
A Revisit to Floorplan Optimization by Lagrangian
Relaxation∗

Chuan Lin

Magma Design Automation
Santa Clara, CA 95054

clin@magma-da.com

Hai Zhou
EECS Department

Northwestern University
Evanston, IL 60208

haizhou@eecs.north-
western.edu

Chris Chu
ECE Department

Iowa State University
Ames, IA 50011

cnchu@iastate.edu

ABSTRACT
With the advent of deep sub-micron (DSM) era, floorplanning has
become increasingly important in physical design process. In this
paper we clarify a misunderstanding in using Lagrangian relaxation
for the minimum area floorplanning problem. We show that the
problem is not convex and its optimal solution cannot be obtained
by solving its Lagrangian dual problem. We then propose a modi-
fied convex formulation and solve it using min-cost flow technique
and trust region method. Experimental results under module aspect
ratio bound [0.5,2.0] show that the running time of our floorplanner
scales well with the problem size in MCNC benchmark. Compared
with the floorplanner in [27], our floorplanner is 9.5X faster for
the largest case “ami49”. It also generates a floorplan with smaller
deadspace for almost all test cases. In addition, since the generated
floorplan has an aspect ratio closer to 1, it is more friendly to pack-
aging. Our floorplanner is also amicable to including interconnect
cost and other physical design metrics.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated Circuits—Design Aids;
J.6 [Computer-Aided Engineering]: Computer-Aided Design

General Terms
Algorithms, Design

Keywords
Floorplan, Lagrangian relaxation

1. INTRODUCTION
Floorplanning is an early stage of physical design that deter-

mines the positions, shapes and orientations of circuit modules. In
contrast to placement that assumes hard modules, more flexibilities
∗This work was done at Northwestern University and supported by
the NSF under CCR-0238484.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD 2006, November 5–9, 2006, San Jose, California, USA.
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

are available at floorplanning stage since detailed physical informa-
tion is not fixed yet. With the advent of deep sub-micron (DSM)
era, hierarchical design and IP (module reuse) based methodology
have been widely adopted. They both make floorplanning more and
more important in physical design process.

There are two categories of floorplan: slicing and non-slicing.
Slicing floorplan can be obtained by recursively cutting rectangles
horizontally or vertically into small rectangles. Non-slicing floor-
plan is not restricted to be slicing and thus more general. Figure 1
illustrates an example of each. Among many representations of
slicing floorplan, there are binary tree [19] and normalized Polish
expression [25]. For non-slicing structure, there are topology rep-
resentation (BSG [17], sequence pair [15], TCG [12], ACG [29]),
packing representation (O-tree [9], B∗-tree [4]), and mosaic repre-
sentation (CBL [10], Q-sequence [21], twin binary tree [26], twin
binary sequence [28]), etc.

(a) (b)

1

2

3
4

5
1

2

3
4

5

Figure 1: (a) A slicing floorplan. (b) A non-slicing floorplan.

Various ways have been proposed to construct a floorplan from a
given representation. For example, a constraint graph can be gen-
erated from a sequence pair [15] to characterize the geometrical
relations (left, right, up, and down) between every two modules.
One commonly used metric that measures the quality of a floor-
plan is its area. If all modules are hard, the min-area floorplan can
be obtained by a longest path computation on the constraint graph.
However, when soft modules with flexible shapes are involved, as is
the common situation at floorplanning stage, determining the shape
for each module such that the resulting floorplan has the minimum
area becomes difficult.

Extensive researches have been conducted on floorplan area min-
imization. For slicing floorplan, Stockmeyer [22] used shape curve
to represent all possible shapes of a module and showed that the
minimal area can be found efficiently. There were also numeri-
cal optimization methods proposed by Wang et al. [23] and Moh
et al. [14]. In [14], the problem was formulated as a geometric
programming and solved using some standard convex optimiza-
tion techniques. For non-slicing floorplan, the problem is more
complicated. Pan et al. [20] and Wang et al. [24] attempted to

generalize Stockmeyer’s algorithm [22]. Kang et al. [11] extended
BSG [17] to handle soft modules using heuristics. But their meth-
ods were either sub-optimal or not applicable to all general non-
slicing structures. On the other hand, Murata et al. [16] followed
the framework of [14] and focused on reducing the number of vari-
ables and functions to improve the efficiency. But the running time
of their method was still very long. Young et al. [27] applied the
Lagrangian relaxation technique [13] and showed that the problem
can be simplified based on the Kuhn-Tucker conditions [13].

Our contribution in this paper is twofold. Firstly, we show that
the minimum area floorplanning problem is not convex and its op-
timal solution cannot be obtained by solving its Lagrangian dual
problem. Therefore, the claim in [27] that an optimal solution to
the Lagrangian dual problem will also minimize the area is not cor-
rect. Nor can [27] use the Kuhn-Tucker conditions of the mini-
mum area floorplanning problem to simplify its dual. This clarifies
a misunderstanding in using “Strong Duality Theorem” (Theorem
6.2.4 of [2]) by pointing out that the theorem is not applicable to
a problem that is not convex but can be transformed to a convex
formulation.

Secondly, we propose a modified convex formulation. Since it
is convex, “Strong Duality Theorem” implies that we can solve it
by solving its Lagrangian dual problem, which can be simplified
by the Kuhn-Tucker conditions of the modified formulation. We
then present an algorithm based on min-cost flow technique and
trust region method. Experimental results under module aspect ra-
tio bound [0.5,2.0] show that the running time of our floorplanner
scales well with the problem size in MCNC benchmark. Compared
with the floorplanner in [27], our floorplanner is 9.5X faster for
the largest case “ami49”. It also generates a floorplan with smaller
deadspace for almost all test cases. In addition, since the generated
floorplan has an aspect ratio closer to 1, it is more friendly to pack-
aging. Our floorplanner is also amicable to including interconnect
cost and other physical design metrics.

The rest of this paper is organized as follows. Section 2 presents
the problem formulation. Section 3 describes the transformation
to the Lagrangian dual problem and show that it does not give the
minimum area solution. Section 4 discusses other approaches and
proposes a modified formulation that uses perimeter as the objec-
tive function. Section 5 presents an algorithm to solve the modi-
fied formulation based on min-cost flow technique and trust region
method. Experimental results are given in Section 6, followed by
conclusions in Section 7.

2. PROBLEM FORMULATION
Suppose that we are given n modules of areas A1,A2, ...,An and

module aspect ratio (height/width) ranges [rmin
1 ,rmax

1], [rmin
2 ,rmax

2],

..., [rmin
n ,rmax

n]. Hard modules are those with rmin = rmax, i.e., their
shapes are fixed. Let wi be the width of module i, ∀1 ≤ i ≤ n.
According to the aspect ratio range, the minimum width Li and the
maximum width Ui of a module i can be computed as

Li =
√

Ai/rmax
i and Ui =

√

Ai/rmin
i

Therefore, Li ≤ wi ≤Ui, ∀1 ≤ i ≤ n. We use xi ∈ℜ and yi ∈ℜ to
denote the x and y coordinates of the left-bottom corner of module
i respectively.

A horizontal (vertical) constraint graph Gh (Gv) is a graph of n
vertices, where the vertices represent the modules and the edges
represent the horizontal (vertical) non-overlapping constraints. For
example, if module j is to the right of module i, we add an edge
from i to j in the horizontal constraint graph. Similarly, if module
j is above module i, we add an edge from i to j in the vertical

constraint graph. In general, we have O(n2) number of edges, some
of which can be removed since they are implied by transitivity of
other edges. We denote the set of sources and sinks in Gh by sh
and th respectively, where a source has no incoming edges and a
sink has no outgoing edges. Likewise, the set of sources and the
set of sinks in Gv are denoted as sv and tv respectively. To ease
the presentation, we introduce a left bottommost dummy module 0
and a right topmost dummy module n + 1. They occupy no area.
We then add to Gh edges from 0 to each vertex in sh, and edges
from each vertex in th to n + 1. Similar edges are added to Gv.
In particular, the horizontal and vertical constraint graphs of the
non-slicing floorplan in Figure 1(b) are shown in Figure 2, where
module 0 and 6 are dummy modules.

1 2

34

5

1 2

34

56

6

GvGh

0
0

Figure 2: Constraint graphs of the floorplan in Figure 1(b).

A constraint graph can be generated from many representations
such as sequence pair [15]. Given a constraint graph, the problem
of minimum area floorplanning, denoted as Parea, can be formu-
lated as follows.

PROBLEM 1 (MINIMUM AREA FLOORPLANNING).

Parea : Minimize (xn+1− x0)(yn+1− y0)

subject to x j ≥ xi +wi ,∀(i, j) ∈ Gh

y j ≥ yi +Ai/wi ,∀(i, j) ∈ Gv

Li ≤ wi ≤Ui ,∀1≤ i≤ n

Note that although we focus on area minimization, it is possible
to include interconnect cost and other physical design metrics when
we measure the quality of a min-area floorplan. For example, a
weighted sum of all metrics is commonly used.

Problem Parea is difficult to solve since it is not convex, as stated
in the following lemma.

LEMMA 1. Problem Parea is not convex.

PROOF. A convex optimization problem is one of the form [3]

Minimize f0(x)

subject to fi(x)≤ 0 ,∀i = 1, ...,m

aT
i x = bi ,∀i = 1, ..., p

where f0, ..., fm are convex functions, a1, ...,ap and b1, ...,bp are
constant vectors. We will show that the objective function of Parea,
denoted as f , is not convex.

According to the definition of convexity, f is convex only if for
any two points u and u′ in its domain, we have

f (γu+(1− γ)u′) ≤ γ f (u)+(1− γ) f (u′), ∀γ ∈ [0,1]

However, if we choose xn+1−x0 = 0, yn+1−y0 = 1, x′n+1−x′0 = 1,
y′n+1 − y′0 = 0, and γ = 0.5, then the left-hand-side of the above
inequality is 0.25 and the right-hand-side is 0. Therefore, the in-
equality is not true, and thus Parea is not convex.

In the next section we will apply Lagrangian relaxation to trans-
form Parea to its Lagrangian dual.

3. APPLYING LAGRANGIAN RELAXATION
TO PAREA

3.1 Lagrangian relaxation
Lagrangian relaxation [13] is a general technique for solving

constrained optimization problems. In Lagrangian relaxation, “trou-
blesome” constraints are “relaxed” and incorporated into the objec-
tive after multiplying them by constants called Lagrangian multi-
pliers, one multiplier for each constraint. For given multipliers, the
relaxed problem is called Lagrangian subproblem. Finding the op-
timal multipliers under which the Lagrangian subproblem attains
the best objective value is called Lagrangian dual problem.

When applying Lagrangian relaxation to Parea, we relax the non-
overlapping constraints since they are difficult to handle. We in-
troduce λi, j for the constraint x j ≥ xi + wi for all (i, j) ∈ Gh, and
µi, j for the constraint y j ≥ yi + Ai/wi for all (i, j) ∈ Gv. The La-
grangian subproblem of Parea associated with λ and µ is formulated
as follows.

PROBLEM 2 (LAGRANGIAN SUBPROBLEM OF Parea).

LSarea(λ,µ) : Minimize (xn+1− x0)(yn+1− y0)

− ∑
(i, j)∈Gh

λi, j(x j− xi−wi)

− ∑
(i, j)∈Gv

µi, j(y j− yi−Ai/wi)

subject to Li ≤ wi ≤Ui ,∀1≤ i≤ n

Let Farea denote the objective function of LSarea(λ,µ). Note that

∑
(i, j)∈Gh

λi, j(x j− xi) = ∑
0≤i≤n+1

(∑
(j,i)∈Gh

λ j,i− ∑
(i, j)∈Gh

λi, j)xi

∑
(i, j)∈Gv

µi, j(y j− yi) = ∑
0≤i≤n+1

(∑
(j,i)∈Gv

µ j,i− ∑
(i, j)∈Gv

µi, j)yi

Substituting them into Farea yields

Farea = (xn+1− x0)(yn+1− y0)

+ ∑
(0,i)∈Gh

λ0,ix0− ∑
(i,n+1)∈Gh

λi,n+1xn+1

+ ∑
(0,i)∈Gv

µ0,iy0− ∑
(i,n+1)∈Gv

µi,n+1yn+1

+ ∑
1≤i≤n

(∑
(i, j)∈Gh

λi, j− ∑
(j,i)∈Gh

λ j,i)xi

+ ∑
1≤i≤n

(∑
(i, j)∈Gv

µi, j− ∑
(j,i)∈Gv

µ j,i)yi

+ ∑
1≤i≤n

(wi ∑
(i, j)∈Gh

λi, j +
Ai

wi
∑

(i, j)∈Gv

µi, j)

Let Qarea(λ,µ) denote the optimal objective value of LSarea(λ,µ)
for given λ and µ. We say that λ≥ 0 when λi, j ≥ 0 for all (i, j)∈Gh.
Similar for µ≥ 0. The Lagrangian dual problem LDarea of Parea is
as follows.

PROBLEM 3 (LAGRANGIAN DUAL PROBLEM OF Parea).

LDarea : Maximize Qarea(λ,µ)

subject to λ≥ 0, µ≥ 0

3.2 Kuhn-Tucker conditions
Kuhn-Tucker conditions [13] are necessary conditions that char-

acterize the optimal solution of a general constrained optimization

problem. To specify the Kuhn-Tucker conditions of Parea, we de-
fine the Lagrangian ζ of Parea as follows, which requires all the
constraints to be relaxed into the objective.

ζ = Farea− ∑
1≤i≤n

αi(wi−Li)− ∑
1≤i≤n

βi(Ui−wi)

where αi and βi are the Lagrangian multipliers for the constraint
Li ≤ wi and wi ≤Ui, ∀1≤ i≤ n, respectively.

According to the definition in [13], the Kuhn-Tucker conditions
of Parea can be specified in the following theorem.

THEOREM 1. Suppose that (x∗,y∗,w∗) is an optimal solution to
Parea. Then there must exist Lagrangian multipliers (λ∗,µ∗,α∗,β∗)
such that

∂ζ
∂x0

∣

∣

∣

∣

λ∗,y∗
=−(y∗n+1− y∗0)+ ∑

(0,i)∈Gh

λ∗0,i = 0 (1)

∂ζ
∂y0

∣

∣

∣

∣

µ∗,x∗
=−(x∗n+1− x∗0)+ ∑

(0,i)∈Gv

µ∗0,i = 0 (2)

∂ζ
∂xn+1

∣

∣

∣

∣

λ∗,y∗
= (y∗n+1− y∗0)− ∑

(i,n+1)∈Gh

λ∗i,n+1 = 0 (3)

∂ζ
∂yn+1

∣

∣

∣

∣

µ∗,x∗
= (x∗n+1− x∗0)− ∑

(i,n+1)∈Gv

µ∗i,n+1 = 0 (4)

and for all 1≤ i≤ n,

∂ζ
∂xi

∣

∣

∣

∣

λ∗
= ∑

(i, j)∈Gh

λ∗i, j− ∑
(j,i)∈Gh

λ∗j,i = 0 (5)

∂ζ
∂yi

∣

∣

∣

∣

µ∗
= ∑

(i, j)∈Gh

µ∗i, j− ∑
(j,i)∈Gh

µ∗j,i = 0 (6)

∂ζ
∂wi

∣

∣

∣

∣

λ∗,µ∗,α∗,β∗,w∗

=−α∗i +β∗i + ∑
(i, j)∈Gh

λ∗i, j−
Ai

(w∗i)
2 ∑

(i, j)∈Gv

u∗i, j = 0 (7)

α∗i (w
∗
i −Li) = β∗(Ui−w∗i) = 0 (8)

However, we cannot use the above Kuhn-Tucker conditions of
Parea to simplify LDarea since (x∗,y∗,λ∗,µ∗) is not an optimal so-
lution to LDarea. In fact, we show in the next section that LDarea
is unbounded below. In [3], a Lagrangian dual problem that is un-
bounded below is also called infeasible.

3.3 Infeasibility of LDarea

The infeasibility of LDarea is stated in the following lemma.

LEMMA 2. LDarea is infeasible (unbounded below).

PROOF. The infeasibility of LDarea can be established if we can
show that for any given λ≥ 0 and µ≥ 0, LSarea(λ,µ) is unbounded
below. In order to make Farea → −∞, we can choose x0 = 0,
xn+1 → ∞, yn+1− y0 < ∑(i,n+1)∈Gh

λi,n+1, and xi = yi = 0 for all
i ∈ [1,n].

The importance of Lemma 2 is that it clarifies a misunderstand-
ing in using “Strong Duality Theorem” (Theorem 6.2.4 of [2]) in
Lagrangian relaxation, which we quote below for the ease of refer-
ence.

THEOREM 2 (STRONG DUALITY THEOREM).
Let S be a nonempty convex set in ℜn, let f : ℜn→ℜ and g : ℜn→

ℜm be convex. Suppose that the following constraint qualification
holds true, that is, there exists an x̂ ∈ S such that g(x̂) < 0. Then

inf{ f (x) : x ∈ S ,g(x)≤ 0} = sup{θ(λ) : λ≥ 0}

where θ(λ) = inf{ f (x)+λT g(x) : x ∈ S}. The left-hand-side refers
to the objective value of minimizing f (x) subject to x ∈ S and
g(x) ≥ 0, and the right-hand-side is the objective value of its La-
grangian dual problem with λ being the Lagrangian multiplier.

Furthermore, if inf{ f (x) : x∈ S ,g(x)≤ 0} is finite, then sup{θ(λ) :
λ≥ 0} is achieved at λ̃ with λ̃≥ 0. If inf{ f (x) : x ∈ S ,g(x)≤ 0} is
achieved at x̃, then λ̃T g(x̃) = 0.

COROLLARY 2.1. x̃ is a solution to inf{ f (x)+ λ̃T g(x) : x ∈ S}.
On the other hand, if x∗ is a solution to inf{ f (x)+ λ̃T g(x) : x ∈ S}
satisfying g(x∗)≥ 0, then x∗ is one such x̃.

PROOF. Suppose otherwise that x̃ does not minimize f (x) +

λ̃T g(x), then θ(λ̃) < f (x̃)+ λ̃T g(x̃), i.e., θ(λ̃) < f (x̃) since λ̃T g(x̃) =

0. However, θ(λ̃) = f (x̃) by Theorem 2. Therefore, x̃ minimizes
f (x)+ λ̃T g(x).

On the other hand, if there is a solution x∗ to inf{ f (x)+ λ̃T g(x) :
x∈ S} satisfying g(x∗)≥ 0, then we have f (x̃) = f (x∗)+ λ̃T g(x∗)≥
f (x∗). In addition, f (x̃) ≤ f (x∗) since x̃ is a solution to inf{ f (x) :
x ∈ S ,g(x)≤ 0}. Therefore, f (x̃) = f (x∗), i.e., x∗ is also a solution
to inf{ f (x) : x ∈ S ,g(x)≤ 0}.

More specifically, if a constrained optimization problem is not
convex, Theorem 2 does not guarantee that the optimal objective
value of the problem is equal to that of its dual problem even though
the problem can be transformed to a convex formulation. Prob-
lem Parea is such a witness by Lemma 1, 2, and the fact that Parea
can be transformed to a convex formulation by geometric program-
ming [14].

A few more explanations may be helpful in understanding the in-
feasibility of a Lagrangian dual problem. Let p∗ and d∗ denote the
optimal objective values of a given problem and its Lagrangian dual
problem respectively. We refer to the difference, p∗− d∗, as the
optimal duality gap, which is always non-negative [3]. If the given
problem is convex, Theorem 2 ensures that the gap is zero. For a
non-convex problem, there is, in general, no guarantee whether the
gap is zero or not. The infeasibility of the Lagrangian dual prob-
lem is an extreme case of non-zero gap. More interestingly, the
size of the gap may vary with the constraints. For example, if we
add into Parea additional constraints xi,yi ≥ 0 for all i ∈ [0,n + 1],
its Lagrangian dual problem is still infeasible, which can be proved
by the same proof of Lemma 2. If we continue to add constraint
x0 = y0 = 0, the Lagrangian dual problem becomes feasible since
the Lagrangian subproblem has an objective value of 0 when all λ
and µ are zero. In fact, we can show, by a proof similar to that of
Lemma 2, that this is the only case when Farea is not unbounded
below. However, such a case is less interesting since it leads to
x∗n+1 = y∗n+1 = 0 by (1)-(4). Note that no matter which set of con-
straints is used, the optimal duality gap is non-zero for the mini-
mum area floorplanning problem.

Therefore, the claim in [27] that an optimal solution to the La-
grangian dual problem will also minimize the area is not correct.
Nor can [27] use the Kuhn-Tucker conditions of the minimum area
floorplanning problem to simplify its dual.

4. OTHER APPROACHES
In this section, we discuss a few other approaches that deal with

the infeasibility of LDarea from different aspects of view.

4.1 Geometric programming formulation
Since Parea can be transformed to a convex formulation, to which

Theorem 2 is applicable, a natural idea is to see if the Lagrangian
dual of the convex formulation can be solved efficiently.

First of all, by rearranging the variables and assigning x0 = y0 =
0, Parea can be equivalently stated as follows.

Parea : Minimize xn+1yn+1

subject to wi
x j
≤ 1 ,∀i ∈ sh,(i, j) ∈ Gh

Ai
wiy j
≤ 1 ,∀i ∈ sv,(i, j) ∈ Gv

xi
x j

+ wi
x j
≤ 1 ,∀i 6= 0,(i, j) ∈ Gh

yi
y j

+ Ai
wiy j
≤ 1 ,∀i 6= 0,(i, j) ∈ Gv

Li
wi
≤ 1 ,∀1≤ i≤ n

wi
Ui
≤ 1 ,∀1≤ i≤ n

We define Xi, Yi, and Wi of module i for all 1 ≤ i ≤ n as the
logarithms of xi, yi, and wi respectively, i.e.,

eXi = xi, eYi = yi, eWi = wi

The geometric programming formulation of Parea is given as fol-
lows.

PROBLEM 4 (GEOMETRIC PROGRAMMING).

GP : Minimize Xn+1 +Yn+1

subject to Wi−X j ≤ 0 ,∀i ∈ sh,(i, j) ∈ Gh

−Wi−Y j + logAi ≤ 0 ,∀i ∈ sv,(i, j) ∈ Gv

log(eXi−X j + eWi−X j)≤ 0 ,∀i 6= 0,(i, j) ∈ Gh

log(eYi−Yj +Aie−Wi−Yj)≤ 0 ,∀i 6= 0,(i, j) ∈ Gv

−Wi + logLi ≤ 0 ,∀1≤ i≤ n

Wi− logUi ≤ 0 ,∀1≤ i≤ n

Since GP is convex [3] and the constraint qualification in Theo-
rem 2 is true, Corollary 2.1 ensures that an optimal solution to GP
is also an optimal solution to the Lagrangian dual of GP. There-
fore, we can use the Kuhn-Tucker conditions of GP to simply its
dual.

However, we find that the Kuhn-Tucker conditions of GP are
much more complicated than those of Parea. As a result, its dual
problem is as complicated as GP itself, which was shown in [16] to
be expensive to solve.

4.2 Subgradient method for finding λ∗ and µ∗

In order to take advantage of the Kuhn-Tucker conditions of
Parea, Young et al. [27] focused on (5)-(8). A key observation they
made is that if Li < w∗i < Ui, then (8) implies α∗i = β∗i = 0, which,
together with (7), leads to

w∗i =

√

Ai ∑(i, j)∈Gv
u∗i, j

∑(i, j)∈Gh
λ∗i, j

Therefore, w∗ can be specified in terms of λ∗ and µ∗ as

w∗i = min
(

Ui, max
(

Li,

√

Ai ∑(i, j)∈Gv
µ∗i, j

∑(i, j)∈Gh
λ∗i, j

)

)

(9)

What remains is to find the optimal λ∗ and µ∗, for which they
used the subgradient method. It works as follows. Starting from an
arbitrary λ and µ satisfying (5)-(6), the module width wi for each

module i is computed by (9). Based on the obtained module widths
and heights, the x and y positions of each module are computed
by a longest path computation. After that, λ and µ are updated by
following the subgradient direction:

λ′i, j = max
(

0, λi, j +ρk(xi +wi− x j)
)

µ′i, j = max
(

0, µi, j +ρk(yi +
Ai

wi
− y j)

)

where ρk is a step size parameter such that limk→∞ ρk = 0 and
∑∞

k=1 ρk = ∞. The updated λ and µ are then projected to the near-
est point satisfying (5)-(6). This is done through the orthonormal
bases of the solution space of (5)-(6), which can be obtained by
Gram-Schmidt process [8].

However, since they obtain x and y from the non-overlapping
constraints instead of from solving LSarea, there is no guarantee that
the subgradient method will converge. The convergence becomes
even more questionable with the involvement of projection. Even
if it converges, there is no guarantee that the converged solution
is an optimal solution to Parea, or to LDarea. In other words, their
approach is a heuristic.

4.3 Minimum perimeter formulation
Having seen the difficulty of solving Parea, we focus on LDarea

again. By Lemma 2, LDarea is infeasible (unbounded below). The
infeasibility comes from the non-convexity of the objective func-
tion of Parea.

Intuitively, if we can modify the objective function to make it
convex, then the dual problem will become feasible. On the other
hand, we want the modified objective function to be related to area.
Therefore, we propose to use perimeter as follows.

PROBLEM 5 (MINIMUM PERIMETER FLOORPLANNING).

Pperi : Minimize (xn+1− x0)+(yn+1− y0)

subject to x j ≥ xi +wi ,∀(i, j) ∈ Gh

y j ≥ yi +Ai/wi ,∀(i, j) ∈ Gv

Li ≤ wi ≤Ui ,∀1≤ i≤ n

We show that Pperi is convex.

LEMMA 3. Problem Pperi is convex.

PROOF. By the definition of convexity, Ai/wi is convex since
Ai/(γwi +(1− γ)w′i)≤ γAi/wi +(1− γ)Ai/w′i for all wi,w′i > 0 and
γ ∈ [0,1]. In addition, all linear functions are convex and a non-
negative weighted sum of convex functions is also convex. There-
fore, both the objective and the constraints of Pperi are convex. So
is Pperi.

What remains is to justify Pperi by relating it to Parea. We make
the following two observations.

OBSERVATION 1. The experimental results in [27] show that
the finally generated floorplan usually has very small deadspace,
i.e., the area of the floorplan is close to the sum of the module areas,
which is a constant.

OBSERVATION 2. Since minimizing the perimeter of a rectan-
gle subject to a constant area will result in a perfect square, mini-
mizing the perimeter of a floorplan subject to very small deadspace
will lead to a floorplan close to a square. When a floorplan is close
to a square, i.e., its width W is approximately equal to its height H,
its area WH is close to W 2 or H2, and its perimeter is close to 4W
or 4H.

From the preceding two observations, we conclude that mini-
mizing the perimeter of a floorplan will result in a small area. In
addition, the aspect ratio of the floorplan will be close to 1. They
are confirmed by the experimental results in Section 6.

Following the same procedure as in Section 3, we obtain the La-
grangian subproblem of Pperi as follows.

PROBLEM 6 (LAGRANGIAN SUBPROBLEM OF Pperi).

LSperi(λ,µ) : Minimize (xn+1− x0)+(yn+1− y0)

− ∑
(i, j)∈Gh

λi, j(x j− xi−wi)

− ∑
(i, j)∈Gv

µi, j(y j− yi−Ai/wi)

subject to Li ≤ wi ≤Ui ,∀1≤ i≤ n

Let Fperi denote the objective function of LSperi(λ,µ). Similar to
Farea, we can simplify Fperi to

Fperi = (1− ∑
(i,n+1)∈Gh

λi,n+1)xn+1− (1− ∑
(0,i)∈Gh

λ0,i)x0

+(1− ∑
(i,n+1)∈Gv

µi,n+1)yn+1− (1− ∑
(0,i)∈Gv

µ0,i)y0

+ ∑
1≤i≤n

(∑
(i, j)∈Gh

λi, j− ∑
(j,i)∈Gh

λ j,i)xi

+ ∑
1≤i≤n

(∑
(i, j)∈Gv

µi, j− ∑
(j,i)∈Gv

µ j,i)yi

+ ∑
1≤i≤n

(wi ∑
(i, j)∈Gh

λi, j +
Ai

wi
∑

(i, j)∈Gv

µi, j)

Let Qperi(λ,µ) denote the optimal objective value of LSperi(λ,µ)
for given λ and µ. The Lagrangian dual problem of Pperi is as fol-
lows.

PROBLEM 7 (LAGRANGIAN DUAL PROBLEM OF Pperi).

LDperi : Maximize Qperi(λ,µ)

subject to λ≥ 0, µ≥ 0

Since Pperi is convex by Lemma 3 and the constraint qualifica-
tion in Theorem 2 is true, Corollary 2.1 ensures that an optimal so-
lution to Pperi is also an optimal solution to LDperi. Therefore, the
Kuhn-Tucker conditions of Pperi can be used to simplify Fperi, and
thus LDperi. We obtained the simplified LDperi as follows, where
(9)-(13) are from the Kuhn-Tucker conditions of Pperi.

Maximize Fperi = ∑
1≤i≤n

(wi ∑
(i, j)∈Gh

λi, j +
Ai

wi
∑

(i, j)∈Gv

µi, j)

where wi = min
(

Ui, max
(

Li,

√

Ai ∑(i, j)∈Gv
µi, j

∑(i, j)∈Gh
λi, j

)

)

(9)

subject to ∑
(i, j)∈Gh

λi, j = ∑
(j,i)∈Gh

λ j,i ,∀1≤ i≤ n (10)

∑
(i, j)∈Gv

µi, j = ∑
(j,i)∈Gv

µ j,i ,∀1≤ i≤ n (11)

∑
(0,i)∈Gh

λ0,i = ∑
(i,n+1)∈Gh

λi,n+1 = 1 (12)

∑
(0,i)∈Gv

µ0,i = ∑
(i,n+1)∈Gv

µi,n+1 = 1 (13)

λ≥ 0, µ≥ 0 (14)

In fact, (10)-(13) have an intuitive explanation. Suppose that
some of (10)-(13) is not satisfied under given λ and µ, then the

coefficient of some xi or yi, 0 ≤ i ≤ n + 1, in Fperi is not zero. As
a result, Qperi(λ,µ) = −∞. Since LDperi asks for optimal λ and µ
that maximize Qperi(λ,µ), the cases resulting in Qperi(λ,µ) = −∞
can be ignored. Therefore, we can include (10)-(13) as constraints
in LDperi.

We say that λ and µ are feasible if they satisfy (10)-(14). We
present an algorithm in the next section that solves LDperi by min-
cost flow technique and trust region method.

5. SOLVING LDPERI BY MIN-COST FLOW
AND TRUST REGION METHOD

If we treat λ and µ as flow on Gh and Gv respectively, then the
constraints (10)-(11) are also known as flow conservation, i.e., in-
coming flow equals outgoing flow. The constraint (12) states that
the total amount of flow going out of module 0 and going into mod-
ule n+1 is 1 in Gh. This is also true in Gv by (13). The constraint
(14) ensures that the flow on each edge is non-negative.

Although Fperi is greatly simplified by (10)-(14), it is still a com-
plicated function of λ and µ. However, given feasible λ and µ, we
can apply Taylor-series expansion to approximate Fperi in a small
region around λ and µ. Specifically, we have

Fperi(λ+δ,µ+σ)≈ Fperi(λ,µ)+
∂F
∂λ

∣

∣

∣

∣

λ,µ
·δ+

∂F
∂µ

∣

∣

∣

∣

λ,µ
·σ

where |δi, j| ≤ ∆ for all (i, j) ∈Gh, |σi, j| ≤ ∆ for all (i, j) ∈Gv, and
∆ is a non-negative number called the radius of the region.

Let T (λ + δ,µ + σ) denote the right-hand-side of the above ap-
proximation. The approximation is especially accurate when ∆ is
chosen small enough.

To solve LDperi, we start with a feasible flow and solve a se-
quence of local problems. Each local problem, denoted as T P, finds
the optimal flow within a small region around the current feasible
λ and µ, formulated as follows.

PROBLEM 8 (LOCAL PROBLEM BY TAYLOR EXPANSION).

T P : Maximize T (λ+δ,µ+σ)

subject to ∑
(i, j)∈Gh

δi, j = ∑
(j,i)∈Gh

δ j,i ,∀1≤ i≤ n

∑
(i, j)∈Gv

σi, j = ∑
(j,i)∈Gv

σ j,i ,∀1≤ i≤ n

∑
(0,i)∈Gh

δ0,i = ∑
(i,n+1)∈Gh

δi,n+1 = 0

∑
(0,i)∈Gv

σ0,i = ∑
(i,n+1)∈Gv

σi,n+1 = 0

max(−λi, j,−∆)≤ δi, j ≤ ∆ ,∀(i, j) ∈ Gh

max(−µi, j,−∆)≤ σi, j ≤ ∆ ,∀(i, j) ∈ Gv

The first four constraints in T P come from the requirement that
λ + δ and µ + σ need to satisfy (10)-(14) to be feasible. The re-
maining two constraints ensure nonnegative flow under λ + δ and
µ+σ.

If we treat ∂F
∂λ

∣

∣

λ,µ as the costs of δ and ∂F
∂µ

∣

∣

λ,µ as the costs of
σ, and note that maximizing T (λ + δ,µ + σ) is equivalent to mini-
mizing −T (λ + δ,µ + σ), then T P becomes a min-cost flow prob-
lem [1]. In addition, since wi is determined by λ and µ by (9),
∀1 ≤ i ≤ n, we treat them as constants in T P for simplicity1. Let

1However, it can be verified that if wi =

√

Ai ∑(i, j)∈Gv µi, j

∑(i, j)∈Gh
λi, j

, then

∂F
∂λi, j

∣

∣

λ,µ is exactly equal to wi. So is ∂F
∂µi, j

∣

∣

λ,µ=
Ai
wi

.

ci, j denote the cost on edge (i, j) ∈ Gh ∪Gv. Then T (λ + δ,µ + σ)
can be written as

Fperi(λ,µ)+ ∑
1≤i≤n

(∑
(i, j)∈Gh

ci, jδi, j + ∑
(i, j)∈Gv

ci, jσi, j)

where

ci, j = wi ,∀(i, j) ∈ Gh (15)

ci, j =
Ai

wi
,∀(i, j) ∈ Gv (16)

Let δ∗ and σ∗ be the optimal solution to T P found by any min-
cost flow algorithm [1]. We have Fperi(λ+δ∗,µ+σ∗) > Fperi(λ,µ)
for a small enough ∆ if λ and µ are not the optimal flow. We then
update λ and µ by λ + δ∗ and µ + σ∗ respectively, and iterate the
process until convergence.

What remains is to determine the value of ∆ for each iteration.
We adopt the concept of trust region [18] and define the ratio

ρ =
Fperi(λ+δ∗,µ+σ∗)−Fperi(λ,µ)

T (λ+δ∗,µ+σ∗)−Fperi(λ,µ)
(17)

The numerator is called the actual improvement, and the denomina-
tor is the predicted improvement. Since (δ∗,σ∗) is the optimal solu-
tion to T P, the predicted improvement will always be nonnegative.
In fact, ρ has an intuitive interpretation. If ρ is close to 1, it means
that Taylor expansion can be trusted as an adequate representation
of F within radius ∆ around λ and µ, and thus it is reasonably safe
to increase ∆ for the next iteration. If ρ is positive but not close to
1, we do not alter ∆, but if it is close to zero or negative, we reduce
∆.

In Figure 3, we give the algorithm for solving LDperi. We start
with a feasible flow satisfying (10)-(14). This can be done by find-
ing a directed path from module 0 to module n+1 in each Gh and
Gv and send a flow of 1 on that path. At each iteration, we solve
an instance of T P under the current feasible λ and µ. The edges
costs are computed based on (15)-(16). T P can be solved by any
min-cost flow algorithm [1]. Once the optimal solution (δ∗,σ∗)
is obtained, we evaluate ρ by (17). If ρ < 0.25, ∆ is reduced to
fourth. On the other hand, if ρ > 0.75 and the optimal solution to
T P reaches the boundary of the region characterized by radius ∆
around λ and µ, it implies that the current value of ∆ interferes with
the progress of the algorithm, thus its value is doubled for the next
iteration. The procedure of dynamically adjusting ∆ based on ρ, as
well as the usage of 0.25 and 0.75, is the same as the trust region
algorithm in [18]. If ρ > η, where η ∈ [0,0.25) is a given constant,
we update λ and µ with λ + δ∗ and µ + σ∗ respectively. The opti-
mal flow is reached when both δ∗ and σ∗ are 0. Finally, we use the
values of the optimal flow to compute the optimal width of each
module by (9). In our implementation, we choose the initial value
of ∆ to be 0.5 and η is slightly smaller than 0.25.

The correctness of the algorithm is given in the next theorem.

THEOREM 3. The algorithm in Figure 3 returns an optimal so-
lution to LDperi and Pperi.

PROOF. First of all, for any problem (not necessarily convex),
its Lagrangian dual problem is a convex optimization problem, as
stated in [3]. Therefore, any local optimum of LDperi is a global
optimum. Since the algorithm in Figure 3 is guaranteed to con-
verge [18], the converged solution is a global optimum of LDperi.

In addition, it is also an optimal solution to Pperi by Corollary 2.1
and the fact that the converged solution satisfies all non-overlapping
constraints.

Algorithm
Input: Areas A1,A2, ...,An,

Lower bounds of widths L1,L2, ...,Ln,
Upper bounds of widths U1,U2, ...,Un,
Constraint graphs Gh and Gv,
∆ > 0, and η ∈ [0,0.25).

Output: Optimal widths w1,w2, ...,wn.

λ,µ← a feasible flow satisfying (10)-(14);
Do

Compute costs by (15)-(16);
Compute (δ∗,σ∗) by solving T P;
Evaluate ρ by (17);
.Adjust ∆ according to ρ
If (ρ < 0.25)

∆← ∆/4;
Elsif

(

(ρ > 0.75)∧
(

∃(i, j) ∈ Gh∪Gv : (|δ∗i, j|= ∆)∨ (|σ∗i, j|= ∆)
)

)

∆← 2∆;
.Update λ and µ
If (ρ > η)

(λ,µ)← (λ,µ)+(δ∗,σ∗);
While

(

(δ∗ 6= 0)∨ (σ∗ 6= 0)
)

;
Compute wi based on λ and µ by (9);
Return w;

Figure 3: Pseudocode of floorplanning algorithm.

6. EXPERIMENTAL RESULTS
We obtained the source code of the simulated annealing based

floorplanner in [27], which used sequence pair [15] to represent a
general floorplan and to generate the constraint graph in the anneal-
ing process. We then replaced their subroutine of the subgradient
method with the algorithm in Figure 3 to generate our floorplan-
ner. In our implementation, we used the min-cost flow algorithm
by Goldberg [7] to solve T P. Both floorplanners were written in C
and compiled using GCC 3.2 in a PC with a 2.4 GHz Xeon CPU,
512 KB 2nd level cache memory and 1GB RAM.

We kept the same setting of the simulated annealing used in [27].
More specifically, the initial temperature was chosen such that an
acceptance ratio was 95% at the beginning. The temperature was
lowered at a constant rate of 0.9 and the number of iterations at
one temperature step was a constant. We also obtained the test files
in [27], which were generated from MCNC benchmark.

We did two sets of experiments. In the first set, we ignored in-
terconnect cost, i.e., we focused on perimeter minimization. The
aspect ratio of each module was allowed to range from 0.5 to 2.0.
This is a practically reasonable range. The results from both floor-
planners are shown in Table 1 under column “ [27]” and “ours” re-
spectively. In particular, column “n” lists the number of modules in
each test file, column “t(sec)” lists the running time in seconds, col-
umn “DS%” lists the percentage of deadspace, and column “w/h”
lists the aspect ratio of the floorplan solution.

Table 1 enables a comparison between the two floorplanners from
three different points of view. Firstly, although the running time of
the floorplanner in [27] is less for small cases, it does not scale
well with the problem size. For the largest case “ami49”, it takes
2575.94 seconds to finish, which is much longer than the 270.48
seconds by our floorplanner. In other words, our floorplanner is
more suitable for large designs. In addition, we observed that for

Table 1: Results under module aspect ratio bound [0.5,2.0]
Data n [27] ours

t(sec) DS% w/h t(sec) DS% w/h
xerox 10 2.33 0.35 0.57 19.28 0.19 1.03
apte 9 1.63 0.04 1.99 14.41 0.05 1.00
hp 11 4.35 3.05 1.41 20.65 0.16 1.02

ami33 33 860.34 1.65 1.18 381.17 0.27 1.01
ami49 49 2575.94 5.52 1.30 270.48 1.04 1.18

each test file, the number of different constraint graphs processed
during annealing is same for both floorplanners. It means that the
less running time by our floorplanner is due to the efficiency of
solving Pperi. Secondly, we notice that almost every floorplan gen-
erated by our floorplanner has smaller deadspace compared with
that generated by the floorplanner in [27]. For “ami49”, the deadspace
is 5.52% by the floorplanner in [27] and 1.04% by our floorplan-
ner. This justifies our usage of perimeter as the objective function
in Pperi. Further study of the source code of the floorplanner in [27]
reveals that the subgradient method stops after a given number, 20,
of iterations to trade-off the quality of the solution and the running
time. In other words, the running time of their floorplanner will be
further degraded if smaller deadspace is desired. For our algorithm
in Figure 3, the average number of iterations before convergence
was 22. Thirdly, the floorplan generated by our floorplanner has
an aspect ratio closer to 1, which confirms Observation 2, and thus
is more friendly to packaging. Figure 4 illustrates the floorplan of
“ami33” generated by our floorplanner, where the dark places rep-
resent deadspace.

0

1

2

3

4

5

6

7

89

10

11

12

13

1415

16

17

18

19

20

21

22

23
24

25

26

27

28 29

30

31

32

Figure 4: A floorplan of “ami33” with 0.27% deadspace and
1.01 aspect ratio under module aspect ratio bound [0.5,2.0].

To test our floorplanner under a more flexible aspect ratio bound,
we chose [0.1, 10.0]. The results are reported in Table 2.

Table 2: Results under module aspect ratio bound [0.1,10.0]
Data n [27] ours

t(sec) DS% w/h t(sec) DS% w/h
xerox 10 1.82 0.00 0.69 20.81 0.11 1.00
apte 9 1.56 0.00 1.84 15.41 0.08 1.00
hp 11 4.01 0.07 0.47 26.97 0.10 1.00

ami33 33 1062.31 2.21 0.85 223.65 0.29 0.99
ami49 49 2480.01 4.21 1.35 168.55 1.38 1.01

It can be seen that similar trends as those in Table 1 are also
present in Table 2. In addition, because of the more flexible bound,
almost every test case has a floorplan with aspect ratio 1.00, i.e., a
perfect square. Note that since Pperi focuses on perimeter, a more
flexible bound will lead to a smaller perimeter, but not necessarily

Table 3: Results with wire length incorporated
Data net# aspect ratio bound [0.5,2.0] aspect ratio bound [0.1,10.0]

t(sec) area(mm2) DS% wire(mm) w/h t(sec) area(mm2) DS% wire(mm) w/h
xerox 203 18.96 1.94 0.27 148.01 1.00 23.14 1.95 0.70 126.14 1.04
apte 97 17.06 4.82 0.18 133.96 0.93 21.79 4.82 0.24 125.55 1.00
hp 83 18.09 0.90 0.22 43.37 1.01 25.89 0.91 0.50 42.37 1.00

ami33 123 430.48 1.16 0.51 61.75 1.02 268.04 1.16 0.44 49.73 0.99
ami49 408 257.39 3.74 5.29 336.74 1.01 155.15 3.61 1.83 367.19 1.03

lead to smaller deadspace. We illustrate in Figure 5 the floorplan of
“ami49” by our floorplanner.

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28
29

30

31
32

33

34

35

36

37
38

39

40

41

42
43

44

45

46

47

48

Figure 5: A floorplan of “ami49” with 1.38% deadspace and
1.01 aspect ratio under module aspect ratio bound [0.1,10.0].

In our second set of experiments, we used the summation of
perimeter and the average HPWL (half-perimeter wire length) of
a net as our objective. The results are shown in Table 3, where
“net#” lists the number of nets in each test file, “area(mm2)” and
“wire(mm)” list the area and the total wire length of the generated
floorplan respectively. We can see that when a more flexible bound
is available, either the deadspace or the wire length is reduced, if
not both.

It is worthy to point out a few caveats when comparing our floor-
planner with other ones that do not involve solving Parea as a sub-
routine, e.g., a recent floorplanner proposed in [6]. Given horizon-
tal and vertical constraints, the floorplanner in [6] applies simulated
annealing to adjust the aspect ratio of a soft module. Although this
could yield faster algorithms for both Parea and Pperi, it cannot guar-
antee optimal solutions. On the other hand, there is no fixed aspect
ratio bound in [6]. The width of a soft module can be adjusted to
match the width of any other module. As a result, the aspect ratio
of some module may be impractical even though smaller deadspace
could be obtained.

7. CONCLUSIONS
We clarify a misunderstanding in using Lagrangian relaxation for

the floorplan area minimization problem by showing that the opti-
mal solution cannot be obtained by solving the Lagrangian dual
problem because of the non-convexity of the objective function.
We then consider how to modify the objective to make it convex
and propose to use perimeter. The usage of perimeter is justified by
our experimental results. An algorithm is presented for the modi-
fied formulation based on min-cost flow technique and trust region
method. Compared with the floorplanner in [27], our floorplanner
scales better in problem size, takes much less time for large cir-
cuits, generates smaller deadspace for almost all test cases under
aspect ratio bound [0.5,2.0], and produces floorplans that are more
friendly to packaging.

8. REFERENCES
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,

Algorithms, and Application. Prentice Hall, 1993.
[2] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear programming:

theory and algorithms. John Wiley & Sons, Inc., second edition, 1997.
[3] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University

Press, 2004.
[4] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu. B∗-trees: A new

representation for non-slicing floorplans. In DAC, pages 458–463, 2000.
[5] C.-P. Chen, C. C. N. Chu, and D. F. Wong. Fast and exact simultaneous gate

and wire sizing by lagrangian relaxation. IEEE TCAD, 18(7):1014–1025, July
1999.

[6] T.-C. Chen and Y.-W. Chang. Modern floorplanning based on fast simulated
annealing. In ISPD, pages 104–112, 2005.

[7] A. V. Goldberg. An efficient implementation of a scaling minimum-cost flow
algorithm. Journal of Algorithms, 22:1–29, 1997.

[8] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins, 3rd
edition, 1996.

[9] P.-N. Guo, C.-K. Cheng, and T. Yoshimura. An O-tree representation of
non-slicing floorplan and its applications. In DAC, pages 268–273, 1999.

[10] X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu. Corner
block list: An effective and efficient topological representation of non-slicing
floorplan. In ICCAD, pages 8–12, 2000.

[11] M. Kang and W. W. M. Dai. General floorplanning with l-shaped, t-shaped and
soft blocks based on bounded slicing grid structure. In ASP-DAC, pages
265–270, 1997.

[12] J.-M. Lin and Y.-W. Chang. TCG: A transitive closure graph-based
representation for non-slicing floorplans. In DAC, pages 764–769, 2001.

[13] D. G. Luenberger. Linear and nonlinear programming. Addison-Wesley,
Reading, Massachusetts, 1984.

[14] T.-S. Moh, T.-S. Chang, and S. L. Hakimi. Globally optimal floorplanning for
a layout problem. IEEE Transaction on Circuit and Systems - I: Fundamental
Theory and Applications, 43(9):713–720, 1996.

[15] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. Rectangle-packing
based module placement. In ICCAD, pages 472–479, 1995.

[16] H. Murata and E. S. Kuh. Sequence-pair based placement method for
hard/soft/pre-placed modules. In ISPD, pages 167–172, 1998.

[17] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani. Module placement on
BSG-structure and IC layout applications. In ICCAD, pages 484–493, 1996.

[18] J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in
Operations Research, Springer Verlag, 1999.

[19] R. H. J. M. Otten. Automatic floorplan design. In DAC, pages 261–267, 1982.
[20] P. Pan and C. L. Liu. Area minimization for floorplans. IEEE TCAD,

14(1):123–132, January 1995.
[21] K. Sakanushi and Y. Kajitani. The quarter-state sequence (qsequence) to

represent the floorplan and applications to layout optimization. In IEEE
APCCAS, pages 829–832, 2000.

[22] L. Stockmeyer. Optimal orientations of cells in slicing floorplan designs.
Information and Control, 59:91–101, 1983.

[23] T.-C. Wang and D. F Wong. An optimal algorithm for floorplan area
optimization. In DAC, pages 180–186, 1990.

[24] T.-C. Wang and D. F. Wong. Optimal floorplan area optimization. IEEE
TCAD, 2(8):992–1001, 1992.

[25] D. F. Wong and C. L. Liu. A new algorithm for floorplan design. In DAC,
pages 101–107, 1986.

[26] B. Yao, H. Chen, C. K. Cheng, and R. Graham. Revisiting floorplan
representation. In ISPD, pages 138–143, 2001.

[27] F. Y. Young, C. C. N. Chu, W. S. Luk, and Y. C. Wong. Handling soft modules
in general non-slicing floorplan using lagrangian relaxation. IEEE TCAD,
20(5):687–692, May 2001.

[28] F. Y. Young, C. C. N. Chu, and Z. C. Shen. Twin binary sequences: A
non-redundant representation for general non-slicing floorplan. IEEE TCAD,
22(4):457–469, April 2003.

[29] H. Zhou and J. Wang. Acg–adjacent constraint graph for general floorplans. In
ICCD, pages 572–575, 2004.

