
IPR: An Integrated Placement and Routing Algorithm
Min Pan Chris Chu

Cadence Design Systems, Inc. Electrical and Computer Engineering Dept.
San Jose, CA, 95134 Iowa State University, Ames, IA 50011
minpan@cadence.com cnchu@iastate.edu

Abstract— In nanometer-scale VLSI technologies, several interconnect is-
sues like routing congestion and interconnect delay have become the main
concerns in placement. However, all previous placement approaches optimize
some very primitive interconnect models during placement. These models are
far from the actual interconnect implementation in the routing stage. As a
result, placement solution considered to be good by primitive interconnect
models may turn out to be poor after routing. In addition, the placement
may not even be routable and timing closure may not be achievable.

In this paper, we propose to address the inconsistency between the place-
ment and routing objectives by fully integrating global routing into placement.
As a first attempt to this novel approach, we focus on routability issue. We call
the proposed algorithm for routing congestion minimization IPR (Integrated
Placement and Routing). To ensure the algorithm to be computationally
efficient, efficient placement and routing algorithms FastPlace, FastDP and
FastRoute are integrated, and well-designed methods are proposed to integrate
them efficiently and effectively. Experimental results show that IPR reduces
overflow by 36%, global routing wirelength by 3.6%, and runtime by 36%
comparing to ROOSTER [5], which is the previous best academic routability-
driven placer.

CATEGORIES & SUBJECT DESCRIPTORS

B7.2 [Hardware]: Integrated Circuits - Design Aids

GENERAL TERMS

Algorithms, Design, Performance

KEYWORDS

Placement, Routing, Integration

I. INTRODUCTION

As VLSI technology enters nanometer regime, placement has become a
critical step in VLSI design flow. The two major causes are both related
to the increasing dominance of interconnect in nanometer-scale VLSI
technologies. First, placement largely determines the performance of a
circuit. In advanced VLSI technology, interconnect delay has become the
determining factor of circuit performance. Placement decides the length
and hence the delay of interconnect wires to a large extent. Therefore,
a good placement solution can substantially improve the performance of
a circuit. Second, placement also determines the chip size. Because of
the shrinking of device size, the chip area is no longer determined by
total cell area, but by the limited routing resources. Extra “white space”
is commonly added to provide enough wire tracks to resolve routing
congestion. It is typical that more than half of the modern chip is occupied
by white space. Placement is an important step to reduce white space
required by minimizing routing congestion and to allocate white space
appropriately based on routing congestion.

Even though interconnect issues are the main concerns during place-
ment, they are not appropriately handled in traditional physical design
flow in which placement and routing are performed sequentially. In place-
ment stage, the characteristics of interconnects are typically approximated
by inaccurate models (e.g., half-perimeter of bounding rectangle, clique
model, star model). These models are far from the actual implementation
of interconnects in routing stage. Due to this inconsistency between the
objectives optimized in placement stage and in routing stage, the placed
circuit may not be routable and the estimated interconnect timing may
not be achievable. Even if a placed design is routable and achieves timing
closure, the placement and routing solutions generated by this sequential
approach may be far from optimal.

In this paper, we address the routability issue by improving the ways
routing congestion information are generated and utilized during place-
ment. First, we discuss previous works on routability-driven placement. In
placement algorithms, the most commonly used optimization objective is
total wirelength. Wirelength minimization can be considered an indirect
way to reduce routing congestion as total wirelength is equal to total
routing demand. However, a placement with small wirelength may be

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 2007, June 4-8, 2007, San Diego, California, USA
Copyright 2007 ACM 978-1-59593-627-1/07/0006...5.00

unroutable due to an uneven routing demand distribution. Hence, many
routability-driven placement algorithms are proposed to explicitly account
for routing congestion in order to produce routable placements. Yang et al.
[1] built congestion maps after global placement, and applied annealing
moves to minimize a congestion metric. Another technique known as
WSA [2] is applied after detailed placement. WSA uses congestion
maps to identify areas with high congestion and injects whitespace
into these areas in a top-down fashion. After whitespace allocation and
legalization, window based detail placement techniques are applied to
reduce wirelength. Cell bloating [3] and cell spreading [2] are whitespace
allocation techniques by tying whitespace to specific cells. In [4], Jariwala
and Lillis employed a single-trunk Steiner tree model to reduce congestion
in FPGAs. Recently, Roy et al. [5] developed a placement technique called
ROOSTER to optimize Steiner-tree wirelength together with whitespace
allocation in a partitioning placement framework. ROOSTER improves
overall Place-and-Route results over previous works.

All previous works tried to achieve routability by including some con-
gestion estimation and using that information as a guide during placement.
However, as pointed out in [6], it is impossible for congestion estimators
to predict the routing congestion accurately because various routers will
generate routing solutions with very different routing congestion. The
only possible way to account for congestion accurately is to apply the
same technique in both congestion estimation and routing. Therefore, in
order to get accurate interconnect information, it is desirable to integrate
routing into placement process.

Global routing allocates routing demand globally over the chip area.
It generates interconnect information very close to the final routing
implementation and is suitable for accurate estimation of interconnect
wirelength, congestion, timing and buffering, etc. If we are able to
integrate global routing into placement, accurate congestion based on
routing of nets becomes available. Hence, placement solutions with
routability guaranteed by a global routing solution can be obtained.

However, the major obstacle for this integration is runtime complexity.
Since both placement and routing are computationally expensive prob-
lems, integrating them together will make it much more difficult to man-
age. Due to the high runtime of traditional global routers, it is impractical
to perform global routing repeatedly during placement. Therefore, we
need to have very efficient placement and routing algorithms, as well as
well-designed methods to integrate them efficiently and effectively.

In this paper, we propose a novel integrated placement and routing
algorithm called IPR, based on efficient global placement, detailed
placement and global routing algorithms FastPlace [7], [10], FastDP [11]
and FastRoute [6]. In this algorithm, global routing is closely integrated
into the iterative placement process. Congestion maps are generated based
on actual routing and frequently updated as the placement algorithms
change cell locations. The congestion map is used to direct the placement
optimization to reduce routing congestion. Here, we are optimizing the
routing congestion directly instead of indirect objectives like whitespace
allocation. Therefore, we are able to get high-quality placement solutions
in terms of routability. As far as we know, this is the first work which
fully integrates placement and routing in the general ASIC design flow.

The major contributions of this paper are:
• An integrated placement and routing framework.
• A Steiner wirelength driven local refinement technique to optimize

the Steiner-tree wirelength and to evenly distribute the cells in global
placement stage.

• A routability-driven refinement (RDR) technique to directly optimize
the routability in global placement stage.

• A routability-driven global swap (RGS) technique to improve
routability by swapping cells globally in detailed placement stage.

• A routability-driven local swap (RLS) technique to improve routabil-
ity by swapping neighboring cells in detailed placement stage.

Experimental results show that the new integrated placement and
routing algorithm can achieve significantly better placement solutions
in terms of routability in less runtime compared to ROOSTER. In
addition, we show that even with the same placement framework as IPR,
using simple probabilistic congestion model instead of global routing is
not able to direct the placement to achieve the high-quality placement
and routing solution as in the integrated approach. This justifies the
necessity of integrating global routing with placement to generate accurate
interconnect information and direct placement process.



Note that although we only focus on routability issue in this paper,
other issues such as timing, buffering can also be handled within this
framework because routing information is available during the placement
process.

The remainder of the paper is organized as follows. In Section II,
we first review the efficient placement and routing algorithms FastPlace,
FastDP and FastRoute. Then we discuss the issues with placement
and routing integration and give the flow of our integrated approach.
In Section III, the techniques to integrate placement and routing are
described in detail. In Section IV, we perform experiments and show
the comparison results. Finally, the paper concludes with a summary of
results and directions of future work.

II. OVERVIEW OF IPR

In this section, we first review the efficient placement and global routing
algorithms FastPlace, FastDP and FastRoute. Our integrated placement
and routing approach is based on them. Then we discuss the major
difficulties for integration. Finally, we give the flow of our integrated
placement and routing algorithm.

A. FastPlace, FastDP and FastRoute

FastPlace [7] is a very efficient wirelength-driven placement algorithm.
It was first proposed to handle standard cell designs and later extended to
handle mixed-size designs [10]. In general, it is a force-directed placement
algorithm. It formulates the placement problem as convex quadratic
programming. In order to achieve an even placement, a cell shifting
technique is proposed to spread out the cells. In addition, half-perimeter
wirelength (HPWL) is optimized by an iterative local refinement (ILR)
technique. FastPlace can generate good placement solutions in terms of
HPWL with very fast runtime.

FastDP [11] is an efficient and effective detailed placer. It works on
a legalized placement and iteratively reduces HPWL. In the main loop,
global swap, vertical swap and local re-ordering techniques are applied
to reduce the wirelength. For the cells in the same placeable segment, a
single-segment clustering technique is proposed to find the optimal cell
positions respecting their original ordering.

FastRoute [6] is a very fast high-quality global router. Different
from traditional global routers, it focuses on Steiner tree structures to
resolve congestion. Congestion driven Steiner tree topology construction
algorithm and edge shifting technique are proposed to construct good
Steiner trees. Later in [12], monotonic routing and multi-source multi-
sink maze routing techniques are proposed to enhance the pattern routing
and traditional maze routing to achieve high-quality routing solutions.
Experimental results show that FastRoute generates much better global
routing solutions with tens to hundreds of times speedup compared to all
other state-of-the-art academic global routers.

IPR is based on these efficient placement and routing techniques. Their
efficiency is one of the reasons that we are able to integrate placement
and routing with reasonable runtime.

B. Integration Issues

Although we have the placement and routing techniques mentioned in
Section II-A, it is not trivial to assemble them together to get an integrated
approach. There are several issues for integrated placement and routing
to obtain high-quality solutions with affordable runtime.

First, during the iterative placement process, cells are moving all the
time. As they change positions, we need to redo the routing. Although
we have a very fast global routing algorithm, simply performing global
routing after movement of each cell is not feasible because each cell will
change positions thousands of times during placement and the cell number
is huge. Therefore, we perform incremental rip-up and reroute to keep the
routing updated. In this method, when we moving a cell, only the routing
trees/branches connecting to this cell will be ripped up and rerouted.
This incremental updating strategy may not give the best possible routing.
However, it is good enough for routing congestion estimation and will
not lead to an unaffordable runtime.

Second, in the IPR framework, cell positions are gradually refined
from stage to stage. Hence, we adapt our incremental routing approach to
this increasing accuracy of placement. We apply routing techniques with
increasing accuracy during the whole placement and routing process to
balance the accuracy and runtime. As we will discuss in detail in Section
III, the routing information is also becoming more and more accurate as
placement approaches final solution.

C. IPR Flow

The proposed IPR framework follows the basic flow of FastPlace.
It also has three stages: (1) global placement, (2) legalization, and (3)
detailed placement. However, different from FastPlace, the objective is
no longer HPWL, but good routability. Hence, although we still have these
three stages in the flow, many new techniques are introduced due to the
new objective. As we will see later, these techniques closely integrate
routing to get accurate congestion information and directly optimize
routing congestion in the placement process.

The flow of IPR is summarized in Figure 1. Notice that the new
techniques for reducing routing congestion are Steiner-WL based Itera-
tive Local Refinement, Routability Driven Refinement, Routability-driven
Global Swap and Routability-driven Local Swap. In addition, global
routing is closely integrated in these new techniques to obtain global
routing and congestion map. Finally, the output is not only a placement
with good routability but also the global routing solution over it.

Stage 1: Global Placement
1. Repeat

a. Solve convex quadratic program
b. Perform cell-shifting and add spreading force

2. Until the placement is roughly even
3. Repeat

a. perform Steiner-WL based Iterative Local Refinement
4. Until the placement is even and no significant improvement on Steiner-WL
5. Run FastRoute to get an initial global routing and congestion map
6. Repeat 

a. Perform Routability Driven Refinement to reduce routing congestion
b. Run FastRoute to get updated routing and congestion map

7. Until no significant improvement on congestion
Stage 2: Legalization

8. Move standard cells to legal positions and remove overlaps, minimize the 
disturbance to the global placement

Stage 3: Detailed Placement
9. Run FastRoute to get an initial global routing and congestion map
10. Repeat

a. Apply Routability Driven Global Swap to reduce routing congestion
b. Updating routing and congestion map by rip-up and reroute

11. Until no significant improvement on congestion
12. Run FastRoute again to get global routing and congestion map
13. Repeat

a. Apply Routability Driven Local Swap to reduce routing congestion
b. Updating routing and congestion map by rip-up and reroute

14. Until no significant improvement on congestion
15. Run FastRoute to obtain the final global routing solution

Fig. 1. Flow of IPR

III. INTEGRATED PLACEMENT AND ROUTING TECHNIQUES

In this section, we will introduce the new techniques in this integrated
placement and routing framework in detail.

A. Global Placement

As shown in Figure 1, the global placement stage has 3 phases:
(1) quadratic placement (lines 1-2), (2) St-WL based Iterative Local
Refinement (lines 3-4), and (3) Routability Driven Refinement (lines 5-7).

1) Quadratic placement: In this phase, our global placement follows
FastPlace. Basically, it is a quadratic placement method. It tries to
optimize the quadratic objective function which sums up the cost of all
nets. It can be written in matrix notation as:

Φ(x, y) =
1

2
xT Qx + dT

x x +
1

2
yT Qy + dT

y y + constant (1)

In this quadratic placement formulation, only two-point connections
can be used to express wirelength. So a hybrid net model [7] is used to
transform the multi-pin nets into two-point connections. Since equation
(1) is separable into Φ(x, y) = Φ(x)+Φ(y), we can optimize Φ(x) and
Φ(y) separately. Therefore, the objective function Φ(x) and Φ(y) can be
minimized by solving the following system of linear equations:

Qx + dx = 0 (2)
Qy + dy = 0

Equation (2) gives the solution to the unconstrained problem of
minimizing the quadratic function in equation (1). However, it does not



consider the overlap among cells. Therefore, the cells are not evenly
distributed over the placement region. Therefore, we apply the cell shifting
technique as in [7] to even out the placement by distributing the cells over
the placement region while retaining their relative ordering obtained from
the quadratic programming. During cell shifting, the placement region is
binned and the utilization of each bin is computed. The cells are then
spread depending on the utilization of their respective bins. The basic
intuition behind cell shifting is to even out the utilization of adjacent
bins. After each iteration of cell shifting, pseudo nets are added to the
cells to prevent them from collapsing back to their previous positions.
We iteratively solve the quadratic program and perform cell shifting until
the placement is relatively even, as shown in lines 1-2 of Figure 1. The
goal is to achieve an relatively evenly distributed initial placement for the
later phases.

2) St-WL based Iterative Local Refinement: After the initial placement
is obtained, the original FastPlace apply HPWL based Iterative Local
Refinement (ILR) to optimize HPWL and generate a more even placement.
For the IPR algorithm, HPWL is no longer the objective. Instead, the goal
is to achieve an even placement with less routing congestion. Hence,
the ILR technique in [10] is modified to optimize the rectilinear Steiner
tree wirelength. Similar to ILR technique in [10], we try 8 different
directions to move a cell in order to reduce the Steiner-wirelength. The
new technique is called Steiner-WL based Iterative Local Refinement (St-
WL ILR) (lines 3-4 in Figure 1).

The reason to use Steiner-WL as the objective is that it has much higher
fidelity with routed wirelength than HPWL. Since the placement is still
very unstable and cells are moving frequently over a long distance, it is
not necessary to consume a lot of runtime to run global routing to obtain
accurate routing information for the very inaccurate placement at this
point. Hence, we try to minimize the Steiner-WL in order to minimize the
total routing demand, which is beneficial to the overall routing congestion.
In this step, since we need to evaluate Steiner-WL all the time, the Steiner-
WL algorithm has to be very fast. Hence, we employ the extremely fast
rectilinear Steiner minimal tree algorithm FLUTE [8], [9].

3) Routability Driven Refinement: After St-WL ILR, we have an even
and quite stable placement. We use it as a starting placement for the
consideration of direct congestion reduction. FastRoute is invoked (line 5
in Figure 1) to generate the global routing solution and the congestion map
over the current placement. From now on, accurate routing information
is used to direct the placement optimization.

Based on the global routing and congestion map obtained by FastRoute,
a new Routability Driven Refinement (RDR) technique is designed to
optimize the routability directly. First, we divide the placement region
into regular bin structure. The bin size is about the total area of 4
standard cells on average. For each cell, we try to move it into the 8
neighboring bins, as shown in Figure 2. We choose the same relative
positions in the neighboring bins as it is located in the current bin to
be the target positions. RDR is similar to the ILR technique in [10].
However, the criterion to move a cell is no longer the score based
on bin cell utilization change and HPWL reduction. Now we measure
the routing congestion before and after moving a cell to each of the 8
neighboring bins. Then based on the change in bin cell utilization and
routing congestion reduction, we decide whether to move a cell to a
certain bin or not. Note that we are not using any congestion estimator to
predict the congestion variation, but applying rip-up and reroute to update
routing solution and congestion map. Therefore, we have high confidence
for each move to reduce the routing congestion.

i

T1 T2 T3

T4

T5T6T7

T8

i

T1 T2 T3

T4

T5T6T7

T8

Fig. 2. Routability Driven Refinement

In below, we discuss how to update routing solution and congestion
map when we move a cell. For any cell i, we tentatively move i to the 8
target positions. For each target position Tj (j = 1, . . . , 8), we first need
to rip-up the routing for the nets connecting to i. Then we move i to Tj ,
and reroute the nets connecting to i. We compute the routing congestion
difference before and after moving i to Tj . At the same time, we need to
control the bin cell utilization to maintain the even placement. Hence, we
use a score which is a combination of routing congestion reduction and

bin cell utilization change. We will move i to the best Tj which has the
highest score. If all 8 target positions are worse than the current position,
we do not move i.

One issue in the above procedure is the rip-up and reroute of the nets
connecting to i. This is a very time consuming part. Because we need to
run RDR over all the cells for many iterations, and in each iteration we
need to compute the score for 8 target positions for each cell i, the nets
connecting to i need to be ripped up and rerouted many times. In order
to reduce the runtime, we make some trade-off between the accuracy and
runtime. For each net n connecting to i, instead of rip-up and reroute the
routing tree for the whole net n, we just rip-up the routing tree branch
connecting to i (from a Steiner node to cell i in the tree of net n). As
a result, only one branch for each net connecting to i is updated. In
this approach, we assume the tree topology of n will not be changed
after moving i. Since we only move i for a small distance (one bin
size), there is no need to change the routing tree topology in most cases.
However, we cannot make this assumption if the cells are moved by a
longer distance. Therefore, after one iteration of RDR in which all cells
are considered once, the routing solution will be fully reconstructed by
FastRoute to maintain the accuracy of routing information (lines 6b). This
includes initial congestion map generation, congestion-driven Steiner tree
construction, and maze/pattern routing.

After the loop of RDR (line 7-8), an even placement with good
routability is obtained. Now the cells are in good relative positions with
overlaps among each other.

B. Legalization

For legalization, the main goal is to put all cells in legal positions and
remove overlaps. At the same time, we want to maintain the cell positions
from global placement to ensure the routability of the global placement
solution will not be destroyed. Hence, we try to minimize the disturbance
of the cell positions from to the global placement solution.

The legalization technique is similar to the one in FastPlace. The basic
idea is to divide each standard cell row into several segments. Then the
cell utilization of each segment is computed, and cells are iteratively
move to neighboring segments in order to ensure all segments are within
capacity. For placement with very high cell utilization (95% or more),
very little whitespace is available and legalization becomes very hard.
Hence, we add a row utilization control method to favor the move of
cells from a standard cell row with over capacity to an adjacent row with
lower capacity. In this way, we can quickly make all rows within capacity.
Then a legalized placement can be obtained by arranging the cells in each
row in order without overlap.

C. Detailed Placement

In the detailed placement stage, FastRoute is first employed to generate
an updated global routing solution and congestion map. After that,
Routability-driven Global Swap (RGS) and Routability-driven Local Swap
(RLS) are performed repeatedly to refine the legalized placement and
further reduce routing congestion.

1) Routability-driven Global Swap (RGS): In this technique, we move
the cells globally to reduce the routing congestion. Similar to Global Swap
in [11], for each cell i, we first find its optimal region. Then we consider
each cell j in i’s optimal region as a candidate and make the tentative
swap. After measuring the benefit for each tentative swap, we pick the
cell j which results in the most benefit and make the real swap for i and
j. The major difference between RGS and Global Swap in [11] is that
we no longer care for HPWL, but routing congestion. In original Global
Swap, the benefit function is composed of two parts. One is the HPWL
reduction due to the swap, and the other is the penalty part charged for the
cell overlap caused by the swap. In RGS, we still have the overlap penalty
part in the score function, but we use the routing congestion reduction to
substitute the HPWL reduction. Next, we will focus on how to measure
and update the routing congestion during the placement process.

Before any tentative swap, we measure the congestion score for current
routing. For each candidate cell j, we perform the following operations.
(1) Rip-up all the routing trees for all the nets connecting to i and j.
(2) Swapping i with j, update the pin locations for the affected nets. (3)
Reroute all the nets connecting to i and j for the new pin positions. (4)
Measure the routing congestion score. (5) Recover the original routing
trees and congestion map before considering another tentative swap. In
this way, we can get the congestion score for each candidate cell j.

Combining the congestion score with the overlap penalty (as in [11]),
the benefit for swapping each candidate cell j with i can be obtained.
Based on this benefit function, we pick the best j and swap it with i. After
the swap, we update the cell positions, rip-up and reroute the affected nets
according to their new pin locations, and update the congestion map.
This procedure involves a lot of routing task and is very time consuming.
However, we are able to perform it due to the extremely fast global routing
technique.



IPR ROOSTER + FR2.0 R-FastPlace + FR2.0 FastPlace + FR2.0
Overflow R-WL Time(s) Overflow R-WL Time(s) Overflow R-WL Time(s) Overflow R-WL Time(s)

ibm01h 0 0.61 77 0 0.59 273 0 0.61 55 0 0.62 19
ibm02h 0 1.80 396 463 1.89 696 546 1.87 225 1309 1.90 37
ibm07h 369 3.73 945 736 3.92 1469 1125 3.78 464 3934 3.92 114
ibm08h 2 4.24 1275 97 4.37 2150 78 4.36 806 703 4.47 166
ibm09h 0 3.41 1028 2 3.35 1665 4 3.41 578 9 3.58 163
ibm10h 0 6.32 1685 11 6.59 2505 25 6.42 1270 31 6.57 200
ibm11h 1 4.96 1395 25 5.02 2139 22 4.98 978 42 5.28 178
ibm12h 1152 8.80 2105 1046 9.38 2901 2136 9.00 1718 5107 9.48 401

Total 1524 33.87 8906 2380 35.12 13798 3936 34.43 6094 11135 35.82 1279
Norm* 1 1 1 1.562 1.036 1.550 2.580 1.016 0.682 7.306 1.058 0.143

TABLE I
COMPARISON BETWEEN DIFFERENT FLOWS. (*) RESULTS IN THE LAST ROW ARE NORMALIZED TO IPR.

Note that in this approach, every move is intended for directly reducing
routing congestion. This is achieved by keeping the routing solution and
congestion map accurate. And it is the reason why we spend so much
runtime on updating the routing solution.

In Figure 1, we apply Routability-driven Global Swap iteratively (lines
10-11). We run several iterations. In each iteration, we scan through all
the cells to identify beneficial swaps. After RGS, the routing congestion
is significantly reduced.

2) Routability-driven Local Swap (RLS): Routability-driven Global
Swap is very effective in reducing routing congestion. However, because
of a lot of rip-up and reroute operations, we cannot afford to run many
iterations of it. Hence, we develop a Routability-driven Local Swap (RLS)
technique to efficiently reduce routing congestion by moving cells locally.

The main idea for RLS is as follows. For each cell i, we just look at
the cells directly adjacent to i, i.e., four neighbor cells of i. Then, we
consider swapping i with them one by one. We also pick the one resulting
the best benefit and swap it with i, similar to RGS. But in this technique,
we only consider the swaps without creating any overlap. Otherwise, the
swap will be neglected. Therefore, the benefit function is just the routing
congestion reduction.

We have mentioned that the most time consuming part in RGS is to rip-
up and reroute the nets being affected. In order to speed up RLS, we only
update the routing tree branches of the nets being affected by the swap
instead of updating the whole routing trees. (Note that a similar method is
employed in the RDR.) Here, the basic assumption is that the routing tree
topologies will not be affected by the swap. Since we only move cells
very locally, the routing tree topologies will remain the same in most
cases. For RGS, this assumption will not hold. Another reason for RLS
to be much faster than RGS is that less candidate cells are considered for
each cell. In RLS, only four candidate cells will be considered. However,
in RGS, there could be hundreds of candidate cells.

IV. EXPERIMENTAL RESULTS

In this section, we present our experimental results. All experiments
are performed on a Linux workstation with a 3.0 GHz Intel Pentium 4
CPU and 2GB memory.

We ran experiments on the IBMv2 suite of benchmarks. For the easy
cases of the suite, most previous placers have already obtained 0 overflow.
Therefore, we only show the experimental results on the hard cases in the
suite. For the global routing grid, we use the same grid as defined in the
LEF/DEF files. The routing grid size is 660×560. The original capacity of
routing grid is 20 routing tracks for both horizontal direction and vertical
direction. However, we use the capacity 16 for vertical direction and 14
for horizontal direction. The reason for this reduced routing capacity is
to make the routing harder. Also, because part of Metal1 layer will be
blocked by some routing inside standard cell, we decrease the horizontal
routing capacity by 2 more tracks.

We ran four different flows to get placement and global routing results.

1) Integrated placement and routing approach (IPR)
2) ROOSTER followed by FastRoute2.0 (ROOSTER + FR2.0)
3) Routability-driven FastPlace followed by FastRoute2.0 (R-FastPlace

+ FR2.0)
4) FastPlace followed by FastRoute2.0 (FastPlace + FR2.0)

For Routability-driven FastPlace, we follow the framework of IPR.
However, instead of applying global routing to get accurate routability
information, we simply construct rectilinear Steiner minimal Steiner trees
(RSMT) to break multi-pin nets into 2-pin nets and use probabilistic
congestion model to get the congestion map. This is similar to many
traditional routability-driven placement algorithms.

Except for IPR, which includes the global routing inside the flow, we
need to first generate the placement and then run global routing on the
placement for the other three flows. We apply FastRoute2.0 [12] on the

placement generated by ROOSTER, FastPlace and R-FastPlace to obtain
the global routing solutions.

The results are summarized in Table I. We measure the total overflow,
global routing wirelength and runtime for the four different flows. From
the results we can see that our integrated placement and routing approach
is the best among the four. Compared with ROOSTER+FR2.0 flow, IPR
reduces overflow by 36%, global routing wirelength by 3.6%, and runtime
by 36%. Considering that ROOSTER is so far the best routability-driven
placement algorithm, our integrated placement and routing approach is
able to generate high-quality placement and routing solutions. For R-
FastPlace, it has the same framework as IPR but uses a probabilistic
congestion model. Comparison with FastPlace shows that the simple
congestion-driven approach is effective in improving routability. However,
by comparing with IPR, although they follow the same framework, IPR
can generate much better solutions in terms of routability. This justifies
the importance of accurate routing information in placement process.
For FastPlace, it is a typical wirelength driven placement algorithm.
It is obvious that the placement generated by it is poor in terms of
both routability and global routing wirelength. This clearly shows that
wirelength driven placement algorithm is not able to generate placement
solutions with good routability.

V. CONCLUSIONS

In this paper, we propose a new integrated placement and routing
algorithm to solve the placement routability problem. Experimental results
show that the proposed integrated framework together with several
routability driven techniques can efficiently generate high-quality place-
ment and routing solutions.

Although we only focus on routability issue in this work, this
framework can be extended to consider timing, buffering, and signal
integrity because the routing information becomes available during the
placement process. This paper suggests that the integrated placement
routing approach has great potential to tackle other critical placement
and routing problems.

REFERENCES

[1] X. Yang, B. K. Choi and M. Sarrafzadeh. Routability Driven White Space
Allocation for Fixed-die Standard-cell Placement. In Proc. Intl. Symp. on
Physical Design, pp. 42-49, 2002.

[2] C. Li, M. Xie, C. K. Koh, J. Cong and P. H. Madden. Routability-driven
Placement and White Space Allocation. In Proc. IEEE/ACM Intl. Conf. on
Computer-Aided Design, pp. 394-401, 2004.

[3] N. Selvakkumaran, P. Parakh and G. Karypis. Perimeter-degree: A Priori
Metric for Directly Measuring and Homogenizing Interconnection Complexity
in Multilevel Placement. In Proc. Intl. Workshop on System-Level Interconnect
Prediction, pp. 53-59, 2003.

[4] D. Jariwala and J. Lillis. On Interactions Between Routing and Detailed
Placement. In Proc. IEEE/ACM Intl. Conf. on Computer-Aided Design, pp.
387-393, 2004.

[5] J. A. Roy, J. F. Lu and I. L. Markov. Seeing the Forest and the Trees:
Steiner Wirelength Optimization in Placement. In Proc. Intl. Symp. on Physical
Design, pp. 78-85, 2006.

[6] M. Pan and C. Chu. FastRoute: A step to integrate global routing into
placement. In Proc. IEEE/ACM Intl. Conf. on Computer-Aided Design, 2006.

[7] N. Viswanathan and Chris Chu. FastPlace: Efficient Analytical Placement
using Cell Shifting, Iterative Local Refinement and a Hybrid Net Model. In
Proc. Intl. Symp. on Physical Design, pp. 26-33, 2004.

[8] Chris Chu. FLUTE: Fast Lookup Table Based Wirelength Estimation Tech-
nique. In Proc. IEEE/ACM Intl. Conf. on Computer-Aided Design, 696-701,
2004.

[9] Chris Chu and Yiu-Chung Wong. Fast and Accurate Rectilinear Steiner
Minimal Tree Algorithm for VLSI Design. In Proc. Intl. Symp. on Physical
Design, pp. 28-35, 2005.

[10] N. Viswanathan, M. Pan and Chris Chu. FastPlace 2.0: An Efficient
Analytical Placer for Mixed-Mode Designs. In Asia and South Pacific Design
Autom. Conf., pp. 195-200, 2006.

[11] M. Pan, N. Viswanathan and Chris Chu. An Efficient and Effective Detailed
Placement Algorithm. In Proc. IEEE/ACM Intl. Conf. Computer-Aided Design,
pp. 48-55, 2005.

[12] M. Pan and C. Chu. FastRoute 2.0: A High-quality and Efficient Global
Router. To appear. Asia and South Pacific Design Autom. Conf., 2007.


