
FastRoute 4.0: Global Router with Efficient Via Minimization

Yue Xu, Yanheng Zhang and Chris Chu

Department of Electrical and Computer Engineering

Iowa State university, Ames, IA 50011

Email:{yuexu, yhzhang, cnchu}@iastate.edu

Abstract— The number of vias generated during

the global routing stage is a critical factor for the

yield of final circuits. However, most global routers

only approach the problem by charging a cost for vias

in the maze routing cost function. In this paper, we

present a global router that addresses the via num-

ber optimization problem throughout the entire global

routing flow. We introduce the via aware Steiner tree

generation, 3-bend routing and layer assignment with

careful ordering to reduce via count. We integrate

these three techniques into FastRoute 3.0 and achieve

significant reduction in both via count and runtime.

I. Introduction

As the trend of shrinking feature size and increasing
density for VLSI designs continues, there have been many
challenges for the development of back-end design tools.
They must be able to handle various constraints set by
the DFM (Design for Manufacturability) rules. Via is
the interconnection between adjacent metal layers. It is a
major source for circuit failure. So DFM rules set strin-
gent constraints on vias. Besides, via has large process
variation that impacts the timing of circuits. Thus, via
minimization has become one of the major targets in back-
end design. As the last stage of back-end design, routing
would determine whether a layout can realize all the in-
terconnections without design rule violation, yet fulfill the
timing requirements. So one natural stage to reduce the
number of vias is routing.

Traditional global routers ignore via count but focus
on the oldest yet most important criteria to judge the
performance of a global router, the ability to generate so-
lutions without any wire congestion. Kastner et al. [1]
proposed a pattern based routing scheme. Hadsell and
Madden [2] proposed to guide the routing by amplifying
the congestion map with a new congestion cost function.
BoxRouter [3] proposed an ILP based approach to simul-
taneously handle multiple nets and achieved reasonably
good routability. FastRoute [4] achieved very fast run-
time by exploring congestion-driven RSMT to avoid the
extensive usage of maze routing. FastRoute 2.0 [5] im-

1This work was partially supported by NSF under grant CCF-
0540998 and IBM faculty award.

proved the solution quality of FastRoute by introducing
monotonic routing and multi-source multi-sink maze rout-
ing. In the above mentioned routers, basic pattern routing
such as L routing and Z routing generates small number
of vias but lacks the effectiveness of solving congestion
problem. On the other side, powerful congestion reduc-
tion techniques like monotonic routing and maze routing
cannot control via generation properly. So even though
various methods have been proposed to properly handle
congestion, there is little discussion on how to minimize
the number of vias.

The release of 3D benchmarks in ISPD07 and ISPD08
global routing contests [6][7] requires global routers to
consider via count. The earlier consideration of via count
in global router will give more flexibility on reducing the
via count. Such improvement greatly benefits the qual-
ity of solutions. The majority of new routers such as
BoxRouter 2.0 [8], Archer [9], NTHU-R [10], MaizeRouter
[11] and FastRoute 3.0 [13] employ an efficient scheme of
running 2D global routing followed by layer assignment.
However, they overly rely on layer assignment to control
via count so the 3D solution is restrictive, due to the con-
straints set by 2D solution. Instead, FGR [12] directly ad-
dresses the problem by running 3D maze routing, which
can generate better solution at a cost of extremely long
runtime.

In this paper, we also use the scheme of employing layer
assignment after 2D global routing due to its efficiency.
However, we propose a global router that addresses the
via minimization problem throughout the entire global
routing flow. There are three major techniques that sig-
nificantly reduce the via count:

• Via aware Steiner tree generation

• 3-bend routing

• Layer assignment with careful net and edge ordering

The via aware Steiner tree generation produces tree topol-
ogy that adjusts the number of vias based on congestion
and layer information. 3-bend routing is an efficient rout-
ing algorithm with detouring option. It has congestion re-
duction capability like maze routing and effective control
on via count like pattern routing. Our layer assignment
is a sequential layer assignment algorithm that carefully
orders nets and the edges in each net. It then uses effi-
cient dynamic programming to assign layers to each edge.

We integrate the above techniques into FastRoute[4][5][13]
and call it FastRoute 4.0.

On the benchmarks from 2008 global routing contest
held by ISPD, FastRoute 4.0 reduces the number of vias
by 13.8% comparing to FastRoute without the three tech-
niques proposed. It can achieve comparable performance
as the best global router in the 2008 contest with up to
10 times the speed.

The remainder of the paper is organized as follows. In
Section II, we overview the framework of FastRoute 4.0.
In Section III, we present the three major techniques in
detail. We compare the performance with the state of art
in Section IV and conclude in Section V.

II. Preliminary

A. Grid Graph Model

FastRoute 4.0 inherit the grid graph model used in Fas-
tRoute and extend it into 3D grid graph model, as illus-
trated in Fig. 1. The boundary on each metal layer be-
tween areas above two adjacent global cells is represented
by one 3D global grid edge in the perpendicular direc-
tion of the original boundary, indicating that wires on
the global grid edge are actually crossing the boundary.G l o b a l C e l l s

G l o b a l E d g e sG l o b a l E d g e s
Fig. 1. Global Cells and Corresponding 3D Global Routing Grid
Graph

B. Overview of Previous Work and FastRoute 4.0

FastRoute 4.0 is based on the work of FastRoute
[4][5][13], which is a powerful and efficient router ex-
tremely good at solving congestion problems. FastRoute
is a sequential rip-up and reroute tool (RRR) that first
uses FLUTE [14] to construct congestion-driven Steiner
tree. It then uses pattern routing and multi-source multi-
sink maze routing to reduce congestion. FastRoute 3.0 in-
troduces virtual capacity to adaptively change the capac-
ity associated with each global edge to divert wire usage
from highly congested regions to congestion-free regions.

As illustrated in Fig. 2, we have integrated the tech-
niques proposed in this paper into FastRoute 3.0, in stages
2, 5, 6 and 8. After the congestion estimation, FastRoute

4.0 first generates the via aware Steiner tree and use pat-
tern routing to initialize a solution. Then we use 3-bend
routing and maze routing to solve the congestion problem.
When overflow could not be reduced any more, layer as-
signment finishes the global routing flow.

Fig. 2. FastRoute 4.0 Framework

III. Via Reduction Techniques

A. Via Aware Steiner Tree

As most global routers start to consider vias only in
the late stages as maze routing and layer assignment, they
overly rely on these techniques to solve congestion and re-
duce via count, where via reduction is often compromised.
Moreover, in a common RRR framework, global routers
avoid rerouting nets as much as possible to save runtime.
So the majority of nets do not go through RRR. These
nets keep the original topologies, which are not optimized
in terms of via count. Thus, an early consideration of vias
in tree topology generation is essential for the quality of
global router. Our via aware Steiner tree generation tech-
nique further extends congestion driven RSMT proposed
in FastRoute[4]. It computes suitable topology at the be-
ginning stage of global routing so that global router will
generate less number of via.

After analyzing net topologies, we found that different
tree topologies have significant impact on via count. As
shown in Fig. 3, three topologies are generated for a 7-
pin net. Assuming horizontal wires are on metal layer 1
and vertical wires on metal layer 2, the three topologies
will generate 7, 14 and 9 vias respectively, ignoring the
contacts between poly-silicon and metal layers. Here we
define two special struectures: Horizontal Tree (H Tree)
and Vertical Tree (V Tree). H tree is defined as a rectilin-

ear tree with only one vertical trunks, with all the other
trunks in between the vertical trunks and pin nodes to be
horizontal. Similarly, vertical tree is defined as a tree with
only one horizontal trunk, with all the other trunks in be-
tween the horizontal trunk and pin nodes to be vertical.
If each net is assigned onto two adjacent metal layers, as
our layer assignment algorithm tries to achieve by keeping
segments in one net close to each other, H Tree and V Tree
are two extremes in terms of the number of vias. Other
trees, like the RSMT with smaller wirelength shown in
Fig. 3, have via count in between. However, it is not
always the case that H Tree would have less number of
vias than V Tree. If the resource on metal layer 1 is used
up and the net has to go onto layer 2 and 3, it is obvious
that V Tree is a better choice. i dV i aP i n N o d eS t e i n e rH T r e e V T r e e M i n i m a l T r e e
Fig. 3. Via Aware Steiner Tree

So we adjust the net topology by the usage and ca-
pacity comparison between horizontal metal layers and

vertical ones, as

∑
cap(h)∑
usg(h)

/

∑
cap(v)∑
usg(v)

, where
∑

cap(h) and
∑

usg(h) is the sum of horizontal capacity and usage of
grid edges within the bounding box of each net.

∑
cap(v)

and
∑

usg(v) are defined for vertical edges. We multiply
this factor with the factor used in FastRoute[4] that gen-
erates congested driven RSMT and use the result to scale
vertical distances between the pin nodes. Finally, we use
the scaled distance in FLUTE to generate adjusted topol-
ogy for each tree. Trees generated in this way will take
consideration of both via count and congestion. For ex-
ample, if the horizontal resources are more abundant than
vertical resources, we scale down the vertical distances.
The RSMT computed by FLUTE for such an scaled net
will have more horizontal edges. In this way, we manipu-
late the constitution of horizontal edges and vertical edges
in the net structure to reduce via count. The simulation
shows a 3% via count reduction after pattern routing stage
with less than 1% overhead in wirelength and overflow.

B. 3-Bend Routing

The most commonly used routing techniques in Global
Routing includes L/Z/U routing, monotonic routing and
maze routing, as shown in Fig. 4. L/Z/U routing gen-
erates limited number of via, has fast speed but is very
limited in reducing congestion. Monotonic routing and
maze routing, on the contrary, do better job in solving

congestion problem but cannot control via count effec-
tively. Besides, maze routing and U routing allow detour
to strengthen the via reduction capability. Maze routing
is most powerful but suffers from long runtime. So the
traditional routing techniques all sacrifice one or several
quality to improve some others. To address this problem,
we propose 3-bend routing, a fast routing technique with
enhanced congestion reduction capability than traditional
pattern routing and less via than maze routing.

Fig. 4. L/Z/U, Monotonic and Maze Routing

A 3-bend route is a 2-pin rectilinear connection that has
at most three bends and possible detour. It is much more
flexible than L/Z/U route on solving congestion problem.
Comparing to monotonic route and maze route, 3-bend
route has advantage on having less vias. Fig. 5 shows
two possible 3-bend routes for a tree edge, S → B → T
and S → B′ → T . No L/Z/U routing can avoid the
congested area marked as shades. However, the 3-bend
route S → B → T can achieve congestion free routing
with least bends possible.B (n � 1 , m � 1)(n � 1 , 0) TB B ’ B r e a kP o i n tS B P o i n t(0 0) (0 1)(0 , 0) (0 , m � 1)
Fig. 5. 3-Bend Routing

To find the best 3-bend routing path for a 2-pin net,
we assume one pin to be the source (S = (ys, xs)) and
the other one to be the sink (T = (yt, xt)). Without loss
of generality, we assume S is at the lower-left corner and
T is at the upper-right corner. We define the possible
detouring region as expanding box for each net. It is
calculated depending on the size, location and congestion
of each net. The larger net with more congestion will have
a larger expanding box. The pseudo code to compute the
best 3-bend path for an S-T bounding box of size p × q
and an expanding box of m × n nodes is given in Fig. 6.

In the algorithm, dh(y, x) and dv(y, x) denote the costs
for a path going from the point (y, x) horizontally to the
left boundary and vertically to the bottom boundary re-

Algorithm 3-Bend Routing

1. Cbest = +∞

2. for y = 0 to n − 1

3. dh(y, 0) = 0

4. for x = 1 to m − 1

5. dh(y, x) = dh(y, x − 1) + costh(y, x − 1)

6. for x = 0 to m − 1

7. dh(0, x) = 0

8. for y = 1 to n − 1

9. dv(y, x) = dv(y − 1, x) + costv(y − 1, x)

10. for y = 0 to n − 1

11. for x = 0 to m − 1

12. B = (x, y)

13. dL1(B) = |dh(S)−dh(ys, x)|+ |dv(ys, x)−dv(B)|

14. dL2(B) = |dh(S)−dh(y, xs)|+ |dv(y, xs)−dv(B)|

15. dL3(B) = |dh(T)−dh(yt, x)|+ |dv(yt, x)−dv(B)|

16. dL4(B) = |dh(T)−dh(y, xt)|+ |dv(y, xt)−dv(B)|

17. Compute the cost of four possible 3-bend paths

from 4 paths above plus via cost and compare

it to Cbest. If better, update best 3-bend path.

Fig. 6. 3-Bend Routing Algorithm

spectively. To balance wirelength and congestion, we use
the logistic cost function [4] used in maze routing. Line
2 to Line 9 create two tables that have the cost for a
bend-free edge between any points in the bounding box
and the left or bottom boundary, from which the cost of
a rectilinear path between any two nodes in the bounding
box could be easily calculated. A 3-bend path could be
concatenated from two L-shaped paths, like using S → B
and B → T to form S → B → T . So we add a break point
in the expanding box to get all the possible 3-bend paths,
calculate their costs and find the best solution. Line 2 to
7 take O(mn) time. Line 8 to 19 also take O(mn) time.
So the complexity of 3-bend routing algorithm for a 2-pin
net is O(mn), the same as Z routing. It is worth notic-
ing that the algorithm shown in Fig. 6 may compute the
same paths for several times. We keep them in order to
eliminate conditional jump in the code and save runtime.

The short runtime and good congestion solving capabil-
ity let 3-bend routing to become an alternative for maze
routing. Originally, only a small percentage of nets would
be routed by maze routing but the statement fails to
hold as the benchmarks become more complex. We apply
3-bend routing for congested nets before maze routing,
which leads to runtime and via count reduction.

C. Layer Assignment with Careful Ordering

There are generally two methods to generate solution
for 3D global routing benchmarks. One is running routing
techniques and layer assignment concurrently. It overly

complicates the problem and is rarely used. The other
more popular way first projects the 3D benchmarks from
aerial view, finds a solution for the 2D problem and ex-
pands the solution to multiple layers. This expansion is
called layer assignment, which has significant impact on
the number of vias for the final solution. To keep our
global router fast, we propose a sequential layer assign-
ment algorithm that would assign the 2D solution into
routing layers, from lower layers to higher ones. The layer
assignment algorithm will not change the aerial view of
2D solution and thus keep the total wirelength. Besides,
our algorithm keeps total number of overflow unchanged.
Thus, if we can find a congestion-free solution for the 2D
global routing problem, we can find a valid solution for
the original 3D problem.

In the algorithm, we fist order the net considering its
total wirelength and number of pin nodes. Then we or-
der the edges in each net according to their locations in
the net. Finally, we assign layers using dynamic program-
ming, edge by edge, net by net.

Due to the competition of different nets in the assigning
sequence and greedy nature of layer assignment, careless
early assignment causes later nets “hopping” among the
layers and thus generates a large number of unnecessary
vias. Smaller nets connecting nearby global cells are con-
sidered relatively local and should use lower metal layers.
On the contrary, longer nets assigned to upper layers will
encounter less hopping between layers and will use wider
tracks on top layers to achieve better timing. Further-
more, we observe that nets with higher number of pins
tend to cause more vias. So we order nets by increasing
order of

∑
wl/#Pins, where

∑
wl is the total wirelength

for a net. Thus, we keep nets with smaller total wirelength
and higher pin count on the lower layers.

For each net, we order edges for the following reason.
The only layer information for a net is that the pin nodes
must go up to at least metal layer 1 to have metal con-
nections. So we order the edges in each net in increasing
order of their distance to the pin nodes. Here, the dis-
tance is defined as the number of edges the two nodes in
an edge have to traverse to reach the nearest pin node. We
first assign layers to the edges with 0 distance i.e., edges
that have at least one pin node and move onto edges with
larger distance. By such an order, we are sure that at least
one end of each edge has the information that which lay-
ers the pin node ranges between. Thus, we start assigning
edges on the periphery of a net and continue inwardly.

As shown in Fig. 7, we create a “via grid graph” to
assign each edge to metal layers. We call each node on
the graph a “via node”. Vertical edges represent the pos-
sible places to add via while the horizontal edges are con-
structed from the actual 2D path. We pull straight the
original zigzagged 2-pin net to form the horizontal edges
in the via grid graph and copy the capacity and usage
of corresponding global edge from the edge grid graph.
We break the tree edge into global grid edges and assign

them to layers one by one. Such breakdown enables us to
keep the total number of wirelength and overflow of the
2D solution unchanged. Without loss of generality, we as-
sume sources Si on the very left column and targets Tj on
the right. If we don’t know the layer information about
the ending node, layer 0 to L − 1 are all considered to
be targets. Here, L is the layer numbers in a benchmark.
Otherwise, the target is set to be the spanning range of
the ending node. T 6M 6 T 56TM 5 M 4M 6 T 3T 4M 3 M 4S 2 T 3T 2M 3 M 22S 1 T 1M 1
Fig. 7. Dynamic Programming Layer Assignment

We associate every via node with a cost, which repre-
sents the least number of vias on the paths from the node
to any source nodes. Since we do not change the aerial
view of a net, a 3D path must and must only use the
horizontal segments between two adjacent columns once.
Thus, the cost for a node is the same as its left neighbor
if there is still routing resource or one plus the cost asso-
ciated with the upper or lower neighbor nodes, whichever
is smaller. The pseudo-code to process each edge with
wirelength n is shown in Fig. 8.

Layer Assignment for 2-Pin Net

1. Initial the cost for all the via nodes to +∞

2. For every source, C(j, 0) = 0

3. Update the cost for other via nodes on the first col-
umn

4. for x = 1 to n − 1

5. for y = 0 to L − 1

6. if cap(j, x − 1) > usg(j, x − 1)

7. C(j, x) = C(j, x − 1)

8. Update the cost from vertical neighbors.

9. Find the least cost for any sink node and trace back
using C(j, x)

Fig. 8. Layer Assignment Algorithm for 2-Pin Net

In the algorithm, line 1 uses O(nL) time and line 2 takes
O(L) time. The update of costs from vertical neighbors
involves with a series of sorting, comparison and update,
which takes at least O(LlgL) time. However, because of
the small number of L (typically less than 10 depending
on the semiconductor process), we use an O(L2) imple-

mentation. Hence, Line 4 to Line 8 take O(nL2). So the
complexity of layer assignment for each edge is O(nL2).

IV. Experimental Results

We implemented FastRoute 4.0 in C with Steiner tree
package FLUTE. All the experiments are performed on
a Linux machine with 2.4 GHz AMD Operon and 4GB
RAM. Since the work is focused on the number of vias
in the routing solution, we run two sets of benchmarks:
3D ISPD07 global routing contest benchmarks [6] and 3D
ISPD08 global routing contest benchmarks [7]. The 2008
set of benchmarks has 8 new benchmarks shown in Ta-
ble I and 8 benchmarks inherited from 2007, as shown in
Table II. However, when ISPD08 global routing contest
considers one unit of via at the same cost of one unit of
wirelength, the one held in 2007 charges via at a cost three
times of the cost for wirelength.

The comparison between FastRoute 4.0 with and with-
out the three techniques proposed in this paper is shown
in Table I. The three algorithms together can achieve less
congestion and 13.6% less number of vias with 0.5% less
wirelength and 48% runtime reduction.

We compare the results for 3D benchmarks in ISPD07
global routing contest with recently published global
router in Table II. FastRoute 4.0 can route 7 out of 8
benchmarks without any overflow and completes with
lowest overflow for the unroutable Newblue3. Further-
more, the runtime is more than 10 times faster than the
best published results. The comparison of runtime with
NTHU-R is also shown in Table II. NTHU-R is performed
on a 2.2GHz AMD machine with 8GB memory. Others
are at least 10 times slower, not shown due to space limits.

In Table III, we compare the performance of FastRoute
4.0 on the ISPD08 global routing contest benchmarks with
the top 5 routers besides FastRoute 3.0. Again, FastRoute
4.0 is the fastest router. We route two benchmarks with
the lowest congestion out of 3 benchmarks that no con-
testants can finish without overflow. Since no other data
is available, we quote the results for the contest version of
other routers from ISPD08 global routing contest results.
It is worth noticing that the runtime for other routers are
based on a 2.8GHz machine.

V. Conclusions

In this paper, we develop a new global routing tool that
focuses on reducing the number of vias. It reduces 13.6%
of via count of FastRoute 3.0 with enhancement in saving
runtime. If the runtime bonus used in ISPD08 is con-
sidered, FastRoute 4.0 outperforms every single academic
global router.

Our future work will focus on how to control maze rout-
ing so that it can make more effective balance between
reducing congestion and keeping wirelength small.

TABLE II
Comparison between FastRoute and published global routers on 3D benchmarks of ISPD07 global routing contest

FastRoute 4.0 NTHU-R [10] Archer [9] FGR [12] BoxRouter 2.0 [8] MaizeRouter [11]
name ovfl wlen cpu(s) ovfl wlen cpu(s) ovfl wlen ovfl wlen ovfl wlen ovfl wlen

adaptec1 0 9100K 190 0 9056K 5613 0 11380K 0 8845K 0 9204K 0 10000K
adaptec2 0 9157K 45 0 9217K 1010 0 11256K 0 8989K 0 9428K 0 9800K
adaptec3 0 20461K 300 0 20504K 3893 0 24408K 0 19966K 0 20741K 0 21400K
adaptec4 0 18695K 40 0 18843K 604 0 22157K 0 17936K 0 18642K 0 19400K
adaptec5 0 27064K 568 0 26503K 16104 0 33409K 0 25998K 0 27041K 0 30500K
newblue1 0 9170K 283 352 9091K 2280 494 11608K 526 9426K 400 9294K 1348 10200K
newblue2 0 13563K 22 0 13601K 257 0 16650K 0 12940K 0 13464K 0 14000K
newblue331634 18211K 1280 31800 16840K 2146531928 19877K 39908 17371K 38958 17244K 32588 18400K

TABLE III
FastRoute 4.0 results on 3D version of ISPD08 global routing contest benchmarks

FastRoute 4.0 NTHU-R [7] NTUgr [7] BoxRouter2.0 [7] FGR [7]
name ovflseg wlen #via twl cpu(s)ovfl twl cpu(s)ovfl twl cpu(s)ovfl twl cpu(s) ovfl twl cpu(s)

bigblue1 0 3795K 1990K 5789K 423 0 5631K 586 0 5784K 839 0 5698K 1147 0 5733K 4194
bigblue2 0 5104K 4455K 9559K 913 0 9059K 594 0 9718K 15862 0 9042K 2346 0 9143K 14287
bigblue3 0 7891K 5179K 13070K 278 0 13075K 259 0 13573K 296 0 13133K 380 0 13201K 5256
bigblue4 152 12825K 11340K24165K 674 18223076K 7533 18824282K24785 47223156K 52644 414 23163K85513
newblue4 144 8502K 4892K 13394K 1135 15212990K 4023 14214378K67087 20012947K 78225 262 12959K85220
newblue5 0 15013K 8659K 23672K 607 0 23166K 854 0 24578K 1679 0 23294K 1700 0 23296K 9963
newblue6 0 10561K 7701K 18262K 574 0 17696K 818 0 18556K 935 0 17975K 1785 0 18030K 6194
newblue7 62 18742K 16949K35691K11060 68 35357K 8433 31037222K86732 20835859K 84743 145835023K86068

TABLE I
FastRoute 4.0 performance comparison for the three

techniques on ISPD08 global routing contest benchmarks

FastRoute 4.0 Without the Techs
name ovfl #via seg wl cpu(s)ovfl #via seg wl cpu(s)

bigblue1 0 1990K 3795K 423 0 2645K 3866K 773
bigblue2 0 4455K 5104K 913 34 4628K 5138K 1797
bigblue3 0 5179K 7891K 278 0 5521K 7940K 342
bigblue4 15211340K12825K 674 15012767K12841K 3711
newblue4144 4892K 8502K 1135 178 5334K 8521K 2459
newblue5 0 8659K 15013K 607 0 10223K15184K 1419
newblue6 0 7701K 10561K 574 0 9266K 10611K 1357
newblue7 72 16949K18742K11060 15819238K18789K18084

References

[1] R. Kastner, E. Bozorgzadeh and M. Sarrafzadeh, “Pattern
Routing: Use and Theory for Increasing Predictability and
Avoiding Coupling,” Proc. of IEEE transactions on Computer-
Aided Design of Integrated Circuits and Systems, VOL. 21, NO.
7, July 2002.

[2] R.T. Hadsell and P.H. Madden, “Improved global routing
through congestion estimation,” Proc. of Design Automation
Conference, pp. 28-31, 2003.

[3] M. Cho and D. Z. Pan, “BoxRouter: A new global router based
on box expansion and progressive ILP,” Proc. of Design Au-
tomation Conference, pp. 373-378, July 2006.

[4] M. Pan, and C. Chu, “FastRoute: A step to integrate global
routing into placement,” Proc. of Intl. Conf. on Computer-
Aided Design, pp. 464-471, Nov 2006.

[5] M. Pan, and C. Chu, “FastRoute 2.0: A high-quality and ef-
ficient global router,” Proc. of Asia and South Pacific Design
Automation Conf., Jan 2007.

[6] http://www.sigda.org/ispd2007/rcontest/.

[7] http:http://www.ispd.cc/contests/ispd08rc.html.

[8] M. Cho, K. Lu, K. Yuan and D. Z. Pan, “BoxRouter 2.0: Ar-
chitecture and Implementation of a hybrid and robust global
router,” Proc. of Intl. Conf. on Compuer-Aided Design, pp.
503-508, Nov 2007.

[9] M. M. Ozdal and M. D.F. Wong, “ARCHER: a history-driven
global routing algorithm,” Proc. of Intl. Conf. on Compuer-
Aided Design, pp. 481-487, Nov 2007.

[10] J.-R. Gao, P.-C. Wu, and T.-C. Wang, “A new global router
for modern designs,” Proc. Asia and South Pacific Design Au-
tomation Conf., Jan 2008.

[11] M. D. Moffitt, “MaizeRouter: Engineering an effective global
router,” Proc. Asia and South Pacific Design Automation
Conf., Jan 2008.

[12] J. A.Roy and I. L. Markov, “High-performance routing at the
nanometer scale,” Proc. IEEE/ACM Intl. Conf. on Compuer-
Aided Design, pp. 496-502, Nov 2007.

[13] Y. Zhang, Y. Xu and C. Chu, “FastRoute3.0: a fast and high
quality global router based on virtual capacity,” in press.

[14] C. Chu, “FLUTE: Fast lookup table based wirelength estima-
tion technique,” Proc. of Intl. Conf. on Compuer-Aided Design,
pp. 696-701, Nov 2004.

