The experimental results show that
POLAR outperforms the state-of-the-art academic placers over
the ISPD 2005 benchmarks.

I. INTRODUCTION

Placement is considered one of the most fundamental
physical design problems. Although it has been extensively
studied for decades, [1] indicates that it is still a "hot topic"
considering the gradually increasing problem size and varieties
of new constraints and objectives due to technology scaling.

The quadratic approach is one of the most promising
approaches for modern placement due to its low CPU runtime
and good placement quality. It approximates the wirelength
by a convex quadratic function, which can be minimized
efficiently by solving a linear system. However, minimizing
just the wirelength would lead to considerable cell overlapping.
Therefore, various techniques have been proposed to spread
out the cells while maintaining the quadratic nature of opti-
mization.

As the most popular spreading technique, the iterative
force-directed approach interprets the quadratic placement
problem as a classical mechanics problem of finding the
equilibrium configuration for a spring system. In each iter-
ation, spreading forces required to spread out the cells are
calculated based on current cell positions. Then the modified
spring system is solved to obtain the new cell positions. This
spreading process continues until the cell distribution is almost
even and the wirelength is not improved any more.

There are many ways to generate spreading force.
Kraftwerk2 [2] and DPlace [3] are based on density gradient;
Kraftwerk2 utilizes a Poisson potential by a generic supply and
demand system, while DPlace models the diffusion process by
solving a differential equation relating to cell density. mFAR

[4] achieves the spreading forces by moving cells from those
bins with overflow to those without. FastPlace [5] and RQL
[6] move the cells from high density bins to the low density
adjacent bins by cell shifting.

In recent years, the placers [7], [8], [9], [10], [11] adopt
a new technique called rough legalization. The key idea of
rough legalization is that almost legal placement is used
to guide the spreading force generation. In SimPL [7], the
rough legalization is implemented by top-down geometric
partitioning and non-linear scaling. In ComPLx [8], the entire
placement process is modelled by subgradient primal-dual
Lagrange optimization, and LAL is modelled by a feasibility
projection. SimPLR [9] and Ripple [10] both extend SimPL to
handle routing congestion. MAPLE [11] combines the rough
legalization idea with multilevel clustering and improvement
of iterative local refinement.

In this paper, we propose a new quadratic placer called
POLAR inspired by SimPL [7] and based upon a novel rough
legalization and refinement approach. We notice that while the
placement solution by quadratic based wirelength minimiza-
tion may have considerable overlaps, the relative positions of
cells can be trusted in producing a legal placement with good
wirelength. Hence, during rough legalization, our goal is to
maintain the relative positions of cells as best as we can while
minimizing the cell movements. To achieve this goal, for each
hotspot, we search for a good expansion region by enumerating
many feasible candidates. Then within each expansion region,
recursive bisection is performed to evenly assign the movable
cells to each bin. In order to further improve the quality
of placement produced by rough legalization, a fast density
preserving global refinement is applied.

The contributions of this paper are listed as follows:

• An enumerative method is explained to search for a
good expansion region for each hotspot. Our method
enumerates many feasible candidates and selects the
best one. This enumerating method is very helpful
in both maintaining the cell relative positions and
minimizing cell movements.

• A novel recursive bisection based method is proposed
to evenly assign the cells to each bin within each
expansion region. This method effectively keeps the
relative positions of cells.

• A fast density preserving global refinement is intro-
duced. The refinement is applied right after rough

legalization at the early stage of the placement process
in order to improve the quality of the roughly legal
placement solution.

The rest of this paper is organized as follows. Section II
presents the preliminary. Section III elaborates the POLAR
algorithm. Section IV shows the experimental results. Finally,
the conclusion is made in Section V.

II. PRELIMINARY

A circuit can be represented by a hypergraph G = (V,E),
where V is the set of cells and E is the set of nets. Global
placement tries to determine the physical positions of the cells
without violating the placement density constraints. We denote
the x-coordinates of cells by a vector x =

(
x1, x2, · · · , x|V |

)
,

and y-coordinates by y =
(
y1, y2, · · · , y|V |

)
, the objective is

to minimize the half-perimeter wirelength (HPWL):

HPWL(x, y) = Σe∈E [max
i∈e

xi−min
i∈e

xi+max
i∈e

yi−min
i∈e

yi] (1)

A. Quadratic optimization

Assuming that all the nets have 2 pins. So the wirelength
is given by Manhattan distance between the cells. If the
Manhattan distance is approximated by squared Euclidean
distance, the cost function ϕ of global placement is as follows:

ϕ (x, y) =
1

2
xTQxx + cTx x +

1

2
yTQxy + cTy y + const (2)

where the matrices Qx and Qy are both sparse symmetric
positive definite. Minimizing ϕ is equal to solving the linear
system in Eq. (3).

∇ϕ (x, y) = Qxx + cx +Qyy + cy = 0 (3)

In POLAR, the preconditioned conjugate gradient (PCG)
method with incomplete Cholesky decomposition [12] is used
to solve Eq. (3).

B. Net model

Since many nets in the circuit have more than two pins, to
get the quadratic cost function (2), every multi-pin net should
be transformed into a set of 2-pin nets. Since the net model has
significant influence on the matrices Qx and Qy , it is important
to choose suitable net model for quadratic placer to perform
well. Considering both accuracy and runtime, Bound to Bound
(B2B) net model has been proved efficient in practice.

C. Spreading force realization

To reduce the cell overlapping, spreading forces are added
to guide the cells toward their target positions. [4] proposed a
simple way (which is called fixed-point technique) to realize
spreading force by adding 2-pin pseudo net connecting the
cell’s original position to its target position. Then the matrices
Qx and Qy are updated and linear system (3) is solved again.
In POLAR, we also use fixed-point technique.

III. THE POLAR ALGORITHM

A. Algorithm outline

As shown in Fig. 1, POLAR is composed of three stages:
initial placement, density-driven placement, local legalization.
The initial placement only minimizes the wirelength without
considering the cell overlapping. Density-driven placement
reduces cell overlapping gradually, its output is a globally even,
but locally illegal placement, because all the cells are placed
in the center of bins. At the end, an almost legal placement
result is achieved by local legalization, which spreads the cells
out within each bin.

In initial placement stage, the hybrid net model is respon-
sible for the initial solution, then B2B net model optimizes
the wirelength iteration by iteration. Usually, three iterations
are enough. In each iteration of density-driven placement,
hotspots are first identified as spatially contiguous collections
of over-filled bins. The expansion region of each hotspot is then
constructed by enumerating and comparing all the candidates.
Each expansion region should have sufficient free space for
placing the cells assigned to it. Then, within each expansion
region, the cells are evenly assigned to each bin. With the
new cell positions or target positions, the linear system (3)
is updated and solved again. In addition, in order to correct
the misleading cell positions at the early stage, a fast density
preserving global refinement optimizes the wirelength in the
first five iterations. The density-driven placement runs until it
satisfies the converge condition, which is defined as that the
number of iterations is greater than 70 or the global wirelength
is improved by less than 10% in the last 10 iterations. Once the
almost-legal placement is obtained, strict legalization removes
all remaining overlap, and detailed placement is applied.

Fig. 1. The outline of POLAR.

The rough legalization aims to get an almost even place-
ment with minimal cell movements simultaneously keeping
the relative positions of cells. To simplify the problem, we
ignore local legality, which means that the placement region
is split into a set of equal sized bins, and all the cells can
only be placed in the center of bin (local legality is relaxed).
So the rough legalization can be formulated as a cell-to-bin
assignment. The bin is expected to accommodate about 15-
40× average movable cell area, for ISPD2005 benchmarks,
we used 4 × 4 standard row height bins.

B. Expansion regions enumeration

The placement region is divided into a uniform grid of
m × n equal-sized bins. Before elaborating the expansion on
region enumeration, we formally define bin graph, hotspot, and
hotspot expansion region as follows.

Definition 1: The bin graph for the uniform bin grid is
the graph in which (i) each bin represents a vertex, and (ii)
two vertices are joined by a graph edge if and only if the two
bins for those vertices are directly adjacent, either horizontally
or vertically. That is, referring to a bin by its (row,column)
coordinates in the uniform bin grid, bins (i, j) and (k, l) are
adjacent if and only if |k − i|+ |l − j| = 1.

Definition 2: A hotspot is a spatially contiguous collection
of overfilled bins, i.e., a connected subgraph of overfilled bins
in the bin graph. A hotspot is also called a “clump.” For any
pair of bins in the clump, there is a path in the bin graph
connecting them, the edges of the path can only be vertical or
horizontal, and this path cannot go through the bins outside of
the clump.

Definition 3: The expansion region of a hotspot is a set
of bins, which completely covers the hotspot and have enough
available space to accommodate the movable cells within them.

In this paper, expansion regions for hotspots may overlap,
and we only consider the rectangular expansion region, which
can be denoted by a quadruple (lx, ly, rx, ry), where (lx, ly)
and (rx, ry) are respectively the bin coordinates of left-down
corner and right-up corner. However, large rectangular expan-
sion regions are split into contiguous aggregations of mutually
overlapping smaller windows, as described below. In effect,
such splitting produces approximations to non-rectangular,
rectilinear covers of irregularly shaped clumps. The insight
comes from that an irregularly shaped hotspot may result in an
unnecessarily large expansion region, with unnecessarily large
cell displacements as a consequence. For example, as shown in
Fig. 2, the right figure with two expansion regions achieves a
smaller expansion region, possibly with less displacement, than
the left one with a larger, single-window expansion region. In
POLAR, we try to avoid unnecessary big expansion regions
by imposing upper bound on the number of bins in a hotspot.
If a hotspot contains more than upper bound number of bins,
it will be automatically split into a set of smaller, spatially
contiguous hotspots.1

Fig. 2. Imposing upper bound on the number of bins in a hotspot. The
overflow bins are coloured , the boundary of expansion region is marked by
the red bold line.

1Expansion regions for spatially adjacent hotspots are allowed to overlap
as needed to capture sufficient available placement area for LAL. Details
concerning expansion-region ordering in such situations are left to future work

Suppose the placement region is split to m× n bin grids,
the number of expansion regions is O(m2n2). Enumerating all
feasible ones is time consuming. To trade off the runtime and
quality, the ones whose geometry center is also the gravity
center of hotspot, are enumerated. And the one with minimal
size and reasonable aspect ratio would be picked.

The algorithm to enumerate the feasible expansion regions
is presented in Algorithm 1. The space utilization ratio γ of
an expansion region is the ratio of, total area of cells within
expansion region, and the area of expansion region. It can
be quickly calculated by a looking up table method. Suppose
the total area of cells within region (0, 0, i, j) is stored in
O[i][j], and the area of region (0, 0, i, j) is stored in A[i][j],
the space utilization ratio of expansion region (lx, ly, rx, ry)
can be represented by the equation (4). In addition, the two
2-dimension arrays O[m][n] and A[m][n] can be easily calcu-
lated and updated by dynamic programming. Fig. 3 illustrates
how dynamic programming works, note that the whitespace
(blackspace) of blue boundary window is subtracted twice by
the middle two items, so the last item is added.

Fig. 3. Lookup table method for space calculation

γ =
O[rx][ry]−O[rx][ly]−O[lx][ry] +O[lx][ly]

A[rx][ry]−A[rx][ly]−A[lx][ry] +A[lx][ly]
(4)

C. Recursive bisection based cell distribution

Once the expansion region for hotspot is determined, the
cells (within expansion region) are evenly assigned to each
bin (within expansion region) by a partition tree. To balance
the disturbance of x and y-directed relative positions, the
horizontal and vertical cut are applied alternatively similar with
the slicing tree of [13].

However, different from [13], the partition tree should split
the expansion regions into independent bins. This means that
the cut lines can only belong to the set of bin boundaries,
and each leaf node corresponds to each bin. Besides, the cells
are not really moved during the construction of partition tree.
Rather, a path from the root to the leaf (the bin to which it is
finally assigned) is maintained for each cell. Hence, once the
partition tree has been finished, each cell is assigned to the
corresponding bin by going through its path.

The detail of constructing partition tree is shown in Algo-
rithm 2. The partition tree is constructed level by level. For any

Algorithm 1 Expansion region enumeration for a hotspot
Require: m× n grids of placement region, hotspot H
Ensure: expansion region (lx, ly, rx, ry) for hotspot H

1: calculate the coordinate (gx, gy) of the bin where the gravity
center of cells in the hotspot H locates;

2: Γ = ∅;
3: found = false;
4: ϱ = 3;
5: while notfound do
6: for radiusx = 1 → max {gx,m− gx} do
7: for radiusy = 1 → max {gy, n− gy} do
8: lx = max {0, gx − radiusx};
9: ly = max {0, gy − radiusy};

10: rx = min {m− 1, gx + radiusx};
11: ry = min {n− 1, gy + radiusy};
12: if region R(lx, ly, rx, ry) does not cover H then
13: continue;
14: end if
15: get the space utilization ratio γ of region R;
16: if γ < density target && aspect ratio < ϱ then
17: push region R into Γ;
18: break;
19: end if
20: end for
21: end for
22: if Γ = ∅ then
23: ϱ+ = 1.0;
24: else
25: found = true;
26: end if
27: end while
28: return the (area) minimal region from Γ;

Fig. 4. An example of partition tree for 3 × 3 expansion region, the vertical
cut line is first applied. The bin 2 and 4 are occupied by fixed macros

sub expansion region F (lx, ly, rx, ry), it is divided into two
subregions L (left subregion by vertical cut lx+rx

2 , or bottom
subregion by horizontal cut ly+ry

2) and R (right subregion by
vertical cut lx+rx

2 , or top subregion by vertical cut ly+ry
2). If

the available area of L and R are respectively AL and AR,
then the partition pivot (area) is AL

(AL+AR) × AM , where AM

is the total area of moveable cells within F . According to this
pivot, cells are partitioned to L or R, which means that the
maintained path of each cell goes forward a step. There is a
special case during the partition. If the sub expansion region
is 1× 2 (2× 1) grids, the vertical (horizontal) cut line can not
be applied obviously. Therefore, this sub expansion region is

not split in this level, but in the next level when the cut type
is changed.

Algorithm 2 Cell distribution for one expansion region
Require: The cells S and their positions, expansion region

(lx, ly, rx, ry)
Ensure: Each cell is placed in the center of its belonged bin.

1: get the cell ordering in both x and y directions;
2: determine the initial cut direction (vertical or horizontal);
3: push the root to a queue Q; ◃ Q stores the sub expansion

regions, which have the same level
4: while true do
5: Φ = ∅; ◃ Φ stores the next level sub expansion regions
6: if Q is empty then break; ◃ all the leaf nodes have been

generated
7: end if
8: while Q is not empty do
9: pop a sub expansion region F from Q;

10: if F is a 1 × 2 (2 × 1) grids && the cut is vertical
(horizontal) then

11: Φ = Φ ∪ F ;
12: else if F is not bin then
13: divide F into L and R;
14: Φ = Φ ∪ {L,R}
15: if the cut is vertical then
16: The path of each cell goes forward a step accord-

ing to x-directed cell ordering;
17: else
18: The path of each cell goes forward a step accord-

ing to y-directed cell ordering;
19: end if
20: end if
21: end while
22: change the cut type;
23: push each elements of Φ into Q;
24: end while
25: for each cell in S do
26: find the belonged bin by going through its path from root to

leaf, then update the position;
27: end for

Fig. 4 shows the partition tree for a 3 × 3 grids.
In the first level, vertical cut is used so that Q =
{{0, 1, 2} , {3, 4, 5, 6, 7, 8}}. In the second level, horizontal cut
is used so that Q = {{2} , {0, 1} , {5, 8} , {3, 4, 6, 7}}. In the
third level, since the sub expansion region {0, 1} is a 2 × 1
grids and current cut type is vertical, so the line 11 in algorithm
2 is executed, then Q = {{0, 1} , {5} , {8} , {3, 4} , {6, 7}}.
Finally, in the last level, Q = ∅, all the leaves are now bins,
the partition tree is completely constructed.

In Algorithm 2, the cell ordering can be got in O(|S|)
by bucket sort. The number of levels in partition tree is
O(log[(rx − lx)(ry − ly)]). In each level, the cells are scanned
by x or y-directed ordering once(line 16 or 18 in Algo-
rithm 2). Besides, for each cell, going through its path
from root to leaf needs O(log[(rx − lx)(ry − ly)]). Combin-
ing all the above, the time complexity of algorithm 2 is
O(|S|log[(rx − lx)(ry − ly)]).

D. Density preserving refinement

The relative positions of cells in the first several iterations
have significant influence on the wirelength optimization.
Considering that the initial placement ignores the cell over-
lapping when optimizing the wirelength, and the partition tree

based cell-to-bin assignment algorithm cannot maintain the
x and y-directed relative positions simultaneously. Hence, a
density preserving global refinement is expected to repair and
get better cell positions with little perturbing of the density
distribution. Note that this technique only takes effect in the
first several iterations.

This refinement technique is based on the optimal region
idea [14]. Given all other cells are fixed, the optimal region for
cell vi is defined as the region to place vi where the wirelength
is optimal. For any cell vi, suppose the set of associated nets
is denoted by Ni, for each net p ∈ Ni, the bounding box
is denoted by (xl[p], yl[p], xr[p], yr[p]). [14] proves that the
optimal region of vi is

(
xopt
l , yoptl , xopt

r , yoptr

)
, where xopt

l , xopt
r

are the medians of (xl[1], xr[1], xl[2], xr[2], · · ·), yoptl , yoptr are
the medians of (yl[1], yr[1], yl[2], yr[2], · · ·).

The detail of refinement is shown in Algorithm 3. Each
cell only has one opportunity to move (if it is locked, then it
cannot be moved any more) (line 6 and 19). The unlocked cells
which have high connectivity are first considered (from line 1
to line 4). An unlocked cell can be moved to its optimal region
depends on the following two conditions: (a) it is not in its
optimal region, (b) the destination bin has enough unlocked
cells to balance density. (line 11 and line 16). Algorithm 3
would generate many move chains until all the cells are locked.
Fig. 5 shows an example of two move chains.

Fig. 5. An example of two move chains, the left figure shows the original
cell position and move chains, the right figure shows the new cell position
after movement.

E. Force modulation

After the cells’ target positions are determined, the linear
system (3) is updated and solved again. Firstly, the B2B net
model is refreshed based on cells’ target positions. Then, for
each movable cell, a two pin pseudo net connecting it to its
target position is added into the spring system. The weight of
pseudo net is calculated as follows:

weight =

{
ε ∗ αi−1 if i ≤ 20
ε ∗ α19 ∗ βi−20 if i > 20

It is a two-stage force modulation, where ε is a small value,
and β > α. At the early stage, the weight of pseudo net is small
in order to avoid big change of placement. While at the latter
stage, weight of pseudo net is increased more quickly to speed
up the convergence.

IV. EXPERIMENTAL RESULTS

We implemented POLAR in C++, and ran it on a Linux
PC with 16GB of memory and Intel Core-i3 3.3GHz CPU,

Algorithm 3 density preserving global refinement
Require: The cells V and net lists E
Ensure: Each cell is at most moved once

1: unlock all the cells, sort V by the number of associated nets in
descend order;

2: for each bin do
3: sort the cells within the bin by the number of associated nets

in descend order;
4: end for
5: for each cell vi ∈ V do
6: if vi is not locked then
7: initialize a queue Q, push vi into Q;
8: while Q is not empty do
9: pop a cell from Q, denoted by vtop;

10: determine the destination bin of vtop by optimal region
idea [14];

11: if the destination bin has no enough unlocked cell to
move out to maintain density preserving ∥ vtop is already in its
optimal region then

12: don’t move vtop;
13: else
14: move vtop, update the bins’ cell list;
15: for each unlocked cell vj ∈ destination bin do
16: push vj into Q until the density preserving is

satisfied.
17: end for
18: end if
19: lock vtop;
20: end while
21: end if
22: end for

which has two cores. The ISPD 2005 benchmark suite [15] is
used to verify the efficiency of POLAR. FastDP [16] is used
to perform legalization and detailed placement. Note that we
turn off the cell flipping of FastDP. ‘

A. Runtime breakdown of POLAR

The runtime of POLAR is shown in Table I. It is broken
down into four components: PCG, rough legalization (which
includes enumerative expansion region search, cell-to-bin as-
signment, and density preserving refinement), others (which
includes I/O, wirelength calculation, linear system update, and
so on), legalization, and detailed placement. On average, PCG
takes the most of the total runtime (48.1%). Rough legalization
and others take 13.9% and 15.1%, respectively. Legalization
and detailed placement takes 22.9%. Since PCG is the main
bottleneck, to achieve speedup, we have also developed a 2-
core version in which the x- and y-direction linear systems are
solved in parallel using openMP and Intel math kernel library
(MKL) [17]. We get about 22% speedup of POLAR using two
cores.

B. Comparison with previous placers

We compare POLAR with other state-of-the-art placers,
ran them except MAPLE on the same platform (64 bit Linux
OS, Intel Core-i3 3.3GHz CPU, 16GB of memory)2. The
experimental results are shown in Table II. For wirelength, on

2NTUplacer3’version is V12.06.05, SimPL’version is V12.12.07, ComPLx’s
version is V13.07.30. MAPLE binary is unavailable to us, so MAPLE’s data
is transformed from [11] which show that it is 7.14 × slower than SimPL.

TABLE I. RUNTIME BREAKDOWN OF POLAR ON ISPD 2005 BENCHMARKS. RUNTIME IS MEASURED IN SECOND.

Benchmark Global placement Legalization & Total runtime Total runtime FastPlace3 [5]
PCG Rough legalization Others detailed placement (1-core) (2-core) runtime

adaptec1 115 25 31 40 211 147 157
adaptec2 143 29 40 63 275 198 214
adaptec3 233 71 70 134 518 431 486
adaptec4 250 73 68 123 514 420 446
bigblue1 116 31 39 61 247 203 224
bigblue2 243 87 104 110 544 403 390
bigblue3 548 222 146 329 1245 1048 1130
bigblue4 1341 396 499 548 2784 2200 2086
Average 0.481 0.139 0.151 0.229 1.00 0.780 0.826

TABLE II. HPWL COMPARISON ON ISPD 2005 BENCHMARK SUITE [15]. RUNTIME IS MEASURED IN MINUTE.

Benchmark NTUPlace3 [18] mPL6 [19] + FastDP[16] FastPlace3 [5] SimPL [7] ComPLx [8] MAPLE [11] POLAR
WL Time WL Time WL Time WL Time WL Time WL Time WL Time (1-core) Time (2-core)

adaptec1 79.83 5.1 77.29 19.3 78.66 2.61 77.53 2.43 77.79 2.64 76.36 19.33 76.49 2.85 2.45
adaptec2 90.08 6.7 90.02 20.08 94.06 3.57 91.11 3.50 88.97 3.27 86.95 24.23 86.72 4.33 3.3
adaptec3 232.72 13.5 207 62.76 214.13 8.10 203.79 6.75 203.57 7.58 209.78 50.72 201.9 9.15 7.18
adaptec4 215 16.4 188.87 59.28 197.50 7.43 184.75 5.18 183.22 6.65 179.91 49.22 183.02 8.09 7.00
bigblue1 96.94 9.7 96.18 24.41 96.67 3.73 95.59 4.46 95.30 5.2 93.74 24.70 94.04 4.44 3.38
bigblue2 158.26 24.2 148.91 68.13 155.74 6.50 145.87 5.61 145.39 7.03 144.55 43.82 144.45 7.88 6.71
bigblue3 343.57 27.8 335.53 93.23 365.16 18.83 351.65 17.71 337.96 18.1 323.05 89.51 321.14 24.03 17.46
bigblue4 825.48 81 814.13 212 836.20 34.76 791.29 26.86 788.80 35.8 775.71 231.44 793.56 39.06 36.66
Average 1.080 1.91 1.028 6.13 1.069 0.826 1.025 0.77 1.015 0.883 1.000 5.163 1.000 1.000 0.780

average, POLAR achieves improvement of 8.0%, 2.8%, 6.9%,
2.5%, and 1.5% versus NTUPlace3, mPL6, FastPlace3, SimPL,
and ComPLx, respectively. For the total runtime using one core
(including legalization and detailed placement), on average,
POLAR is 1.91×, 6.13×, and 5.163× faster than NTUPlace3,
mPL6 and MAPLE, respectively. POLAR is slightly slower
than FastPlace3, SimPL, and ComPLx.

In summary, POLAR is competitive in wirelength and run-
time simultaneously. It achieves the best published wirelength
similar to MAPLE while is 5.16× faster. It is also almost as
fast as the fastest academic placer SimPL but is 2.5% better
in wirelength.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an efficient and effective
global placer POLAR. It adopts the popular idea of rough
legalization, and enhances it. The experimental results on ISPD
2005 benchmark suite verify that our placer is very comparable
to the state-of-the-art placers in both runtime and placement
quality.

We list the following things as future works. Firstly,
enhance the algorithm to find ill-shaped hotspot rather than
simply restricting the number of bins. Secondly, extend PO-
LAR to handle with big movable macros. Thirdly, consider
more optimization objectives, such as congestion, data path.
Additionally, we plan to work on speeding the solver exploiting
recent advancements in the solution of symmetric diagonally
dominant linear systems.

REFERENCES

[1] C. Alpert, Z. Li, G.-J. Nam, C. N. Sze, N. Viswanathan, and S. I. Ward,
“Placement: hot or not?,” ICCAD ’12, pp. 283–290, 2012.

[2] F. M. J. P. Spindler, U. Schilichtmann, “Kraftwerk2 - a fast force-
directed quadratic placement approach using an accurate net model,”
Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 27, no. 8, pp. 1398–1411,
2008.

[3] T. Luo and D. Z. Pan, “DPlace2.0: a stable and efficient analytical
placement based on diffusion,” ASP-DAC ’08, 2008.

[4] B. Hu, Y. Zeng, and M. Marek-Sadowska, “mFAR: fixed-points-
addition-based VLSI placement algorithm,” ISPD ’05, pp. 239–241,
2005.

[5] N. Viswanathan, M. Pan, and C. Chu, “FastPlace 3.0: A fast multilevel
quadratic placement algorithm with placement congestion control,”
ASP-DAC ’07, pp. 135–140, 2007.

[6] N. Viswanathan, G.-J. Nam, C. J. Alpert, P. Villarrubia, H. Ren, and
C. Chu, “RQL: global placement via relaxed quadratic spreading and
linearization,” DAC ’07, pp. 453–458, 2007.

[7] M.-C. Kim, D.-J. Lee, and I. L. Markov, “SimPL: an effective placement
algorithm,” ICCAD ’10, pp. 649–656, 2010.

[8] M.-C. Kim and I. L. Markov, “ComPLx: A competitive primal-dual
lagrange optimization for global placement,” DAC ’12, pp. 747–752,
2012.

[9] M.-C. Kim, J. Hu, D.-J. Lee, and I. L. Markov, “A SimPLR method
for routability-driven placement,” ICCAD ’11, pp. 67–73, 2011.

[10] X. He, T. Huang, L. Xiao, H. Tian, G. Cui, and E. F. Y. Young, “Rip-
ple: an effective routability-driven placer by iterative cell movement,”
ICCAD ’11, pp. 74–79, 2011.

[11] M.-C. Kim, N. Viswanathan, C. J. Alpert, I. L. Markov, and S. Ramji,
“MAPLE: multilevel adaptive placement for mixed-size designs,” ISPD
’12, pp. 193–200, 2012.

[12] Y. Saad, Iterative Methods for Sparse Linear Systems. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 2nd ed., 2003.

[13] C. Li, M. Xie, C.-K. Koh, J. Cong, and P. H. Madden, “Routability-
driven placement and white space allocation,” in Proceedings of the
2004 IEEE/ACM International conference on Computer-aided design,
ICCAD ’04, pp. 394–401, 2004.

[14] S. Goto, “An efficient algorithm for the two-dimensional placement
problem in electrical circuit layout,” IEEE Trans. Circuit and Systems,
vol. 28, no. 1, pp. 12–18, 1981.

[15] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter, and M. Yildiz, “The
ISPD2005 placement contest and benchmark suite,” ISPD ’05, pp. 216–
220, 2005.

[16] M. Pan, N. Viswanathan, and C. Chu, “An efficient and effective detailed
placement algorithm,” ICCAD ’05, pp. 48–55, 2005.

[17] http://software.intel.com/en-us/intel-mkl.
[18] T.-C. C. et al, “NTUPlace3: An analytical placer for large-scale mixed-

size designs with preplaced blocks and density constraints,” Trans.
Comp.-Aided Des. Integ. Cir. Sys., vol. 27, no. 7, pp. 1228–1240, 2008.

[19] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze, and M. Xie, “mPL6:
enhanced multilevel mixed-size placement,” ISPD ’06, pp. 212–214,
2006.

