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ABSTRACT
Timing-driven placement is a critical step in nanometer-
scale physical synthesis. To improve design timing on a
global scale, net-weight based global timing-driven place-
ment is a commonly used technique. This paper shows that
such an approach can improve timing, but often degrades
wire length and routability. Another problem with existing
timing-driven placers is inconsistencies in the definition of
timing closure. Approaches using linear programming are
forced to make assumptions about the timing models that
simplify the problem. To truly do timing-driven placement,
the placer must be able to make queries to a real timing ana-
lyzer with incremental capabilities. This paper describes an
incremental timing-driven placer called ITOP. Using accu-
rate timing from an industrial static timer, ITOP integrates
incremental timing closure optimizations like buffering and
repowering within placement to improve design timing with-
out degrading wire length and routability.

Experimental results on a set of optimized industrial cir-
cuit netlists show that ITOP significantly outperforms con-
ventional net-weight based timing-driven placement. In par-
ticular, on average, it obtains an improvement of over 47.45%,
9.88% and 5% in the worst slack, total negative slack and
wire length as compared to the conventional flow.

Categories and Subject Descriptors
B.7.2 [Hardware, Integrated Circuits, Design Aids]:
Placement and routing

General Terms
Algorithms, Design

Keywords
Physical Synthesis, Placement, Timing Optimization

1. INTRODUCTION
Timing closure is one of the primary objectives of a phys-

ical synthesis tool. In this respect, timing-driven placement
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Figure 1: Physical synthesis flow: (a) using global
timing-driven placement, (b) incorporating ITOP.

is a critical step during physical synthesis, as its quality sig-
nificantly impacts the ability of the physical synthesis tool
or designer to achieve timing closure. Existing timing-driven
placement techniques can be broadly classified into two cat-
egories: (a) global techniques [5–8,10,11,16–18,23], and (b)
incremental techniques [2–4,12–14,22].

1.1 Global Timing-driven Placement
Global techniques place the entire circuit netlist, ignoring

any previously obtained module locations. They typically
use a net-based approach to minimize the wire length of the
nets on the critical paths (“critical nets”). The rationale
being that optimizing critical net lengths would implicitly
minimize critical path lengths, leading to better critical path
delay. Net-based techniques transform the net criticalities
into“net specifications”using net-weights [5,10,11,17,18,23],
or net-length constraints [6,8,16].

To generate net specifications, they follow a physical syn-
thesis flow similar to Figure 1(a). First, a wire length driven
global placement is performed to obtain module locations.
Then, coarse timing optimization is performed to bring the
design to a reasonable electrical and timing state. Based
on a timing analysis, net specifications are then generated
to reflect the timing criticality of the nets. These specifi-
cations guide the subsequent timing-driven placement. The
key drawbacks of global timing-driven placers are:



Stage EP1 EP2 EP3

Congestion

Wire Length 140.29 146.94 160.10

Figure 2: Wire length (×e6) and routing congestion during the physical synthesis flow of Figure 1(a). EP1: Af-
ter initial placement, EP2: After coarse timing optimization, EP3: After timing-driven placement. (Regions
colored pink and purple have more than 100% routing resource usage - indicating unroutable regions.)

• Timing-driven placement minimizes critical net wire
length at the expense of the non-critical nets. Inferior
net specifications can result in a substantial increase in
the wire length during global placement. This can also
cause severe routing congestion. This is depicted in
Figure 2, which shows a significant increase in the wire
length and congestion after timing-driven placement.

• They do not interact with timing optimization trans-
forms like buffering, gate sizing, etc., during global
placement. Purely minimizing weighted wire length
generally degrades timing after placement. This is
shown in Table 1, where timing-driven placement (EP3)
significantly degrades the timing obtained after coarse
timing optimization (EP2). This needs to be recovered
by fine timing optimization (EP4). In addition, a close
interaction with optimization can potentially buffer a
net or resize a gate instead of the corresponding net
being over-optimized during placement. This can lead
to significant savings in wire length.

• Net specifications are just an indirect measure of the
actual timing constraints. It is difficult to come up
with a good set of net specifications to effectively op-
timize design timing during placement.

• Typically, once generated, net specifications are kept
constant for the duration of global placement. This
introduces an additional level of inaccuracy, as place-
ment changes will invalidate the timing upon which
the specifications were initially generated.

• Dynamic updation of net specifications during place-
ment have been proposed (e.g., [5,6,18]). But, to main-
tain placement efficiency, they are updated using in-
accurate timing models and illegal module locations.
This can also cause oscillations during placement re-
sulting in issues with convergence.

Stage Worst Slack (ns) Num. Negative Paths

EP1 -1606.35 73557
EP2 -0.89 7219
EP3 -275.91 63743
EP4 -0.46 1451

Table 1: Design timing at various stages in the phys-
ical synthesis flow shown in Figure 1(a).

1.2 Incremental Timing-driven Placement
Alternately, incremental techniques place a subset of the

circuit netlist. They mostly use a path-based approach,
wherein they try to directly optimize the timing critical
paths in the design. Although many flavors exist, a ma-
jority of them use the approach of linear programming [9].
The key drawbacks of incremental timing-driven placers are:

• To perform module movement, they rely on inaccurate
or crude models for gate delay, interconnect delay, etc.,
that do not capture the complex timing environment
of nanometer-scale design.

• They typically rely on computationally intensive math-
ematical programming techniques. As a result, they
cannot be used during the early stages of physical syn-
thesis, where a large number of paths need to be si-
multaneously optimized during placement.

• As with global placers, they generally do not interact
with timing optimization during placement. Although
techniques to incorporate optimization within place-
ment have been proposed (e.g., [2]), they still rely on
inaccurate and simple delay models.

• They ignore module overlap while solving the mathe-
matical program, and rely on a subsequent legalization
step to enforce placement legality. This can lead to a
degradation in design timing during legalization.

• The legalization issue is particularly magnified in mod-
ern designs with numerous placement blockages. Incre-
mental placers do not explicitly model and account for
placement blockages during critical path optimization.

• They also do not honor placement density constraints,
required to provide space for optimization and routing.

1.3 This Work
This work is motivated by the following observations: (a)

a robust, high-quality timing closure flow requires close cou-
pling between placement and timing optimization, and (b)
both steps should rely on accurate timing from a static
timing analyzer. It describes an incremental timing-driven
placer called ITOP, that effectively integrates timing opti-
mization and static timing analysis into placement. ITOP
has been developed to improve design timing during the
early stages of physical synthesis (i.e., have a global impact
on design timing). Hence, it is embedded within a physical
synthesis flow as shown in Figure 1(b).

The key features of ITOP are:

• A simple, yet effective netlist transformation technique
to model the critical paths in the design, for them to
be effectively optimized during placement.

• An efficient incremental path smoothing algorithm to
simultaneously optimize a large number of critical paths.

• Explicit modeling and handling of placement blockages
during critical path optimization.

• A tight integration of incremental timing optimization
and static timing analysis within placement.



• An iterative flow incorporating periodic congestion mit-
igation, wire length recovery and global timing opti-
mization, to improve design timing without degrading
wire length and routability.

The rest of this paper is organized as follows: Section 2
provides an overview of ITOP. Sections 3–5 describe the in-
dividual components of the algorithm. Section 6 gives the
detailed algorithm for ITOP. Experimental results on indus-
trial 65nm and 45nm designs are reported in Section 7. The
paper concludes with some observations in Section 8.

2. OVERVIEW OF ITOP

No

ITOP

Timing Improvement?

Yes

Congestion Mitigation 
and 

Wire Length Recovery

Critical Path Optimization
• Slack-based Critical Path Threading
• Incremental Critical Path Smoothing
• Incremental Timing Optimization

Slack Histogram Compression

Coarsely Optimized Design

End

No

ITOP

Timing Improvement?

Yes

Congestion Mitigation 
and 

Wire Length Recovery

Critical Path Optimization
• Slack-based Critical Path Threading
• Incremental Critical Path Smoothing
• Incremental Timing Optimization

Slack Histogram Compression

Coarsely Optimized Design

End

Figure 3: High-level flow for ITOP.

Figure 3 gives the high-level flow for ITOP. The input to
ITOP is a placed and coarsely optimized design. ITOP then
uses an iterative approach to improve design timing in an
incremental manner. The key stages during ITOP are:

1. Critical Path Optimization: This stage performs place-
ment and timing optimization on the timing critical
paths in the design. It comprises of three steps: (a)
Slack-based Critical Path Threading – to identify, and
model the critical paths, (b) Critical Path Smoothing –
to re-place the modules on the critical paths, and (c)
Incremental Timing Optimization – to perform quick
optimization (e.g., buffering and gate sizing) (Sec 3).

2. Congestion Mitigation and Wire Length Recovery: Pe-
riodically, the non-critical modules are moved to im-
prove placement density. In addition, detailed place-
ment transforms are run to recover wire length (Sec 4).

3. Slack Histogram Compression: In addition, a periodic
global timing optimization is performed to compress
the entire slack histogram (Sec 5).

3. CRITICAL PATH OPTIMIZATION
This stage performs incremental path smoothing and tim-

ing optimization on the timing critical paths in the design.
This section describes the associated steps.

3.1 Slack-based Critical Path Threading
To meet timing requirements, designers often set an over-

all slack threshold for the design (usually a small positive
value). In practice, all paths that have a slack below the
slack threshold (“negative slack”) are considered critical. As
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Figure 4: (a) A sample netlist (bold arrows repre-
sent the critical paths), (b) Critical Path Threading
(solid lines represent path-threading attractions and
dotted lines represent weighted output nets).

ITOP uses an iterative flow, only a subset of the negative
paths, having the most negative slack values, are considered
to be critical during each iteration. These paths are identi-
fied using the timing report from an industrial static timer.

For each critical path, the modules on the path are linked
or“threaded”using additional two-pin nets that are assigned
a high net-weight. The high net-weight aids the placement
step to effectively minimize the two-pin net lengths. For each
path, minimizing the two-pin net lengths minimizes the total
path length. Within ITOP, these two-pin nets are termed as
“path-threading attractions” and their weight is set to 10×
the default net-weight for a non-critical net. In addition,
multiple attractions between any two modules are coalesced
and only a single attraction is added between them. Apart
from the path-threading attractions, the output net for each
movable module on the critical path is also assigned a weight
of 5× the default net-weight. This aids in the timing con-
vergence of the overall flow by also moving the modules that
are adjacent to the critical path in its fanout cone.

For example, Figure 4(a) shows a sample netlist with two
critical paths. Figure 4(b) shows the path-threading attrac-
tions (solid lines linking the modules on the critical paths),
and the weighted output nets (shown by the dotted lines).

To set the attraction and net weights, ITOP does not use
complex schemes relying on path counting [11] or slack and
delay sensitivity [12, 17, 23]. Instead, it uses the aforemen-
tioned simple technique. As the modules are not moved by
a large distance during placement, this simple net-weighting
scheme is adequate to improve the overall design timing.
This is validated by the experimental results in Section 7.

3.2 Incremental Critical Path Smoothing
The objectives of critical path smoothing are: (a) min-

imize critical path lengths by straightening the paths, (b)
distribute the modules evenly along their respective paths.

To facilitate the subsequent discussion, we define:

• Critical net: A net with a weight higher than the de-
fault net-weight. This includes path-threading attrac-
tions and weighted output nets (Section 3.1).

• Critical module: A module that belongs to a critical
net. This includes latches/flip-flops, which are typi-
cally the end-points of the path(s).



During this step, the locations of the non-critical modules
remain unchanged. It is only the critical modules that are
moved to optimize the critical paths. To perform module
movement, initially, a regular bin grid is constructed over
the placement region and the source bin for all the criti-
cal modules is determined. For each critical module, eight
movement scores are computed that correspond to tenta-
tively moving the module to its eight neighboring bins. To
calculate the score, it is assumed that a module is moving
from its current location in a source bin to the same relative
location in the neighboring bin. The main objectives dur-
ing placement are to minimize the path lengths and evenly
distribute the critical modules along the paths. Hence, the
score for each move is the reduction in the weighted quadratic

wire length of all the nets connected to the module. If all
the scores are negative, the module is not moved. Otherwise,
it is moved to the neighboring bin with the highest positive
score. The above steps are performed in an iterative manner
on all the critical modules, until there is no improvement in
the total critical net wire length.

To have a tight coupling between placement and timing
optimization, the movement of the critical modules is re-
stricted to a local region. This is ensured by setting a max-
imum displacement constraint on the modules during each
ITOP iteration. This constraint is relaxed only if the mod-
ules need to cross over blockages in the placement image.
This is explained in Section 3.2.1.

Critical path smoothing is followed by a legalization step.
To ensure that the critical modules are not perturbed by a
large distance, legalization follows a two-step approach:

1. First, the non-critical modules are ignored and the crit-
ical modules are legalized accounting for the placement
blockages. They are then fixed and transformed into
placement blockages themselves.

2. Next, the non-critical modules are legalized in the pres-
ence of all the placement blockages.

3.2.1 Tunneling to Handle Placement Blockages
To the best of our knowledge, none of the existing incre-

mental timing-driven placers explicitly model and account
for placement blockages during critical path optimization.
They ignore the blockages while optimizing the critical paths,
and rely on a subsequent “timing-unaware” legalization step
to enforce placement legality. Modern mixed-size designs
contain thousands of blockages in the placement image. Ig-
noring them during critical path optimization can lead to
significant overlaps between the blockages and the critical
modules. This can in turn lead to severe degradation in the
design timing during legalization.

To consider blockages, ITOP uses the concept of tunneling
during critical path smoothing. To move the critical mod-
ules, the iterative placement algorithm uses a bin-based ap-
proach, and evaluates a movement score in a local neighbor-
hood of bins. If a neighboring bin overlaps with a blockage,
then instead of landing on top of the blockage, it is assumed
that the critical module tunnels through it in the general
direction of the move. As a result, the movement score is
evaluated in the closest bin(s) adjacent to the blockage. Dur-
ing tunneling, the maximum displacement constraint on the
“tunneled module” is ignored. This ensures that additional
candidate locations can be considered for score evaluation.

Tunneling is illustrated in Figure 5 which shows a place-
ment blockage (dark box) and four critical modules (light

Intended 
Target Bin

Source 
Bin

Actual Bins for 
score evaluation and 

component movement

Critical Path Placement 
Blockage

Figure 5: Tunneling through a placement blockage
during critical path smoothing.

boxes). One of the critical modules is placed to the right of
the blockage and needs to move across to optimize the path.
From Figure 5, the lower-left neighboring bin of the module
overlaps with the blockage. Using tunneling, the movement

score is evaluated in the closest bins adjacent to the left and
bottom boundaries of the blockage. Since this module has
three neighboring bins that overlap with the blockage, the
bins with the hatched lines are the ones actually used for
score evaluation to move the module.

Please note, the maximum number of bins that need to
be considered due to tunneling is limited to twelve1. This is
comparable to the number of bins being considered without
tunneling (eight). In addition, determining the bins adjacent
to a blockage is quite efficient. Hence, tunneling has negli-
gible impact on the runtime of the placement algorithm.

Tunneling has two key advantages:

• It ensures that there is no overlap between the critical
modules and placement blockages. Hence, the mod-
ules are not significantly perturbed during legaliza-
tion. This preserves the timing obtained by critical
path smoothing.

• Local search techniques can terminate if the critical
modules fall into the “alleys” between large blockages.
Tunneling moves the modules out of these alleys and
helps the placer to further optimize the critical paths.

3.3 Incremental Timing Optimization
After local movement of the modules during critical path

smoothing, a timing analysis is performed, followed by incre-
mental timing optimization to further optimize the critical
paths. Buffering and gate sizing are the most common and
powerful optimizations during the early stages of physical
synthesis. Hence, incremental timing optimization employs
these transforms to improve design timing. Please note,
other optimization transforms, such as multi-threshold vt
tuning, wire sizing, layer assignment, etc., can also be easily
embedded within ITOP. Since the goal of ITOP is to gradu-
ally improve design timing, as before, only the top-most crit-
ical paths are considered for buffering and gate sizing during
each iteration. To obtain high quality of results, state-of-the
art buffering and resizing algorithms, as outlined in [1] are
used. In addition, to avoid any inaccuracy and the resulting
degradation in the quality of results, all the optimization
transforms rely on accurate timing from an industrial static
timing analyzer.

1In case a module is surrounded by blockages on all sides.



4. CONGESTION MITIGATION AND WIRE
LENGTH RECOVERY

Since critical path smoothing only optimizes weighted wire
length, it can pack modules in a local region leading to place-
ment congestion. The effects of placement congestion are
two-fold: (a) there might not be enough space for the opti-
mization step thereby degrading its performance, (b) it can
cause severe routing congestion. Hence, to alleviate place-
ment congestion, a congestion mitigation step is performed
at regular intervals in the iterative flow.

The goal of congestion mitigation is to maintain the den-
sity profile of the incoming placement to ITOP. The intuition
being that preserving the incoming placement distribution
will yield a final placement with similar routing congestion.
To have an accurate view of the local placement distribution
and limit module movement, congestion mitigation attempts
to satisfy a “bin density target” as opposed to a “global den-
sity target” for the entire design.

To determine the bin density target, a regular bin-grid is
imposed over the placement image, and the density of each
bin is determined from the incoming placement. The density
of a bin is defined as the ratio of the total movable area to
the total free-space within the bin. The bin density target
is then a function of the bin density and the global density
target. Let,

• GDT : The global density target for the design.
• db: Incoming density of a bin in the bin-grid.
• δ: Overfill factor (a fixed, additional density allowed

within bins for which db ≤ GDT ).
• dmax: Maximum incoming bin density above which no

overfill (additional area) is allowed.

Then, the density target for bin b (DTb), is given by the
following piecewise linear function:

DTb =

(

(1 + δ)GDT db ≤ GDT

(1−
δGDT

dmax−GDT
)db +

δGDT dmax

dmax−GDT
GDT < db < dmax

db db ≥ dmax

The intuition behind the above function is as follows:
• For bins with an incoming density below dmax, the

density target is higher than the incoming density.
This lets the bins to get marginally overfilled during
ITOP to improve timing. These bins are divided into
two categories: (a) Bins with db ≤ GDT are quite
sparse. Hence, the additional module area within them
can be higher than other bins. (b) Bins with GDT <
db < dmax, the additional area allowed is decreased
with an increase in the incoming bin density.

• Bins with an incoming density equal and above dmax

are highly congested to begin with. To have space for
optimization and prevent routing issues, no overfilling
is allowed within them during ITOP.

To spread the modules from over-congested bins with min-
imal impact to timing, an enhanced version of local refine-
ment [20, 21] is used. The enhancements being: (a) during
each iteration, a bin-blocking mechanism is used, preventing
module movement from any bin with density less than DTb,
(b) the modules in an over-congested bin are moved out in
the decreasing order of their movement scores.

In addition to increasing the placement congestion, move-
ment of the critical modules can increase the design wire
length. Hence, after congestion mitigation, detailed place-
ment transforms like module swapping, flipping, etc., in the
spirit of [15] are performed to recover wire length.

5. SLACK HISTOGRAM COMPRESSION
At regular intervals in the iterative flow a global timing

optimization step is performed, targeting the overall slack
histogram. This step involves buffering and repowering a
larger set of paths in the design. The reasons for performing
periodic slack histogram compression are as follows:

• Movement of the modules on the critical paths over
multiple iterations can accumulate and impact the tim-
ing on a large number of off-critical paths. Periodically
increasing the scope of optimization can recover any
degradation in the timing on the off-critical paths.

• Since timing optimization is performed on a larger set
of paths, slack histogram compression also improves
the convergence and efficiency of the overall algorithm.

6. THE ITOP ALGORITHM
Finally, Algorithm 1 gives the overall ITOP algorithm.

From Algorithm 1, the values for the key ITOP parameters
used in practice are:

• Maximum displacement for critical modules (D1): 1%
of the chip diagonal.

• Maximum displacement for non-critical modules (D2):
5× circuit row height.

• Transition iteration (itop transition iteration): 20.

• Overfill factor (δ): 0.25 (Allow 25% overfilling of bins
below the global density target).

• Maximum bin density upto which overfill is allowed
(dmax): 0.90.

Algorithm 1 The ITOP algorithm

1: Phase 0: Initial Setup

2: D1← max displacement for critical modules
3: D2← max displacement for non critical modules

4: impose an M ×N bin-grid (B) over the placement region
5: determine the placement density (db) for each bin b ∈ B

6: determine the density target (DTb) for each bin b ∈ B

7: end

8: iteration ← 1
9: repeat

10: Phase 1: Critical Path Optimization

11: perform static timing analysis
12: identify the critical paths
13: perform slack-based critical path threading
14: repeat

15: move critical modules to minimize critical path lengths
(subject to displacement constraint D1)

16: until (no improvement in total critical net wire length)
17: legalize and fix the critical modules
18: legalize the non-critical modules
19: perform static timing analysis
20: perform incremental buffer insertion and gate sizing
21: end

22: Phase 2: Cong. Mitigation, Wire Length Recovery

23: if (iteration % itop transition iteration == 0) then

24: move non-critical modules to satisfy DTb

(subject to displacement constraint D2)
25: legalize the non-critical modules
26: perform detailed placement to recover wire length

(subject to displacement constraint D2)
27: end if

28: end

29: Phase 3: Slack Histogram Compression

30: if (iteration % itop transition iteration == 0) then

31: perform static timing analysis
32: perform slack histogram compression
33: end if

34: end

35: iteration ← iteration + 1
36: until (no timing improvement)



7. EXPERIMENTAL RESULTS
ITOP is implemented within the industrial physical syn-

thesis tool PDS [1, 19]. This section presents experimental
results on a set of high performance 65nm and 45nm indus-
trial designs, with sizes ranging from 77K to 1034K mod-
ules. All reported runtimes are on a 2.93GHz Intel Xeon
CPU running Linux. Finally, all timing numbers are gen-
erated on legalized placements using the EinsTimer static
timing analyzer. The results are divided into two parts: (a)
Sections 7.1–7.3 demonstrate the impact of the key ITOP
components, and (b) Sections 7.4–7.5 compare ITOP with
two representative flows embedded within PDS.

7.1 Effect of Placement During ITOP
Figure 6 shows the design timing during the iterative flow.

The Figure of Merit (FOM) is the sum of all slacks below a
slack threshold. If the slack threshold is zero, FOM is equiv-
alent to the total negative slack. In Figure 6, the red (solid)
line depicts the default ITOP flow (placement and optimiza-
tion). The blue (dotted) line depicts the case when place-
ment is skipped during each iteration. From Figure 6, the
timing improvement during ITOP is not because of just run-
ning multiple iterations of timing optimization. Incremen-
tal placement is essential to improve the overall timing, and
prevent optimization from getting stuck in a local minima.
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Figure 6: Design timing during the iterative flow.
The red (solid) line depicts the default ITOP flow.
The blue (dotted) line depicts the case when place-
ment is skipped during each iteration.

7.2 Effect of Tunneling During Placement
Table 2 shows the impact of tunneling on the final design

timing. It compares two runs: (a) No Tunneling: ITOP
without tunneling, (b) With Tunneling: ITOP with tunnel-
ing during critical path smoothing. From Table 2, tunneling
aids in significantly improving the worst slack and FOM.

7.3 Effect of Slack Histogram Compression
Table 3 shows the impact of running periodic slack his-

togram compression during the iterative flow. It compares

Worst Slack (ns) Figure of Merit (ns)
Design No With No With

Tunneling
%Improv

Tunneling
%Improv

ckt 5 -0.44 -0.31 29.55 -2902 -2636 9.17
ckt 6 -1.65 -1.07 35.15 -7083 -6298 11.08
ckt 9 -0.32 -0.06 81.25 -116 -48 58.62

Table 2: Effect of tunneling during placement.

Figure of Merit (ns) Number of Negative Paths
Design No With No With

Compression
%Improv

Compression
%Improv

ckt 4 -762 -645 15.35 7658 7413 3.20
ckt 8 -359 -245 31.75 3100 2768 10.71
ckt 9 -74 -48 35.14 1266 994 21.48

Table 3: Effect of periodic slack histogram compres-
sion during the iterative flow.

two runs: (a) No Compression: ITOP without periodic slack
histogram compression, (b) With Compression: ITOP with
slack histogram compression at each transition point. From
Table 3, running periodic slack histogram compression ob-
tains upto 35% improvement in the FOM and 21% improve-
ment in the number of negative paths at the end of ITOP.

7.4 Experimental Flows
To test its effectiveness, ITOP is compared with two rep-

resentative flows shown in Figure 7. These are:
• NO-TDP: Physical synthesis flow that performs a sin-

gle wire length driven global placement followed by
coarse and fine timing optimization.

• TDP: Physical synthesis flow that augments the NO-
TDP flow with a net-weight based timing-driven place-
ment step. This is similar to the flow of Figure 1(a).

Please note, in both these flows, the fine timing optimization
step also includes a timing-driven incremental placement al-
gorithm in the spirit of [13,14].
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Figure 7: Experimental Flows. (a) NO-TDP: No
timing-driven placement (b) TDP: Net-weighting
and global timing-driven placement (c) ITOP.
(Note: Detailed placement is run within fine tim-
ing optimization for the NO-TDP and TDP flows).

The following observations (validated by the results pre-
sented in Section 7.5) are first made regarding the NO-TDP
and TDP flows:

• Since the NO-TDP flow performs only a single wire
length driven global placement (without net-weighting),
it should have better wire length and routing conges-
tion compared to the TDP flow.



• On the other hand, the TDP flow should have bet-
ter design timing, since it includes an additional net-
weight based timing-driven placement step.

In this respect, the goal of ITOP is to obtain wire length
and routing congestion comparable to the NO-TDP flow and
design timing better than the TDP flow.

7.5 Results on Industrial Designs
Tables 4 and 5 compare the flows of Figure 7 on the fol-

lowing metrics: (a) the final worst slack, FOM and number
of negative paths, (b) total Steiner wire length, (c) global
routing congestion, (d) runtime of the flows. To perform
global placement, all flows use the RQL [20] global placer.
To perform net-weighting, the TDP flow uses the sensitivity
guided net-weighting scheme [17]. In both tables, the values
given along the Initial row are the numbers at the end of the
coarse timing optimization step. In addition, for Table 5 the
improvement obtained by the respective flows is evaluated
w.r.t. the values given along the Initial row.
Design Timing: From Table 5, on average, ITOP obtains
the best timing among the three flows. In terms of
worst slack, ITOP obtains an average improvement of 56.2%
and 47.45% above the NO-TDP and TDP flows. In terms
of FOM, it obtains an average improvement of 38.91% and
9.88% above the NO-TDP and TDP flows. Finally, it re-
duces the number of negative paths by 30.93% and 10.69%
over the NO-TDP and TDP flows respectively. Looking at
individual results from Table 4, ITOP obtains the best re-
sult in terms of worst slack on 12/12 designs and best timing
FOM on 9/12 designs.
Design Wire Length: From Table 5, on average, ITOP ob-
tains an average wire length improvement of 5%
compared to the TDP flow, and is only 3% worse com-
pared to the NO-TDP flow.
Global Routing Congestion: At the end of the three flows an
industrial global router is invoked to perform global routing
congestion analysis. The metric used to measure the rout-
ing congestion is the number of nets above 100% conges-
tion. This is defined as the number of nets assigned to a
global routing edge which is using 100% or more of its rout-
ing resources. A lower value for this metric implies better
routability. From Table 5, the global routing congestion
for ITOP is significantly better than the TDP flow
and comparable to the NO-TDP flow.
Runtime: Finally, from Table 4 (column eight), the run-
time for ITOP is comparable to the TDP flow for
most of the designs.

8. CONCLUSIONS
Timing-driven placement is a critical step in nanometer-

scale physical synthesis. To improve design timing on a
global scale, net-weighting followed by global timing-driven
placement happens to be the most popular approach. This
paper demonstrates that such an approach can improve tim-
ing, but significantly degrade wire length and routability.
Alternately, it describes an incremental timing-driven place-
ment algorithm called ITOP. Using accurate timing from an
industrial static timer, ITOP integrates timing optimization
within placement to improve design timing without degrad-
ing wire length and routability. Experimental results on high
performance industrial designs show that ITOP significantly
outperforms conventional timing-driven placement in terms

of design timing and wire length, with negligible impact to
design routability.

We are confident that there is room for further improve-
ment both in terms of quality and runtime. For exam-
ple, performing other optimization transforms like multi-
threshold vt tuning, wire sizing, etc., during the iterative
flow, has the potential to further improve the results and
the overall runtime of the flow.
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Design Flow W Slk FOM No. of Steiner WL Routing Cong. Runtime
(ns) (ns) Neg Paths (xe6) #Nets ≥ 100% (sec)

ckt 1 Initial -2.62 -1750 2590 94.70 80 –
Objs: 77K No-TDP -2.54 -1492 1973 94.16 77 1023
Nets: 61K TDP -3.30 -1223 2193 101.23 81 2538

ITOP -1.01 -1235 1918 94.92 80 2758
ckt 2 Initial -0.43 -169 1164 16.97 3053 –

Objs: 102K No-TDP -0.15 -34 370 15.96 2243 674
Nets: 104K TDP -0.17 -59 633 17.99 4776 1526

ITOP 0.07 -2 210 16.56 2438 1449
ckt 3 Initial -0.23 -89 693 28.81 132 –

Objs: 142K No-TDP -0.17 -50 415 27.79 152 831
Nets: 145K TDP -0.12 -31 476 27.68 0 1931

ITOP -0.01 -13 259 27.89 117 1435
ckt 4 Initial -0.64 -2036 11041 47.21 262 –

Objs: 171K No-TDP -0.51 -1469 9548 46.86 218 1046
Nets: 176K TDP -0.35 -581 6563 52.77 4756 2227

ITOP -0.27 -645 7413 47.25 339 3524
ckt 5 Initial -1.25 -6244 25881 118.09 158 –

Objs: 260K No-TDP -1.01 -5273 23801 115.98 158 1686
Nets: 269K TDP -0.83 -3076 18203 125.04 486 3148

ITOP -0.31 -2636 20971 117.37 158 4154
ckt 6 Initial -2.03 -8256 12085 117.14 3837 –

Objs: 298K No-TDP -1.71 -6566 11190 115.97 3796 1416
Nets: 313K TDP -2.47 -6407 12114 143.74 31197 3558

ITOP -1.07 -6298 11652 128.61 6406 4273
ckt 7 Initial -1.24 -14147 39635 185.27 246 –

Objs: 433K No-TDP -1.16 -11811 36981 182.46 169 2765
Nets: 441K TDP -0.75 -7083 32658 195.84 2481 5835

ITOP -0.47 -5507 34124 185.99 324 6779
ckt 8 Initial -0.98 -1795 6377 154.05 6608 –

Objs: 451K No-TDP -0.92 -1149 4305 147.46 6565 3631
Nets: 465K TDP -0.56 -449 2905 161.68 52486 10612

ITOP -0.16 -245 2768 147.62 6595 8426
ckt 9 Initial -0.90 -1537 7219 132.63 919 –

Objs: 476K No-TDP -0.68 -683 4008 128.15 917 2587
Nets: 490K TDP -0.46 -163 1451 127.89 1964 6227

ITOP -0.06 -48 994 129.80 991 8785
ckt 10 Initial -0.61 -111 615 142.69 706 –

Objs: 554K No-TDP -0.46 -104 1186 135.51 769 3024
Nets: 562K TDP -0.40 -42 664 135.51 356 9583

ITOP 0.06 -2 149 135.39 616 4100
ckt 11 Initial -1.56 -96857 149269 341.62 1112 –

Objs: 951K No-TDP -1.26 -77375 148770 327.84 7313 9896
Nets: 961K TDP -1.02 -19557 83897 347.01 169232 33673

ITOP -0.60 -20616 98880 341.61 17039 36162
ckt 12 Initial -2.19 -10987 36252 290.72 10864 –

Objs: 1034K No-TDP -1.90 -9088 42916 282.11 8951 6964
Nets: 1056K TDP -2.00 -6462 26548 297.69 36415 18965

ITOP -1.01 -6996 31605 295.98 13839 20386

Table 4: Design timing, wire length, routing congestion and runtime comparison between the NO-TDP, TDP
and ITOP flows shown in Figure 7. (NOTE: For all designs, the values given along the “Initial” row are the
results at the end of the coarse timing optimization step as shown in Figure 7.)

Flow W Slk FOM Neg Paths Steiner WL Routing Cong.
Improv(%) Improv(%) Improv(%) (Ratio) (Increase)

Initial 0.00 0.00 0.00 1.00 0
No-TDP 20.30 29.51 11.16 0.97 279

TDP 29.05 58.54 31.40 1.05 23021
ITOP 76.50 68.42 42.09 1.00 1747

Table 5: Average results over all designs. For each flow, (1) Improv: Improvement of the flow over the
“Initial” results, (2) Ratio: Final wire length of the flow / Initial Wire length, (3) Increase: Increase in the
number of nets ≥ 100% compared to the ”Initial” results.


