
SafeChoice: A Novel Clustering Algorithm for Wirelength-Driven Placement
∗

Jackey Z. Yan
Department of ECE

Iowa State University
Ames, IA 50010 USA

zijunyan@iastate.edu

Chris Chu
Department of ECE

Iowa State University
Ames, IA 50010 USA

cnchu@iastate.edu

Wai-Kei Mak
Department of CS

National Tsing Hua University
Hsingchu 300, Taiwan

wkmak@cs.nthu.edu.tw

ABSTRACT
This paper presents SafeChoice (SC), a novel clustering algorithm
for wirelength-driven placement. Unlike all previous approaches, SC
is proposed based on a fundamental theorem, safe condition which
guarantees that clustering would not degrade the placement wire-
length. To derive such a theorem, we first introduce the concept of
safe clustering, i.e., do clustering without degrading the placement
quality. To check the safe condition for pair-wise clustering, we pro-
pose selective enumeration technique. SC maintains a global priority
queue (PQ) based on the safeness and area of potential clusters. Iter-
atively the cluster at the top of the PQ is formed. SC automatically
stops clustering when generating more clusters would degrade the
placement wirelength. To achieve other clustering objectives, e.g.,
any target clustering ratio, SC is able to perform under three different
modes. Comprehensive experimental results show that the clusters
produced by SC consistently help the placer to achieve the best wire-
length among all other clustering algorithms.

Categories and Subject Descriptors
B.7.2 [Hardware, Integrated Circuits, Design Aids]: Placement
and routing

General Terms
Algorithms, Design, Performance

Keywords
Hypergraph Clustering, VLSI Placement, Physical Design

1. INTRODUCTION
For modern VLSI designs, placement is the most critical stage in

the physical synthesis flow. It has significant impacts on timing, rout-
ing and even manufacturing. In the nanometer scale era, a circuit
typically contains millions of objects. It is extremely challenging for
a modern placer to be reasonably fast, yet still be able to produce
good solutions. Clustering cuts down the problem size via combin-
ing highly connected objects, so that the placers can perform more

∗
This work was partially supported by IBM Faculty Award, NSF under grant

CCF-0540998 and NSC under grant NSC 98-2220-E-007-031.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’10, March 14–17, 2010, San Francisco, California, USA.
Copyright 2010 ACM 978-1-60558-920-6/10/03 ...$5.00.

efficiently and effectively on a smaller problem. It is an attractive so-
lution to cope with the ever-increasing design complexity. Therefore,
as an essential approach to improve both the runtime and quality of
result, various clustering algorithms have been adopted in the state-
of-the-art placement algorithms [1–7].

1.1 Previous Work
Clustering is a traditional problem in VLSI CAD area. The cluster-

ing algorithms proposed long time ago were described in [8]. In the
last several years, various new algorithms were proposed to continue
improving the clustering quality. In [9] Karypis et al. proposed edge
coarsening (EC) clustering. In EC objects are randomly visited. Each
object is clustered with the most highly-connected unvisited neighbor
object. The connectivity between two objects is computed as the total
weight of all edges connecting them with hyperedges represented by
a clique model. FirstChoice (FC) clustering was developed in [10]
and is very similar to EC. The only difference between them is that
for each object in FC, all of its neighbor objects are considered for
clustering. FC has been used in placers NTUplace3 [1] and Capo [2].
However, neither EC nor FC considers the impact of cluster size on
the clustering quality. Alpert et al. [11] and Chan et al. [12] im-
proved EC and FC respectively, by considering the area of clusters,
i.e., clusters with smaller area are preferred to be generated. Cong
et al. [13] proposed an edge separability-based clustering (ESC). Un-
like previous methods, ESC uses edge separability to guide the clus-
tering process. To explore global connectivity information, all edges
are ranked via a priority queue (PQ) based on the edge separability.
Without violating the cluster size limit, the two objects in the highest
ranking edge are clustered. Hu et al. [14] developed fine granular-
ity (FG) clustering. The difference between FG and ESC is that for
FG the order in the PQ is based on edge contraction measured by a
mutual contraction metric. FG has been used in placer mFAR [3].
Nam et al. [15] proposed BestChoice (BC) clustering which has been
widely used in the top-of-the-line placers APlace [4], mPL6 [5], Fast-
Place3 [6], and RQL [7]. Instead of ranking the edges, BC maintains
a PQ based on a pair of objects, i.e., each object and its best neigh-
bor object. A score function considering both hyperedge weight and
object area is derived to calculate the score between two objects. For
each object, the best neighbor object is the neighbor object with the
highest score. The two objects at the top of the PQ are clustered it-
eratively. But updating such a PQ is quite time-consuming. Hence,
the authors proposed a lazy-update technique to make a trade-off be-
tween the clustering runtime and quality.

All of the above clustering algorithms either explicitly or implicitly
transform a hyperedge into a clique model, so that they can handle
pair-wise clustering, i.e., cluster two objects at each time. Recently,
Li et al. [16] presented NetCluster (NC) that can handle hyperedges
directly and cluster more than two objects at one time. In NC, initial
clusters are first generated by FM algorithm. Then a score is assigned
to each net. The objects in the net with the highest score are clustered.

For all previous clustering algorithms, none of them specifically
aims at improving the placement quality. They proposed a variety
of heuristics, e.g., different score functions, to measure the connec-
tivity among the objects, so that the most highly-connected objects
are clustered. Of course, the benefit is a reduction of problem size.
But, clustering such objects may not help the placer to produce bet-
ter solution. This is because clustering forces some objects to stay
together during placement, which constrains the solution space ex-
ploration of the placer. If such constraint is enforced improperly, i.e.,
cluster objects that should not be clustered, the placement solution
would be jeopardized. It has not been proved that highly-connected
objects should be clustered. So we believe the fundamental problem
of clustering for placement is: How to do clustering, so that it can be
guaranteed that clustering would not degrade the placement quality?

1.2 Our Contributions
In this work, we present a novel clustering algorithm called Safe-

Choice (SC) for wirelength-driven placement. SC handles hyper-
edges directly. Different from all previous clustering algorithms, SC
is proposed based on a fundamental theorem, which guarantees that
clustering would not degrade the placement quality. None of pre-
vious techniques has such guarantee. Additionally, three operation
modes of SC are presented to achieve various clustering objectives.
Essentially, we have five main contributions:

• Concept of Safe Clustering: We introduce the concept of safe
clustering. If clustering some objects would not degrade the wire-
length in an optimal placement, it is safe to cluster such objects.

• Safe Condition: Based on the concept of safe clustering, we
derive the fundamental theorem — safe condition for pair-wise
clustering. We prove that if any two objects satisfy the safe con-
dition, clustering them would not degrade the wirelength.

• Selective Enumeration: To check the safe condition for pair-
wise clustering, we propose selective enumeration. With this
method, we can efficiently find out the safe clusters in a circuit.

• SafeChoice: We present SafeChoice algorithm that globally ranks
potential clusters via a PQ based on their safeness and area. Iter-
atively the cluster at the top of the PQ will be formed.

• Smart Stopping Criterion: A smart stopping criterion is pro-
posed based on a simple heuristic. So it can automatically stop
clustering once generating more clusters would start to degrade
the placement wirelength. As far as we know, none of previous
algorithms has such feature.

We compare SC with three state-of-the-art clustering algorithms FC,
BC and NC. The results show that the clusters produced by SC con-
sistently helps the placer to generate the best wirelength.

The rest of this paper is organized as follows. Section 2 describes
the safe clustering. Section 3 introduces the algorithm of SafeChoice.
Experimental results are presented in Section 4. Finally, this paper
ends with a conclusion and the direction of future work.

2. SAFE CLUSTERING
In this section, we first introduce the concept of safe clustering.

Then based on this concept we derive the safe condition for pair-wise
clustering. Finally we propose selective enumeration to practically
check the safe condition for any two objects in the circuit.

First of all, we introduce some notations used in the discussion.
The original netlist is modeled by a hypergraph G(V, E), where V is
the set of vertices and E is the set of hyperedges. Given v ∈ V , Ev is
the set of hyperedges incident to v, and Ev = E −Ev . Let P be the
set of all possible placements of the vertices in V . The wirelength is
measured by weighted Half-Perimeter Wirelength (HPWL).

2.1 Concept of Safe Clustering
The concept of safe clustering is defined as follows.

DEFINITION 1. Safe Clustering: For a set of vertices Vc ⊆ V
(|Vc| ≥ 2), if the optimal wirelength of the netlist generated by clus-
tering Vc is the same as the optimal wirelength of the original netlist,
then it is safe to cluster the vertices in Vc.

The placement problem is NP-hard. In practice we cannot find the
optimal wirelength for a real circuit. So we present a more practical
definition below.

DEFINITION 2. Safe Clustering�: ∀p ∈ P , if a set of vertices
Vc ⊆ V (|Vc| ≥ 2) can be moved to the same location without
increasing the wirelength, then it is safe to cluster the vertices in Vc.
(Assume the total area of vertices in Vc is very small, so that we can
ignore the overlap issue.)

Definition 2 is stronger than Definition 1. If Vc is safe for clustering
based on Definition 2, it is also safe under Definition 1. In the rest of
this paper, we employ Definition 2 for discussion.

Based on Definition 2, we derive the definitions for horizontally
and vertically safe clustering as follows.

DEFINITION 3. Horizontally/Vertically Safe Clustering: ∀p ∈
P , if a set of vertices Vc ⊆ V (|Vc| ≥ 2) can be horizontally/vertically
moved to the same x/y coordinate without increasing the wirelength
in x/y direction, then it is horizontally/vertically safe to cluster the
vertices in Vc. (Assume the total area of vertices in Vc is very small,
so that we can ignore the overlap issue.)

Now we show that if vertices in Vc are both horizontally and verti-
cally safe for clustering, then it is safe to cluster them under Defi-
nition 2. Given any initial placement p ∈ P , firstly we move those
vertices horizontally to the same x coordinate. Secondly, we move
them vertically to the same y coordinate. Consequently, the vertices
in Vc are moved to the same location. Based on Definition 3 the
wirelength would not increase during the movements. So it is safe to
cluster the vertices in Vc by Definition 2.

Without considering fixed vertices, e.g., I/O objects, if vertices in
Vc are horizontally safe for clustering, then they are always vertically
safe for clustering as well. This is because a vertical movement in a
placement p is the same as a horizontal movement in another place-
ment obtained by rotating p by 90◦. If a set of vertices is horizontally
safe for clustering, it is also vertically safe for clustering. So for the
following discussion it is sufficient to consider only x direction.

2.2 Safe Condition for Pair-Wise Clustering
From Definition 2 we derive a condition to mathematically deter-

mine whether it is safe to cluster the vertices in Vc. Firstly, we define
two key functions for the derivation. For the sake of simplicity, we al-
ways assume Vc contains only two vertices a and b, i.e., Vc = {a, b}.

DEFINITION 4. Wirelength Gradient Function: Given a place-
ment p ∈ P and a hyperedge e ∈ E, assuming a is on the left of b,
we define

Δa(p, e) : Gradient function of wirelength of e if a is moving towards b.
Δb(p, e) : Gradient function of wirelength of e if b is moving towards a.

Let we(we ≥ 0) be the weight of e. From Definition 4 we have

Δa(p, e) =

8<
:

we if a is the rightmost vertex of e
−we if a is the only leftmost vertex of e
0 otherwise

Δb(p, e) =

8<
:

we if b is the leftmost vertex of e
−we if b is the only rightmost vertex of e
0 otherwise

Considering a is moving towards b in p, if Δa(p, e) > 0, it means the
wirelength of e will increase; if Δa(p, e) < 0, then the wirelength of
e will decrease; otherwise the wirelength of e will not change.

DEFINITION 5. Total wirelength Gradient Function: Given a
placement p ∈ P and Vc = {a, b}, we define

Fab(p) = min(
X

e∈Ea

Δa(p, e),
X

e∈Eb

Δb(p, e))

In p if both a and b move towards each other, Fab(p) first calculates
the total wirelength change of all hyperedges for moving a and b,
respectively. Then it returns the one with smaller change. For exam-
ple, if Fab(p) =

P
e∈Ea

Δa(p, e) ≤ 0, it means moving a towards b

would not increase the total wirelength; if Fab(p) > 0, then moving
either a or b towards each other would increase the total wirelength.
Next, we use this function to derive the safe condition for a and b.

THEOREM 1. Safe Condition for Vc = {a, b}
It is safe to cluster a and b if ∀p ∈ P,Fab(p) ≤ 0

PROOF. Given an initial placement p0 ∈ P with total wirelength
l0. Because ∀p ∈ P,Fab(p) ≤ 0, we have Fab(p

0) ≤ 0. Suppose
Fab(p

0) =
P

e∈Ea
Δa(p0, e) ≤ 0. This means by moving a a small

distance towards b, the total wirelength of all hyperedges would not
increase. After such movement, we get another placement p1 with
total wirelength l1, where l0 ≥ l1. For p1 we still have Fab(p

1) ≤ 0.
Suppose this time Fab(p

1) =
P

e∈Eb
Δb(p

1, e) ≤ 0. This means

moving b a small distance towards a would not increase the total
wirelength. Again, after such movement, we get another placement
p2 with total wirelength l2, where l1 ≥ l2. We keep moving either a
or b towards each other until they reach the same location. Suppose
the final total wirelength is ln. Because after each movement we
always have Fab(p) ≤ 0, which means the total wirelength would
not increase, eventually we have l0 ≥ ln.

As a result, given any initial placement p0 we can gradually move
a and b to the same location without increasing the wirelength. So
based on Definition 2, it is safe to cluster vertices a and b.

2.3 Selective Enumeration
To check whether it is safe to cluster a and b, Theorem 1 shows

that we need to generate all placements in P . To do so, we have to
enumerate all possible positions for all vertices in V . Apparently this
is not a practical approach. In this section, we show that in order to
check Theorem 1, it is sufficient to consider only a small subset of
placements. Selective enumeration technique is proposed to enumer-
ate such necessary placements.

Selective enumeration is motivated by the following principle: Given
two placements p1, p2 ∈ P , if we know Fab(p1) ≤ Fab(p2), then
p1 can be ignored in the enumeration. This is because Theorem 1
shows that the safe condition is only determined by the placement
with the maximum Fab(p) value. So the basic idea of selective enu-
meration is to find out the relationship of Fab(p) values among dif-
ferent placements, so that in the enumeration process we can ignore
the placements with smaller or equal Fab(p) values. Placements in
P are generated by different positions of different vertices. Our goal
is to identify some vertices in V , such that some or even all of their
possible positions can be ignored.

We first classify the vertices in V into two categories Vāb̄ and Vab

(Vāb̄ ∪ Vab ∪ {a, b} = V). Then we discuss the enumeration of their
positions separately. ∀v ∈ V , xv denotes the x coordinate of v.

1. Vāb̄: vertices connecting with neither a nor b.

2. Vab: vertices connecting with at least one of a and b.

LEMMA 1. Given a placement p ∈ P , by moving vertex v ∈ Vāb̄

to any other position, another placement p′ ∈ P is generated. We
have Fab(p) = Fab(p

′).

PROOF. Since ∀v ∈ Vāb̄, v connects with neither a nor b, chang-
ing the position of v would not change the leftmost or rightmost ver-
tex of any hyperedge connecting with a or b. Therefore,

∀e ∈ Ea, Δa(p, e) = Δa(p′, e)
∀e ∈ Eb, Δb(p, e) = Δb(p

′, e)

Thus, Fab(p) = Fab(p
′).

Based on Lemma 1, in the enumeration we can simply ignore all
vertices in Vāb̄.

LEMMA 2. Given a placement p ∈ P , vertex v ∈ Vab and xv =
k1. After moving v to xv = k2, another placement p′ ∈ P is gen-
erated. We have Fab(p) = Fab(p

′) if any one of the following con-
ditions is satisfied: (1) k1 ≤ xa and k2 ≤ xa; (2) k1 ≥ xb and
k2 ≥ xb; (3) xa < k1 < xb and xa < k2 < xb.

PROOF. Suppose condition (1) holds, i.e., v is on the left of a
in both p and p′. ∀e ∈ Ev , we consider two1 possible values of
Δa(p, e):
• Δa(p, e) = we

This means a is the rightmost vertex of e in p. After moving v
to k2, because k2 ≤ xa, a is still the rightmost vertex of e in p′.
Thus, Δa(p′, e) = we = Δa(p, e).

• Δa(p, e) = 0
This means a is neither the only leftmost nor the rightmost vertex
of e in p. After moving v to k2, because k2 ≤ xa, v is still on the
left of a in p′. Thus, Δa(p′, e) = 0 = Δa(p, e).

So ∀e ∈ Ev , Δa(p, e) = Δa(p′, e). Similarly we have ∀e ∈ Ev ,
Δb(p, e) = Δb(p

′, e). Therefore,

∀e ∈ Ea, Δa(p, e) = Δa(p′, e)
∀e ∈ Eb, Δb(p, e) = Δb(p

′, e)

Thus, Fab(p) = Fab(p
′). Analogically, the cases for conditions (2)

and (3) can be proved as well.

Lemma 2 shows that ∀v ∈ Vab, instead of enumerating all possible
positions, we only need to consider three possibilities: (1) v is on the
left of a (xv ≤ xa); (2) v is on the right of b (xv ≥ xb); (3) v is
between a and b (xa < xv < xb).

Based on Lemma 1 and 2, we need to enumerate 3|Vab| different
placements rather than all placements in P . Next, we will further
cut down this number from 3|Vab| to 2|Vab|, by ignoring all positions
between a and b.

LEMMA 3. Given a placement p ∈ P , such that vertex v ∈ Vab

is between a and b (xa < xv < xb). After moving v either to the left
of a or to the right of b, another placement p′ ∈ P is generated. We
have Fab(p) ≤ Fab(p

′).

PROOF. Suppose v is moved to the left of a.
For a, after the movement, a might become the rightmost vertex of
some hyperedge. So we have

∀e ∈ Ev, Δa(p, e) ≤ Δa(p′, e) (1)

For b, after the movement, v is still on the left of b. So we have

∀e ∈ Ev, Δb(p, e) = Δb(p
′, e) (2)

Based on Equations 1–2, we have

∀e ∈ Ea, Δa(p, e) ≤ Δa(p′, e)
∀e ∈ Eb, Δb(p, e) = Δb(p

′, e)

Thus, Fab(p) ≤ Fab(p
′). Similarly, we can prove the case for v is

moved to the right of b.
1
Because v is on the left of a, a would not become the only leftmost vertex of e. Thus,

Δa(p, e) �= −we.

a b

v
e

(I)

a b

v
e

(II)

a b

v
e

(III)

u

Figure 1: Simple examples of vertices that can be fixed.

So far, we have proved that we only need to consider two possible
positions (on the left of a and on the right of b) for each vertex in Vab,
i.e., totally 2|Vab| different placements. In a modern circuit, |Vab|
may become more than 1000. So practically 2|Vab| is still too big to
enumerate. Therefore, we intend to further cut down this number.

We notice that for some vertices in Vab, it is not always neces-
sary to consider both of the two possible positions. For example in
Fig. 1-(I), v is only connected with a via e. If v is on the left of a in
placement pl, then Fab(pl) = min(we, 0) = 0; if v is on the right of
b in placement pr , then Fab(pr) = min(−we, 0) = −we. We have
Fab(pl) > Fab(pr). So, we can ignore pr where v is on the right
of b. To make use of such property and further reduce the enumera-
tion size, in the following part we identify three subsets of vertices in
Vab (V I , V II and V III), and prove that under certain condition the
positions of those vertices can be fixed in the enumeration.

I. V I = {v|v ∈ Vab and ∃e ∈ (Ea ∩ Eb) s.t. v ∈ e and � ∃e ∈
(Ea ∩ Eb) s.t. v ∈ e}
(e.g., in Fig. 1-(I) vertex v ∈ V I)

II. V II = {v|v ∈ Vab and ∃e ∈ (Ea ∩ Eb) s.t. v ∈ e and � ∃e ∈
(Ea ∩ Eb) s.t. v ∈ e}
(e.g., in Fig. 1-(II) vertex v ∈ V II)

III. V III = {v|v ∈ Vab and � ∃e ∈ (Ea∩Eb) s.t. v ∈ e and � ∃e ∈
(Ea ∩ Eb) s.t. v ∈ e and ∃e ∈ (Ea ∩ Eb) s.t. v ∈ e}
(e.g., in Fig. 1-(III) vertices v, u ∈ V III)

LEMMA 4. Given a placement p ∈ P , such that vertex v ∈ V I

is on the left of a. After moving v to the right of b, another placement
p′ ∈ P is generated. We have Fab(p) ≥ Fab(p

′).

PROOF. Let Ev∩ab = Ev ∩ (Ea ∪ Eb).
• In placement p, ∀e ∈ Ev∩ab, we consider two cases:
– ∃ vertex c ∈ e(c �= a, c �= v), s.t. xc ≥ xb

Because xv ≤ xa and xc ≥ xb, xv ≤ xa ≤ xc. a is neither the
only leftmost nor the rightmost vertex of e. So Δa(p, e) = 0.

– � ∃ vertex c ∈ e(c �= a, c �= v), s.t. xc ≥ xb

Because xv ≤ xa and no other vertices in e are on the right of
b, a is the rightmost vertex of e. So Δa(p, e) = we.

Thus, ∀e ∈ Ev∩ab, Δa(p, e) ≥ 0.

• In placement p′, ∀e ∈ Ev∩ab, we consider two cases:
– ∃ vertex c ∈ e(c �= a, r �= v), s.t. xc ≤ xa

Because x′
v ≥ xb and xc ≤ xa, xc ≤ xa ≤ x′

v . a is neither the
only leftmost nor the rightmost vertex of e. So Δa(p′, e) = 0.

– � ∃ vertex c ∈ e(c �= a, c �= v), s.t. xc ≤ xa

Because x′
v ≥ xb and no other vertices in e are on the left of a,

a is the only leftmost vertex of e. So Δa(p, e) = −we.
Thus, ∀e ∈ Ev∩ab, Δa(p′, e) ≤ 0.

So ∀e ∈ Ev∩ab, Δa(p, e) ≥ Δa(p′, e). Also ∀v ∈ V I , v does not
connect with b, so ∀e ∈ Ev∩ab, Δb(p, e) = Δb(p

′, e). Therefore,

∀e ∈ Ea, Δa(p, e) ≥ Δa(p′, e)
∀e ∈ Eb, Δb(p, e) = Δb(p

′, e)

Thus, Fab(p) ≥ Fab(p
′).

From Lemma 4, ∀v ∈ V I we can fix v on the left of a. As V II is
symmetrical with V I , similarly we can prove that ∀v ∈ V II we can
fix v on the right of b.

LEMMA 5. Given a placement p ∈ P , such that vertex v ∈ V III

is on the left of a, vertex u ∈ V III is on the right of b, andEv∩(Ea∪
Eb) = Eu ∩ (Ea ∪ Eb). After moving either one or both of them to
another position, i.e., moving v to the right of b and u to the left of a,
another placement p′ is generated. We have Fab(p) ≥ Fab(p

′).

PROOF. Let Ev−u = Ev ∩ (Ea ∪ Eb) = Eu ∩ (Ea ∪ Eb). We
consider all three possible movements of v and u.
• v moved to the right of b, u did not move

In placement p′, ∀e ∈ Ev−u we consider two cases:

– ∃ vertex c ∈ e(c �= a), s.t. xc ≤ xa

In this case, a is neither the only leftmost nor the rightmost ver-
tex in e, and b is neither the leftmost nor the only rightmost
vertex in e. So Δa(p′, e) = 0, Δb(p

′, e) = 0.

– � ∃ vertex c ∈ e(c �= a), s.t. xc ≤ xa

In this case, a is the only leftmost vertex in e, and b is neither
the leftmost nor the only rightmost vertex in e. So Δa(p′, e) =
−we, Δb(p

′, e) = 0.

• u moved to the left of a, v did not move
In placement p′, ∀e ∈ Ev−u we consider two cases:

– ∃ vertex c ∈ e(c �= b), s.t. xc ≥ xb

In this case, a is neither the only leftmost nor the rightmost ver-
tex in e, and b is neither the leftmost nor the only rightmost
vertex in e. So Δa(p′, e) = 0, Δb(p

′, e) = 0.

– � ∃ vertex c ∈ e(c �= b), s.t. xc ≥ xb

In this case, b is the only rightmost vertex in e, and a is neither
the only leftmost nor the rightmost vertex in e. So Δa(p′, e) =
0, Δb(p

′, e) = −we.

• v moved to the right of b, u moved to the left of a
In this case, a is neither the only leftmost nor the rightmost vertex
in e, and b is neither the leftmost nor the only rightmost vertex in
e. So ∀e ∈ Ev−u, Δa(p′, e) = 0, Δb(p

′, e) = 0.
For all of the above cases, Δa(p′, e) ≤ 0 and Δb(p

′, e) ≤ 0. In
placement p, ∀e ∈ Ev−u because a is neither the only leftmost nor
the rightmost vertex in e, and b is neither the leftmost nor the only
rightmost vertex in e, we have Δa(p, e) = Δb(p, e) = 0. As a result,
we have ∀e ∈ Ev−u, Δa(p, e) ≥ Δa(p′, e), Δb(p, e) ≥ Δb(p

′, e),
Therefore,

∀e ∈ Ea, Δa(p, e) ≥ Δa(p′, e)
∀e ∈ Eb, Δb(p, e) ≥ Δb(p

′, e)

Thus, Fab(p) ≥ Fab(p
′).

Lemma 5 shows that if ∃v, u ∈ V III and Ev ∩ (Ea ∪ Eb) = Eu ∩
(Ea ∪ Eb), then we can fix v to the left of a and u to the right of b.

In all, we have identified three subsets of vertices in Vab. If certain
condition is satisfied, those vertices can be fixed in the enumeration.
Note that those three subsets may not include all vertices that can be
fixed in Vab. We believe more complicated subsets and conditions
can be derived. But for the sake of simplicity, SafeChoice considers
only the above three subsets.

Let the total number of vertices in V I , V II and V III be α. As
a result, given two objects a and b, we only need to enumerate L =
2|Vab|−α different placements. To limit runtime, at most 210 place-
ments are enumerated by default. If |Vab| − α > 10, we simply
would not consider clustering a and b 2. For each of those enumer-
ated placement pi (1 ≤ i ≤ L), we calculate a score si = Fab(pi).
We define smax = max(s1, s2, ..., sL). Based on Theorem 1, if
smax ≤ 0, then it is safe to cluster a and b.

2
By considering the three subsets, we have |Vab| − α ≤ 10 for most pairs in practice.

Table 1: Differences among three modes (SC is the default mode).
Mode Clustering Objective S∗ Stopping Criterion

SC-G safe clusters guarantee smax no more safe clusters is in PQ
SC-R target clustering ratio s target clustering ratio is reached
SC best placement wirelength s threshold cost Ct is reached

3. ALGORITHM OF SAFECHOICE
In the previous section, we have described a practical method of

checking the safe condition for pair-wise clustering. Here, we apply
this method in a PQ-based algorithm flow and propose SafeChoice
algorithm. To satisfy various clustering objectives, we present three
operation modes for SafeChoice.

3.1 Priority-Queue Based Framework
Previous work [11, 12] show that the cluster size has significant

impacts on the clustering quality. If two potential clusters have the
same connectivity information, the one with the smaller area is pre-
ferred to be formed first. So in SafeChoice to balance the safeness
and area, we use the following cost function to calculate the cost C
for clustering two objects a and b.

C(a, b) = S∗ + θ × Aa + Ab

As

(3)

where θ = 4 by default, Aa and Ab denote the area of a and b re-
spectively, As is the average standard cell area in a circuit, and S∗ is
a term describing the safeness of clustering a and b. S∗ is calculated
based on different modes of SafeChoice (see Section 3.2).

In SafeChoice we maintain a global PQ similar to that in [15]. But
we rank each pair of objects based on the cost obtained by Equa-
tion 3. For SafeChoice, it is time-consuming to consider all possible
pairs in V . So for each object, we only consider its neighbor objects
connected by the nets containing at most β objects (β = 7 by de-
fault). Iteratively, SafeChoice clusters the pair of objects at the top of
the PQ, and then update the PQ using lazy-update. For different oper-
ation modes, SafeChoice stops clustering based on different stopping
criteria, which will be addressed in Section 3.2.

3.2 Operation Modes of SafeChoice
Given a circuit, some algorithms (e.g., FC and BC) can reach any

clustering ratio γ 3, while others (e.g., FG and NC) can only reach a
certain γ. None of previous work is able to automatically stop clus-
tering when the γ for the best placement wirelength is reached. By
default SafeChoice automatically stops clustering when generating
more clusters would degrade the placement wirelength. Additionally,
to achieve other clustering objectives, e.g., any target γ, SafeChoice
is capable of performing under various modes (see Table 1):

• Safety Guarantee Mode [SC-G]
SC-G aims at producing the completely safe clusters. Under this
mode, S∗ = smax in Equation 3. In each iteration, we cluster the
pair of objects at the top of the PQ only if its S∗ ≤ 0. Based on
Theorem 1, we guarantee that the formed clusters are safe. SC-G
terminates when there is no such safe clusters in the PQ.

• Clustering Ratio Mode [SC-R]
The SC-G mode may not achieve low clustering ratio in prac-
tice, because the number of safe clusters in a circuit is usually
limited. Sometimes if clustering cannot significantly reduce the
circuit size, even though all clusters are safe, the placer may not
perform efficiently and produce better result. So to make a trade-
off between safeness and circuit size reduction, SC-R produces
some unsafe clusters, besides the safe ones. We derive the fol-
lowing function to evaluate the safeness of each cluster:

s =

PL
i=1 si

L
(4)

3
The clustering ratio γ is defined as the ratio of the number of objects in the clustered

circuit to the number of objects in the original circuit.

Unclustering

Flat-mPL6
Placement

Detailed Placement

Clustered Netlist
Clustering

Original Netlist

Figure 2: Experimental flow for clustering algorithm.

Basically, for a pair of objects a and b Equation 4 calculates the
average score s over the L enumerated placements. Under SC-R
mode, S∗ = s in Equation 3. Iteratively, SC-R clusters the pair
of objects at the top of the PQ until the target γ is reached.

• Smart Mode [SC] (default mode)
The smart mode heuristically stops the clustering process when
a typical placer achieves the best placement wirelength. None of
previous clustering algorithms is able to do this. For different cir-
cuits, the γ for the best placement wirelength may be different. In
SC, we set a threshold cost Ct (Ct = 21 by default), and use the
same cost function as in SC-R. During the clustering process, SC
would not terminate until the cost reaches Ct. With this simple
heuristic, SC is able to automatically stop when generating more
clusters starts to degrade the placement wirelength.

4. EXPERIMENTAL RESULTS
Experiments are run on a Linux server with Intel Xeon 2.83 GHz

CPU and 32 GB memory. We compare SC with three clustering algo-
rithms FC [12], BC [15] and NC [16]. We implemented FC and BC
by ourselves and obtained the binary of NC from the authors in [16].
For BC the lazy-update [15] is used to speed up its runtime. ISPD
05/06 placement benchmarks [17, 18] are used as the test circuits.

In the experiments, the clustering algorithm is applied as a pre-
processing step before placement (see Fig. 2). We adopt mPL6 [5] as
the placer. mPL6 is based on a multilevel framework, and uses BC
as its internal clustering algorithm. Without turning off BC inside
mPL6, we cannot fairly compare the effectiveness of various cluster-
ing algorithms, because the internal clustering process will produce
some noise to the results. So we add “-cluster_ratio 1” to the com-
mand line, such that mPL6 performs only one-level placement with-
out any clustering inside, i.e., flat-mPL6. As far as we know, mPL6
is the only placer that can turn off the internal clustering without
modifying the source code. In Fig. 2 after unclustering, we arrange
the objects inside each cluster in one row. The order among those
objects are random. Subsequently the locations of all objects are sent
to flat-mPL6 for detailed placement. Because of the random order
of objects within each cluster, we believe there is still room for im-
provement even after the flat-mPL6 detailed placement. So we apply
the detailed placer FastDP [6] to further refine the layout.

We normalize the results of flat-mPL6 with various pre-processing
clustering to the results of flat-mPL6without any pre-processing clus-
tering. For fair comparison, FastDP is applied to further refine the
output layouts from the flat-mPL6 without pre-processing clustering.
We conduct four sets of experiments.
I. Clustering Targeting at Safe Cluster: We compare SC-G with

FC and BC. FC’s and BC’s target γ is set the same as SC-G’s. Table 2
shows that SC-G’s HPWL is 2% worse than BC’s and 1% better than
FC’s. For both clustering time and total time, SC-G is the fastest.
Note that the cost C of some unsafe (i.e., Smax > 0) clusters may be
better than some safe clusters. But unfortunately SC-G does not form
any unsafe clusters. This makes SC-G’s HPWL worse than BC’s.

Table 2: Comparison with FirstChoice and BestChoice based on SC-G’s clustering ratio (* comparison of scaled HPWL).
Circuit Flat-mPL6 Clustering Clustering Time (s) Normalized HPWL to Flat-mPL6 Normalized Total Time to Flat-mPL6

HPWL (×10e6) Time (s) Ratio (γ) FC BC SC-G FC BC SC-G FC BC SC-G
adaptec1 78.91 1197 0.80 1 2 8 1.00 1.00 1.00 1.61 1.47 1.24
adaptec2 90.71 1241 0.77 2 4 10 0.99 0.99 1.00 1.73 1.63 1.43
adaptec3 210.34 3923 0.71 6 23 33 1.00 0.99 0.99 1.38 1.51 1.17
adaptec4 188.39 3463 0.62 9 24 38 1.00 0.99 0.98 1.76 1.70 1.28
bigblue1 96.73 1424 0.77 2 4 11 0.99 0.99 1.00 1.61 1.46 1.60
bigblue2 146.98 3988 0.73 142 605 101 1.00 0.99 0.99 1.57 1.54 1.52
bigblue3 419.56 9486 0.58 35 123 91 0.91 0.88 0.90 1.01 1.00 1.04
bigblue4 812.89 10543 0.64 273 1529 287 1.00 0.99 0.99 1.47 1.41 1.34

adaptec5* 731.47 7892 0.68 60 263 95 0.87 0.74 0.81 1.04 1.20 1.14
newblue1* 109.85 17305 0.78 48 294 53 0.98 0.93 1.00 1.25 1.41 1.07
newblue2* 197.44 4396 0.68 19 62 57 1.00 0.99 0.99 1.04 0.95 1.06
newblue3* 320.63 10200 0.65 337 2393 228 0.94 0.96 0.95 1.29 1.65 1.67
newblue4* 438.99 7779 0.71 30 137 48 0.92 0.88 0.95 0.89 0.85 0.90
newblue5* 836.62 10124 0.66 363 1728 112 0.99 0.83 0.91 1.46 1.44 1.10
newblue6* 520.95 7575 0.74 572 3487 204 0.99 0.98 0.98 1.78 2.14 1.42
newblue7* 1076.36 19219 0.64 124 367 181 0.98 0.97 0.97 1.20 1.23 1.15

Average Normalized 1.006 5.303 1 0.974 0.944 0.963 1.381 1.413 1.258

Table 3: Comparison with FirstChoice, BestChoice and NetCluster based on NetCluster’s clustering ratio (* comparison of scaled HPWL).
Circuit Flat-mPL6 Clustering Clustering Time (s) Normalized HPWL to Flat-mPL6 Normalized Total Time to Flat-mPL6

HPWL (×10e6) Time (s) Ratio (γ) FC BC NC SC-R FC BC NC SC-R FC BC NC SC-R
adaptec1 78.91 1197 0.6381 1 3 69 20 1.00 1.00 1.01 0.99 0.92 0.91 1.15 1.04
adaptec2 90.71 1241 0.5764 2 6 63 30 1.01 1.00 1.00 0.99 1.22 1.11 1.11 1.28
adaptec3 210.34 3923 0.5677 7 24 62 98 1.02 0.99 0.99 0.99 1.15 1.09 1.00 1.04
adaptec4 188.39 3463 0.5382 8 26 58 86 1.01 1.00 0.98 0.98 1.19 1.13 1.07 1.15
bigblue1 96.73 1424 0.6128 2 5 66 23 0.99 0.98 0.98 0.98 1.19 1.08 1.21 1.13
bigblue2 146.98 3988 0.5977 195 814 64 181 1.02 1.00 0.99 0.99 0.98 1.11 0.89 0.86
bigblue3 419.56 9486 0.5074 36 144 53 163 0.92 0.87 0.89 0.88 0.81 0.81 0.74 0.76
bigblue4 812.89 10543 0.5617 315 1696 58 588 1.01 0.99 0.99 0.99 1.21 1.27 1.10 1.19

adaptec5* 731.47 7892 0.5569 81 335 60 284 0.87 0.73 0.79 0.69 0.98 0.98 0.90 0.92
newblue1* 109.85 17305 0.5674 90 472 62 125 0.93 0.90 1.03 0.86 0.82 0.88 0.77 0.83
newblue2* 197.44 4396 0.5886 22 65 65 92 1.02 1.00 1.10 1.00 0.74 0.81 0.69 0.77
newblue3* 320.63 10200 0.5462 427 2440 63 342 0.93 0.93 1.15 0.93 1.04 1.39 0.99 1.04
newblue4* 438.99 7779 0.6357 34 159 68 109 0.92 0.86 0.93 0.85 0.63 0.62 0.59 0.58
newblue5* 836.62 10124 0.5505 481 1860 58 214 0.92 0.81 0.84 0.79 1.08 1.07 0.95 1.13
newblue6* 520.95 7575 0.5836 868 4871 64 755 0.99 0.97 0.97 0.97 1.14 1.78 1.01 1.05
newblue7* 1076.36 19219 0.5634 142 423 60 519 0.99 0.97 0.99 0.97 0.89 0.87 0.89 0.98

Average Normalized 0.545 2.475 0.813 1 0.971 0.937 0.978 0.928 1.000 1.056 0.940 0.985

II. Clustering Targeting at NetCluster’s Clustering Ratio: In
this set of experiments, we compare SC-R with FC, BC and NC
based on NC’s γ. Since NC terminates when no more clusters can
be formed, it cannot reach any γ as the users desire. For each circuit
the target γ of other algorithms is set the same as NC’s. As shown in
Table 3, SC-R consistently generates the best HPWL for all 16 test
cases, expect for one case (bigblue3) where SC-R is 1% worse than
BC. On average SC-R generates 4%, 1% and 5% better HPWL than
FC, BC and NC, respectively. In terms of clustering time, SC-R is
2.5× faster than BC, while 45% and 19% slower than FC and NC,
respectively. For the total time, SC-R is 1% and 7% faster than FC
and BC, while 5% slower than NC.
III. Clustering Targeting at Various Clustering Ratios: We com-

pare SC-R with FC and BC on five target clustering ratios γ =
0.2, 0.3, 0.4, 0.5, 0.6. In Table 4 the results are organized based on
the circuits. We have two observations: (1) As γ goes lower, the
clustering time increases but the total time generally decreases; (2)
To improve the HPWL, for some circuits (e.g., adaptec5) it is good
to cluster more objects. But for some circuits (e.g., newblue2) low γ
degrades the HPWL. Fig. 3 shows the average normalized clustering
time, HPWL and total time over all circuits for each γ. For cluster-
ing time, SC-R is faster than BC for all γ, except for γ = 0.2 where
SC-R is 12% slower. For all γ, SC-R consistently produces the best
HPWL compared with both FC and BC. Regarding the total time SC-
R is consistently faster than BC. Even though SC-R is slower than FC
on clustering time, SC-R’s total time is very comparable with FC’s,
which means clusters produced by SC-R are preferred by the placer.
Furthermore, considering the significant HPWL improvements over
FC and the small percentage of clustering time over total time, we
believe such slow down is acceptable.

IV. Clustering Targeting at Best PlacementWirelength: Table 4
shows that various γ leads to various HPWL for each circuit. Here,
we show that SC is able to automatically stop clustering, when the γ
for the best HPWL is reached (see Table 5). Readers may compare
Table 4 and Table 5 to verify this. To see how one-level cluster-
ing compares with multilevel clustering, we generate the results of
original multilevel mPL6. For fair comparison, FastDP is applied
at the end of multilevel mPL6 (see the “mPL6+FastDP” columns
in Table 5). mPL6 has 4 levels of clustering and placement. The
clustering time and final γ inside mPL6 are listed in Table 5. Even
though SC on average generates 3% worse HWPL than mPL6, for
almost half of the circuits SC’s HPWL is even better than mPL6’s.
For most circuits, the HPWL generated by SC and mPL6 are very
comparable. Regarding the total time, SC is significantly faster than
mPL6 by 33%. Such results show that for some circuits one-level SC
clustering generates better HPWL than multilevel BC clustering with
substantial runtime speedup. From here we see prospective improve-
ments if SC is applied into the multilevel placement framework.

5. CONCLUSION
In this paper, we have presented SafeChoice, a novel high-quality

clustering algorithm. We aim at solving the fundamental problem —
How to form safe clusters for placement. The clusters produced by
SafeChoice are definitely essential for the placer to produce a good
placement. Comprehensive experimental results show that SafeChoice
is capable of producing the best clusters for the placer. To further
improve and extend SafeChoice, our future work includes: (1) To de-
velop the corresponding clustering considering object physical loca-
tions; (2) To integrate SafeChoice into a multilevel placement frame-
work; (3) To derive the safe condition for more than two vertices.
The source code of SafeChoice is publicly available at [19].

Table 4: Comparison with FirstChoice and BestChoice on target γ = 0.2, 0.3, 0.4, 0.5, 0.6 (* comparison of scaled HPWL).
Circuit Flat-mPL6 Clustering Clustering Time (s) Normalized HPWL to Flat-mPL6 Normalized Total Time to Flat-mPL6

HPWL (×10e6) Time (s) Ratio (γ) FC BC SC-R FC BC SC-R FC BC SC-R
0.2 4 8 187 1.12 1.06 1.03 0.94 0.80 0.88
0.3 3 6 121 1.05 1.02 1.00 0.90 0.80 0.92

adaptec1 78.91 1197 0.4 2 5 51 1.01 1.00 0.99 0.93 0.86 1.00
0.5 2 4 35 1.00 1.00 0.99 0.95 0.92 0.91
0.6 2 3 24 1.00 0.99 0.99 1.04 1.02 1.04
0.2 8 16 238 1.08 1.02 1.00 1.03 0.82 1.01
0.3 5 12 144 1.05 0.99 0.98 1.35 1.20 1.22

adaptec2 90.71 1241 0.4 4 9 59 1.03 1.01 0.98 1.38 1.19 1.23
0.5 3 7 39 1.01 1.00 0.98 1.43 1.19 1.28
0.6 3 6 26 1.00 0.99 0.98 1.45 1.24 1.20
0.2 19 46 572 1.15 1.02 1.02 0.77 0.70 0.76
0.3 14 38 390 1.08 1.00 0.99 0.79 0.72 0.81

adaptec3 210.34 3923 0.4 11 32 162 1.04 1.00 0.99 0.94 0.74 0.73
0.5 9 26 114 1.04 1.00 0.98 1.28 1.16 1.17
0.6 7 23 80 1.01 1.00 0.98 1.35 1.21 1.23
0.2 16 49 403 1.08 0.99 0.99 0.81 0.70 0.79
0.3 13 42 276 1.04 0.98 0.98 0.82 0.74 0.77

adaptec4 188.39 3463 0.4 11 35 130 1.02 0.99 0.98 0.83 0.75 0.85
0.5 9 30 89 1.01 0.99 0.98 1.28 1.26 1.18
0.6 7 22 59 1.00 0.99 0.99 1.16 1.29 1.18
0.2 8 15 297 1.05 1.01 1.02 0.86 0.68 0.98
0.3 5 12 179 1.02 0.98 0.99 0.85 0.95 0.98

bigblue1 96.73 1424 0.4 4 9 66 1.01 0.98 0.98 0.91 0.86 0.91
0.5 3 7 39 1.00 0.97 0.98 1.01 0.85 0.89
0.6 2 6 23 1.00 0.98 0.98 1.09 1.17 1.18
0.2 395 1749 1162 1.15 1.07 1.05 0.84 1.05 0.92
0.3 344 1516 667 1.07 1.01 1.01 0.86 1.16 0.91

bigblue2 146.98 3988 0.4 302 1295 359 1.04 1.00 0.99 0.88 1.14 0.90
0.5 244 1005 226 1.03 0.99 0.99 0.95 1.18 0.92
0.6 194 796 159 1.01 1.00 0.99 1.09 1.11 0.99
0.2 69 264 800 0.92 0.82 0.85 0.52 0.49 0.57
0.3 55 221 492 0.92 0.87 0.83 0.78 0.76 0.75

bigblue3 419.56 9486 0.4 46 174 241 0.92 0.84 0.85 0.90 0.81 0.82
0.5 36 146 158 0.93 0.88 0.88 0.93 0.95 0.91
0.6 30 116 89 0.91 0.88 0.89 1.00 1.01 0.91
0.2 633 2907 3262 1.12 1.01 1.02 1.06 1.17 1.19
0.3 534 2576 2220 1.06 1.00 0.99 1.19 1.44 1.24

bigblue4 812.89 10543 0.4 451 2169 1145 1.03 0.99 0.99 1.16 1.45 1.14
0.5 368 1819 733 1.01 0.99 0.99 1.24 1.35 1.23
0.6 288 1453 434 1.01 0.99 0.99 1.27 1.38 1.22
0.2 165 569 1424 0.77 0.63 0.62 0.52 0.56 0.66
0.3 139 503 984 0.83 0.66 0.63 0.52 0.52 0.62

adaptec5* 731.47 7892 0.4 114 419 456 0.84 0.68 0.65 0.61 0.58 0.59
0.5 93 358 324 0.86 0.72 0.69 1.07 1.29 1.07
0.6 73 311 204 0.88 0.73 0.70 1.23 1.32 1.15
0.2 169 806 781 0.91 0.88 0.81 0.13 0.24 0.23
0.3 149 718 527 0.91 0.86 0.80 0.23 0.49 0.41

newblue1* 109.85 17305 0.4 127 630 226 0.91 0.87 0.81 0.30 0.57 0.39
0.5 104 538 141 0.93 0.89 0.84 0.91 1.30 0.96
0.6 84 434 93 0.94 0.90 0.86 1.05 1.31 1.04
0.2 43 200 415 2.16 1.58 1.44 0.74 0.69 0.81
0.3 37 181 278 1.29 1.11 1.11 0.86 0.88 0.76

newblue2* 197.44 4396 0.4 32 164 155 1.07 1.03 1.03 0.82 0.89 0.86
0.5 26 128 116 1.02 1.01 1.01 1.04 0.88 0.97
0.6 21 65 84 1.01 1.00 1.00 0.90 0.89 0.90
0.2 931 3789 1010 0.98 0.89 0.89 0.50 0.76 0.50
0.3 783 3480 692 0.93 0.89 0.90 0.90 1.60 1.00

newblue3* 320.63 10200 0.4 630 3041 407 0.92 0.90 0.91 0.95 1.56 1.14
0.5 487 2546 326 0.92 0.93 0.93 1.00 1.34 1.15
0.6 362 2299 256 0.94 0.95 0.95 1.05 1.41 1.23
0.2 77 334 981 0.94 0.88 0.81 0.46 0.57 0.49
0.3 66 302 643 0.91 0.88 0.80 0.50 0.64 0.60

newblue4* 438.99 7779 0.4 55 267 275 0.91 0.86 0.81 0.59 0.72 0.62
0.5 46 221 188 0.92 0.86 0.81 0.53 0.61 0.57
0.6 37 168 114 0.93 0.85 0.83 0.62 0.59 0.63
0.2 1093 3948 1483 0.94 0.70 0.78 0.64 1.02 0.62
0.3 877 2863 935 0.95 0.73 0.74 0.71 0.95 0.69

newblue5* 836.62 10124 0.4 693 2124 392 0.96 0.77 0.77 1.09 1.10 1.01
0.5 532 1903 237 0.94 0.78 0.77 1.04 1.10 0.98
0.6 399 1713 155 0.92 0.82 0.80 1.04 1.10 0.94
0.2 1941 8229 4058 1.05 0.99 0.97 1.16 1.95 1.19
0.3 1641 7415 2793 1.01 0.97 0.96 1.11 1.77 1.31

newblue6* 520.95 7575 0.4 1343 6558 1378 1.00 0.97 0.96 1.27 1.88 1.28
0.5 1082 5391 890 0.99 0.97 0.97 1.14 1.64 1.07
0.6 824 4535 639 0.99 0.98 0.97 1.17 1.66 1.16
0.2 290 948 2704 1.07 0.99 1.00 0.90 0.98 0.81
0.3 238 738 1774 1.02 0.97 0.97 0.78 0.80 0.93

newblue7* 1076.36 19219 0.4 197 605 891 1.00 0.97 0.97 0.79 0.74 0.95
0.5 159 472 596 0.99 0.97 0.97 0.76 0.72 1.00
0.6 126 380 422 0.98 0.97 0.97 0.93 1.00 1.03

0.6310.5580.468
0.2810.221

2.961
2.425

1.946

1.155

0.883

0

1

2

3

0.2 0.3 0.4 0.5 0.6

FirstChoice BestChoice SC-R

(a) Normalized clustering time to SC-R

1.093

0.9710.9760.983

1.008

0.9390.9340.9280.933

0.971

0.9230.9150.918 0.930

0.957

0.9

0.95

1

1.05

1.1

0.2 0.3 0.4 0.5 0.6

Flat-mPL6 FirstChoice

BestChoice SC-R

(b) Normalized HPWL to flat-mPL6

1.09
1.03

0.90

0.82
0.74

1.17
1.11

0.99

0.96

0.82

1.07

1.02
0.90

0.87

0.78

0.7

0.8

0.9

1

1.1

1.2

0.2 0.3 0.4 0.5 0.6

Flat-mPL6 FirstChoice

BestChoice SC-R

(c) Normalized total time to flat-mPL6

Figure 3: Average normalized clustering time, HPWL and total time over all circuits for target γ = 0.2, 0.3, 0.4, 0.5, 0.6.

Table 5: Comparison with original multilevel mPL6 (* comparison of scaled HPWL).
Circuit HPWL (×10e6) Total Time (s) SC Clustering Info. BC Clustering Info. inside mPL6

Flat-mPL6 SC mPL6+FastDP Flat-mPL6 SC mPL6+FastDP Time (s) γ Time (s) Final γ # of levels
adaptec1 78.91 78.51 76.47 1197 1238 1807 76 0.33 29 0.006 4
adaptec2 90.71 88.51 89.19 1241 2064 2032 73 0.36 47 0.006 4
adaptec3 210.34 207.27 206.00 3923 3732 6187 228 0.33 87 0.006 4
adaptec4 188.39 184.33 187.51 3463 3227 5687 208 0.31 67 0.007 4
bigblue1 96.73 95.31 95.14 1424 1319 2208 109 0.32 42 0.008 4
bigblue2 146.98 146.07 146.57 3988 4183 5992 458 0.36 81 0.045 4
bigblue3 419.56 357.56 331.70 9486 10516 8842 420 0.30 131 0.005 4
bigblue4 812.89 803.43 806.83 10543 15460 19457 1622 0.33 468 0.008 4

adaptec5* 731.47 461.99 429.97 7892 5919 10796 697 0.32 149 0.005 4
newblue1* 109.85 88.10 64.72 17305 7490 2567 368 0.31 44 0.005 4
newblue2* 197.44 198.35 198.90 4396 6303 7141 91 0.58 61 0.007 4
newblue3* 320.63 287.76 283.25 10200 14986 9644 683 0.30 66 0.029 4
newblue4* 438.99 351.02 301.89 7779 6053 9481 421 0.33 93 0.010 4
newblue5* 836.62 624.26 526.98 10124 8405 16220 625 0.34 251 0.008 4
newblue6* 520.95 498.44 516.43 7575 11081 13566 2059 0.33 255 0.009 4
newblue7* 1076.36 1042.97 1070.08 19219 21049 32561 1159 0.34 278 0.014 4

Normalized 1 0.910 0.879 1 1.086 1.412

Acknowledgment
The authors would like to thank Guojie Luo from UCLA CAD group
and Logan Rakai from University of Calgary for the help with mPL6
and NetCluster, respectively.

6. REFERENCES

[1] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W.
Chang. A high-quality mixed-size analytical placer
considering preplaced blocks and density constraints. In Proc.
ICCAD, pages 187–192, 2006.

[2] J. A. Roy, S. N. Adya, D. A. Papa, and I. L. Markov. Min-cut
floorplacement. IEEE Trans. on Computer-Aided Design,
25(7):1313–1326, July 2006.

[3] B. Hu and M. Marek-Sadowska. Multilevel
fixed-point-addition-based vlsi placement. IEEE Trans. on
Computer-Aided Design, 24(8):1188–1203, August 2005.

[4] A. B. Kahng and Q. Wang. A faster implementation of APlace.
In Proc. ISPD, pages 218–220, 2006.

[5] T. Chan, J. Cong, J. Shinnerl, K. Sze, and M. Xie. mPL6:
Enhanced multilevel mixed-sized placement. In Proc. ISPD,
pages 212–214, 2006.

[6] N. Viswanathan, M. Pan, and C. Chu. FastPlace 3.0: A fast
multilevel quadratic placement algorithm with placement
congestion control. In Proc. ASP-DAC, pages 135–140, 2007.

[7] N. Viswanathan, G.-J. Nam, C. Alpert, P. Villarrubia, H. Ren,
and C. Chu. RQL: Global placement via relaxed quadratic
spreading and linearization. In Proc. DAC, pages 453–458,
2007.

[8] C. J. Alpert and A. B. Kahng. Recent developments in netlist
partitioning: A survey. Integration, the VLSI Journal,
19(1-2):1–81, August 1995.

[9] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.
Multilevel hypergraph partitioning: application in VLSI
domain. In Proc. DAC, pages 526–529, 1997.

[10] G. Karypis and V. Kumar. Multilevel k-way hypergraph
partitioning. In Proc. DAC, pages 343–348, 1999.

[11] C. J. Alpert, J.-H. Huang, and A. B. Kahng. Multilevel k-way
hypergraph partitioning. In Proc. DAC, pages 530–533, 1997.

[12] T. Chan, J. Cong, and K. Sze. Multilevel generalized
force-directed method for circuit placement. In Proc. ISPD,
pages 185–192, 2005.

[13] J. Cong and S. K. Lim. Edge separability-based circuit
clustering with application to multilevel circuit partitioning.
IEEE Trans. on Computer-Aided Design, 23(3):346–357,
March 2004.

[14] B. Hu and M. Marek-Sadowska. Fine granularity
clustering-based placement. IEEE Trans. on Computer-Aided
Design, 23(4):527–536, April 2004.

[15] G.-J. Nam, S. Reda, C. J. Alpert, P. G. Villarrubia, and A. B.
Kahng. A fast hierarchical quadratic placement algorithm.
IEEE Trans. on Computer-Aided Design, 25(4):678–691, April
2006.

[16] J. Li, L. Behjat, and J. Huang. An effective clustering
algorithm for mixed-size placement. In Proc. ISPD, pages
111–118, 2007.

[17] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter, and
M. Yildiz. The ISPD2005 placement contest and benchmarks
suite. In Proc. ISPD, pages 216–220, 2005.

[18] G.-J. Nam. ISPD 2006 placement contest: Benchmark suite
and results. In Proc. ISPD, pages 167–167, 2006.

[19] SafeChoice source code.
http://www.public.iastate.edu/~zijunyan/.

