
FastPlace 2.0: An Efficient Analytical Placer for Mixed-Mode Designs
�

Natarajan Viswanathan, Min Pan and Chris Chu
Department of Electrical and Computer Engineering
Iowa State University, Ames, IA 50011-3060, USA

email:
�
nataraj, panmin, cnchu � @iastate.edu

Abstract— In this paper, we present FastPlace 2.0 – an ex-
tension to the efficient analytical standard-cell placer - FastPlace
[15], to address the mixed-mode placement problem. The main
contributions of our work are: (1) Extensions to the global place-
ment framework of FastPlace to handle mixed-mode designs. (2)
An efficient and optimal Iterative Clustering Algorithm that is
applied after global placement to resolve overlaps among the
macros. (3) An efficient legalization scheme to legalize the stan-
dard cells among the placeable segments created after fixing the
movable macros. On the ISPD 02 Mixed-Size placement bench-
marks [3], our algorithm is ����� �
	 and ��� �
	 faster than state-of-
the-art academic placers Capo 9.1 and Fengshui 5.0 respectively.
Correspondingly, we are on average, ���
� and ��� better in terms
of wirelength over the respective placers.

I. INTRODUCTION

The explosive growth in the size of integrated circuits
has imposed enormous challenges on placement algorithms.
Placement tools have to produce good-quality results satisfy-
ing various design objectives, such as timing, congestion etc.
Simultaneously, they have to be computationally efficient to
deliver these solutions in a reasonable amount of runtime.

As the time to market for designs is constantly shrinking,
there has been a steady increase in the re-use of pre-designed
or generated macro blocks like IP cores, embedded memories,
analog blocks etc. Designs today often contain a combina-
tion of a large number of macro blocks and millions of stan-
dard cells. This design style, known as mixed-mode design or
mixed-size design complicates the placement step and imposes
a lot of difficulty on placement tools due to the varied sizes of
the placeable components.

Traditionally, the mixed-mode placement problem was di-
vided into two stages namely, floorplanning or block/module
placement and cell placement. Large macro blocks were han-
dled during the floorplanning stage followed by cell placement
wherein the macro blocks were treated as fixed. Current de-
signs can have thousands of large and medium sized macros
along with millions of standard cells. As a result, traditional
floorplanning techniques cannot scale to this problem both in
terms of runtime as well as solution quality. With an ever-
increasing trend toward mixed-mode design, it is necessary to
have efficient techniques that can simultaneously handle this
combination of placeable objects.

�
This work was supported by the Semiconductor Research Corporation un-

der Task ID: 1206.

Over the last few years, the mixed-mode placement prob-
lem has generated a lot of interest. Placement algorithms han-
dling this problem employ various approaches including par-
titioning [2, 4, 11], clustering and simulated annealing [7] and
analytical placement [6, 8, 10, 16–19]. Analytical placement
techniques based on the force-directed method are promising
for handling the mixed-mode placement problem. This is be-
cause force-directed methods can seamlessly handle the varied
sizes of placeable objects without employing additional tech-
niques like partitioning or clustering [8,18]. Secondly, they can
be very efficient and scalable to handle large-scale placement
problems [15].

In this paper we present FastPlace 2.0, an efficient analytical
placer for mixed-mode designs. The main contributions of our
work are:

� Extensions to the Cell Shifting technique of FastPlace
[15] to handle mixed-mode designs.

� An efficient Iterative Clustering Algorithm that perturbs
the macros by the minimum possible distance to resolve
overlaps created during global placement. This prob-
lem is solved by a floorplanning approach that uses the
sequence pair to represent the relative positions of the
macros. We prove that for a given sequence pair our algo-
rithm is optimal. We then use simulated annealing to gen-
erate a good sequence pair and a non-overlapping place-
ment of the macros with minimum perturbation from their
global placement positions.

� An efficient legalization scheme that legalizes the stan-
dard cells among the placeable segments created after fix-
ing the movable macros.

The rest of this paper is organized as follows: Section II
gives an overview of FastPlace for standard-cell placement.
Section III outlines the mixed-mode placement flow and de-
scribes the extensions to the global placement framework for
handling mixed-mode designs. Section IV describes the le-
galization scheme for macros and standard cells. Section V
describes the detailed placement technique. Experimental re-
sults are provided in Section VI followed by the conclusions in
Section VII.

II. FASTPLACE: STANDARD-CELL PLACEMENT

In this section, we give an overview of the FastPlace analyt-
ical standard-cell placer described in [15]. FastPlace utilizes a
quadratic wirelength objective function and is based on three

key features: Cell Shifting, Iterative Local Refinement and a
Hybrid Net Model.

The Cell Shifting technique is used to remove cell over-
lap and spread the cells over the core region. This technique
roughly maintains the relative order of the cells as obtained by
solving the quadratic objective function. During Cell Shifting
the core region is binned and the utilization of each bin is com-
puted. The cells are then spread depending on the utilization
of their respective bins. The basic intuition behind Cell Shift-
ing is to even out the utilization of adjacent bins. This is done
by constructing an unequal bin structure from the regular bin
structure. Cells are then mapped from the regular bin structure
to the unequal bin structure. After each iteration of Cell Shift-
ing, additional forces are added to the cells by way of pseudo
nets connected to pseudo pins on the placement boundary. This
prevents the cells from collapsing back to their previous posi-
tions during the next quadratic programming step.

The Iterative Local Refinement technique is used to reduce
the wirelength of the placement based on the half-perimeter
wirelength measure. This technique uses a greedy heuristic to
move the cells based on a weighted score of the linear wire-
length and the placement utilization.

FastPlace uses the pre-conditioned conjugate gradient
method to minimize the quadratic objective function. The run-
time of the solver is directly proportional to the number of non-
zero entries in the connectivity matrix. To improve the speed of
the solver, the algorithm uses a Hybrid Net Model to transform
the circuit netlist for quadratic placement. [15] showed that the
model results in a ��� ����� reduction in the number of non-zero
entries in the connectivity matrix and a �	�
��� speed-up in the
solver as compared to the clique model on the ISPD04 IBM
Standard Cell Benchmarks [14].

For standard-cell placement, FastPlace achieves compara-
ble placement solutions to other state-of-the-art academic plac-
ers, but in a significantly lesser runtime. We now build on this
ultra-fast placement tool to handle mixed-mode designs.

III. MIXED-MODE PLACEMENT

Our mixed-mode placement flow is summarized in Figure 1.
For the global placement stage, we employ the same top-level
flow as [15]. During legalization, we first remove the overlaps
among the macros and assign them to legal positions in the
core region. Once legalized, the macro positions are fixed and
they behave as placement blockages for all subsequent steps.
These placement blockages fragment the rows in the core re-
gion into placeable segments. In the next step of legalization
we move the standard cells among the placeable segments to
satisfy their respective capacities. Finally, we legalize the stan-
dard cells within the segments. Following legalization we per-
form detailed placement on the standard cells to further reduce
the wirelength of the placement.

A. Cell Shifting for Mixed-Mode Placement

As described in Section II, during Cell Shifting, the cells
are spread over the core region by attempting to even out the
utilization of adjacent bins in the regular bin structure. For
standard-cell placement, the width of the bins in the regular

Algorithm Mixed-Mode Placement
Stage 1: Global Placement

Step 1: Coarse Global Placement
Repeat

1. Solve the quadratic program
2. Perform Cell Shifting on standard cells and

macro blocks and Add Spreading Forces
Until the placement is roughly even

Step 2: Wirelength Improved Global Placement
Repeat

1. Solve the quadratic program
2. Perform Iterative Local Refinement on

standard cells and macro blocks
3. Perform Cell Shifting on standard cells and

macro blocks and Add Spreading Forces
Until the placement is very even

Stage 2: Legalization
1. Legalize Macro Blocks

2. Fix Macros and move standard cells among
placeable segments to satisfy segment capacity

3. Legalize standard cells within segments

Stage 3: Detailed Placement

Fig. 1. The Mixed-Mode placement flow.

bin structure is greater than the average cell width. Hence, the
movement of any cell has an influence on the utilization of only
the adjacent bins. On the other hand, for mixed-mode place-
ment, the movement of a macro will influence the utilization of
all the bins spanned by the macro. Therefore, to move a macro
during Cell Shifting we need to consider a larger region that is
proportional to the size of the macro.

Shifting of the macros follows the same two-step process as
the standard cells. We first construct an unequal bin structure
from the regular bin structure. The macros are then linearly
mapped from the regular bin structure to the unequal bin struc-
ture. The only difference between Cell Shifting for the macros
and the cells is the construction of the unequal bin structure.
Since Cell Shifting is independent and similiar in the verti-
cal and horizontal directions, we describe the technique for the
horizontal direction. Figure 2 illustrates the construction of the
unequal bin structure for horizontal shifting. From Figure 2(a),
for the regular bin structure, let,

��
 : Total number of bins spanned by the macro.

��� ������� : Total number of columns spanned by the macro.

������� : � -coordinate of the left boundary of the leftmost
bin spanned by the macro.

������� : � -coordinate of the right boundary of the rightmost
bin spanned by the macro.

� �"! : Sum of the utilizations of the
 bins spanned by the
macro (shaded region with lines to the right bottom).

� �"� : Sum of the utilizations of
 bins to the left of the
macro. (shaded region with lines to the left bottom).

� �"� : Sum of the utilizations of
 bins to the right of
macro. (shaded region with lines to the left bottom).

x_span

OBL –
x_span

OBR OBL

NBL NBR

UL UR UC

Macro Block

OBR +
x_span

(a)

(b)

Regular Bin Structure

Fig. 2. (a) Regular bin structure (b) Unequal bin structure for macro block
cell shifting.

From Figure 2(b), for the unequal bin structure, let,

������� : � -coordinate of the left boundary of the leftmost
bin spanned by the macro.

������� : � -coordinate of the right boundary of the right-
most bin spanned by the macro.

Then,
���	��
 ��
 �	��� � ��������� ��������� � ��
 ��� ��� � ��� �� � � � � � � �
and,
��� �

 � � ��� � ��� � �!�"
 � � � � ���#�$��� ��� � ��� �� � � ����� � �
As in [15], the parameter

�
is set to a value of �	�
� to prevent

cross-over of bin boundaries in the unequal bin structure. For
performing the linear mapping, if,

� � : � -coordinate of the macro before mapping.

� ��% : � -coordinate of the macro after mapping.

Then,

� %

��� � � � �
 � � � � ��� � ��
 � � � �#�
 ���&�
 ���

Once the macro is moved, we add the spreading force to the
macro and update the connectivity matrix for the next quadratic
programming step in the same fashion as [15].

IV. LEGALIZATION

A key issue with analytical placement techniques is that they
have overlaps among the cells or macros that need to be re-
solved. We divide our legalization stage into two steps. First,

we ignore all the standard cells and resolve overlaps among the
macros and assign them to legal positions. In the next step, we
fix the macros and legalize the standard cells. These steps are
described in more detail below.

A. Macro Block Legalization

During legalization, we want to maintain the macro posi-
tions in the global placement solution as much as possible.
If we denote the original position of a macro, determined by
global placement, as its target position. Then, the macro block
legalization problem is to minimize the total perturbation of
all the macros from their target positions such that there are no
overlaps among them.

This problem is solved by using a fixed-outline floorplan-
ning approach. We use the sequence pair [12] to represent the
floorplan and enforce the non-overlapping constraints among
the macros. We can also easily incorporate other floorplan-
ning representations in our approach. We formally describe
the problem of finding a minimum perturbation placement for
a given sequence pair below.

Minimum Perturbation Macro Legalization
(MPML) Problem:

Given: � macros with target coordinates
� ��'($)�* '(� for+
 �) � � �) � and a sequence pair

� �)-, � .
Determine: Legalized coordinates

� � ().* (� s.t./10(3254�6 � (� �7'(6 � 6 * (� * '(6 is minimized.

In the following sub-sections we first describe the Iterative
Clustering Algorithm that is used to solve the MPML problem
for a given sequence pair. We then describe the top-level flow
for floorplan realization using simulated annealing. Since the
horizontal and vertical non-overlapping constraints can be han-
dled independently, we only discuss the horizontal problem.

A.1 Iterative Clustering Algorithm

The basic idea of the Iterative Clustering Algorithm is that if
we know which macros abut with each other to form a clus-
ter in the optimal solution, then the position of the cluster is
easy to find. To determine which macros should be grouped in
the same cluster, we always shift all clusters to their optimal
positions. In doing so if there are any overlaps among some
clusters, then we know that these clusters should be merged to
form larger clusters. In Figure 3 we give the pseudo-code of
the Iterative Clustering Algorithm.

From Figure 3, in step 1, immediate neighbours of macros
are those that can potentially abut. They are associated with
the non-transistive edges in the constraint graph. The imme-
diate neighbours of all macros can be found in

8� �59:� time.
In steps 3-4, the macros are placed one at a time from left to
right (i.e., according to the sequence �). Then the clustering is
updated according to steps 5-11. The condition in step 5 and
the closest cluster in step 6 can be determined by considering
the constraints of the immediate left neighbours of modules in;

. The shifting in step 8 is easy according to the following
lemma.

Iterative Clustering Algorithm:
1. Find the immediate left and right neighbours

of all macros
2. for

+
 � to �
3. Place macro � (in its target position
4. Let

;
be a new cluster consisting of � (

5. while
;

overlaps with other clusters do
6. Merge

;
with the closest cluster on its left

7. Let
;

be the new cluster formed
8. Shift

;
to its optimal position

9. if macro � in
;

is at its target position do
10. Detach � from

;
if necessary

and goto step 8
11. endwhile
12. endfor

Fig. 3. Iterative Clustering Algorithm.

Lemma 1 For a cluster
;

, its position is optimal if the number
of macros perturbed to the left from their target positions is
equal to the number perturbed to the right.

Note that since we add macros from left to right, macros
will always be added to the right of a stationary cluster. So the
clusters will always shift left. Therefore, it is very easy to find
the correct shift amount of the newly formed clusters. In step
9, after shifting a cluster

;
, a macro ��� ; may potentially

reach its target position. If � does not have any other macros in
the same cluster to its right then it should be detached from the
cluster. If not, � will move with the cluster during subsequent
steps and hence its position will not be optimal in the final
solution. The condition to detach � can be checked by looking
at its immediate right neighbours.

Although the while loop in steps 5-11 looks complicated,
we can show with careful implementation and analysis that
the runtime complexity of the Iterative Clustering Algorithm
is

8� � 9:� . We show in Section VI that its runtime is insignifi-

cant in practice.

A.2 Floorplan Realization by Simulated Annealing

The aim of the floorplanning algorithm is to obtain a sequence
pair such that the corresponding placement obtained from the
Iterative Clustering Algorithm will resolve overlaps among the
macros with minimum perturbation from the global placement
solution. Another factor to be considered during placement is
that the macros have to be placed in legal positions within the
core region. Hence, the cost function is defined as a weighted
sum of the total perturbation along with a penalty for being out
of bound. We use simulated annealing to search for a sequence
pair with low cost.

If
� �)�, � represents the sequence pair. Then, the initial se-

quence for ��� , is generated by sorting the macros in ascending
order according to the Manhattan distance from the upper left
/ lower left corner to their target positions. This sequence pair
closely corresponds to the original placement and is usually
quite good. Hence, a low-temperature annealing is sufficient
to generate a good result. Besides, we restrict each annealing
move to randomly exchange two adjacent macros in one of the

two sequences so as to not disturb the current solution signifi-
cantly.

In Figures 4 and 5 we plot the placement of the macros be-
fore and after legalization for the circuit ibm01. From the two
figures, we can see that the macros have moved by a very small
amount from the global placement solution.

Fig. 4. Circuit ibm01 before legalization of movable macros.

Fig. 5. Circuit ibm01 after legalization of movable macros.

B. Standard Cell Legalization

Once the overlaps among the movable macros have been re-
solved, we fix their positions for all subsequent steps and treat
them as placement blockages. We then divide each row in the
core region into placeable segments based on the overlap of
the blockages with the row. A placeable segment is defined as
the maximal part of a row that is not covered by a placement
blockage. We then move the standard cells among the place-
able segments to satisfy their respective capacities. Finally, we
legalize the standard cells within the segments.

To move the cells among the placeable segments, we use a
greedy heuristic similar to the Iterative Local Refinement tech-
nique of [15]. For every cell present in a segment, we compute�

scores based on moving the cell to its nearest
�

neighboring
segments. For calculating the score, we assume that a cell is
moving from its current position in a source segment to the
nearest possible position in the target segment. Each score is

TABLE I
PLACEMENT BENCHMARK STATISTICS.

Circuit #Cells #Macros #Pads #Nets %Cell %Macro
Area Area

ibm01 12260 246 246 14111 37.23 42.76
ibm02 19071 271 259 19584 24.69 55.31
ibm03 22563 290 283 27401 30.04 49.96
ibm04 26925 295 287 31970 38.03 41.98
ibm05 28146 0 1201 28446 80.01 0.00
ibm06 32154 178 166 34826 34.60 45.41
ibm07 45348 291 287 48117 44.07 35.93
ibm08 50722 301 286 50513 38.79 41.20
ibm09 52857 253 285 60902 40.18 39.82
ibm10 67899 786 744 75196 20.34 59.66
ibm11 69779 373 406 81454 42.36 37.63
ibm12 69788 651 637 77240 28.35 51.65
ibm13 83285 424 490 99666 43.82 36.18
ibm14 146474 614 517 152772 60.36 19.64
ibm15 160794 393 383 186608 53.26 26.74
ibm16 182522 458 504 190048 42.11 37.89
ibm17 183992 760 743 189581 62.80 17.20
ibm18 210056 285 272 201920 71.31 8.69

a weighted sum of two components: The first being the half-
perimeter wirelength reduction for the move. The second being
a function of the utilization of the source and target segments.
Since the legalization technique is mainly used to even out the
placement and bring all the segments within capacity, a higher
weight is assigned to the second component. If all the scores
are negative, the cell will remain in the current segment. Other-
wise, it will move to the target segment with the highest score
for the move. During one iteration, we traverse through all the
segments in the core region and follow the above steps for cell
movement. Subsequently, this iteration is repeated until all the
segments are within their respective capacities. We then assign
the cells to legal positions within each segment.

V. DETAILED PLACEMENT

The aim of the detailed placement stage is to further re-
duced the wirelength of the placement. We adopt the Fast-
DP detailed placement algorithm described in [13] for the
same. The detailed placement algorithm is based on four key
techniques: global swap, vertical swap, local re-ordering and
single-segment clustering. All the techniques act only on the
standard cells and do not modify the positions of the macro
blocks.

Briefly, the global swap uses the median idea of [9] to swap
the standard cells for wirelength reduction. This technique op-
erates on the entire core region. The vertical swap is similar
to the global swap but it only considers cells in adjacent rows
for swapping. The local re-ordering technique picks a subset
of cells within a segment and tries out all possible left-right
orderings of the cells to pick the one giving the best possible
wirelength. Finally, retaining the order determined by local
re-ordering, an optimal single-segment clustering algorithm is
used to cluster the cells within a segment for further wirelength
reduction.

TABLE II
BREAK-UP OF TOTAL RUNTIME (ALL VALUES IN SECONDS)

Ckt Global Legalize Legalize Detailed Total
Placement Macros Cells Placement Time

ibm01 6.73 0.85 0.93 1.97 10.48
ibm02 21.29 1.01 2.34 9.22 33.86
ibm03 17.96 1.00 2.23 6.16 27.35
ibm04 28.16 1.07 2.60 6.50 38.33
ibm05 17.54 0.00 2.34 14.15 34.03
ibm06 24.86 0.39 3.34 8.88 37.47
ibm07 84.49 1.21 5.37 14.10 105.17
ibm08 79.20 1.10 7.62 33.30 121.22
ibm09 66.80 0.68 10.21 15.91 93.60
ibm10 104.10 5.52 12.47 39.66 161.75
ibm11 96.55 1.96 10.07 23.32 131.90
ibm12 116.91 3.73 11.17 57.48 189.29
ibm13 116.87 2.30 19.22 31.49 169.88
ibm14 220.86 5.40 23.21 66.45 315.92
ibm15 305.02 2.03 31.08 76.83 414.96
ibm16 265.54 2.74 31.70 117.25 417.23
ibm17 425.82 7.94 46.30 143.81 623.87
ibm18 526.18 1.18 37.00 204.83 769.19

VI. EXPERIMENTAL RESULTS

Our algorithm was tested on the ISPD02 IBM-MS Mixed-
size Placement Benchmarks [3–5]. These designs are rela-
tively large and contain many macro blocks and standard cells.
All macro blocks are assumed to be hard blocks with fixed as-
pect ratios. Each design contains around ����� of whitespace.
The circuit characteristics listed in Table I include the number
of cells, macros, pads, nets and the area occupied by the cells
and macro blocks as a percentage of the total placement area.

Table II gives the break-up of the runtime of FastPlace 2.0
for the 18 benchmark circuits. From Column 3, it can be seen
that on average, the macro block legalization algorithm takes
only ��� ��� of the total runtime over the 18 benchmark circuits.
This demonstrates that the runtime of the algorithm is negli-
gible compared to the other parts of the flow and it is highly
efficient in resolving the overlaps among the macros.

In Table III, we compare FastPlace 2.0 with various aca-
demic placers. Results for the capo-parquet-capo flow [4],
mPG-MS [7], Fengshui 2.4 [11], and BonnPlace [6] are as re-
ported in the respective publications. We do not report run-
times for these placers as they were run on different machines.
For runtime comparison we run Capo 9.1 and Fengshui 5.0,
which are updated versions of the tools published in [2] and
[11] respectively. Both placers are run in their default mode.
All experiments are run on an Intel Xeon, 3.06GHz CPU.

From Table III, we are on average, � ��� and ��� better in
terms of wirelength over Capo 9.1 and Fengshui 5.0 respec-
tively. Correspondingly, we are ��� � � � and ��� � � faster. We
are on average �	� more in terms of wirelength as compared
to ��
 �7�
��� ����� . But accounting for the differences in the pro-
cessors based on data obtained from [1], we are approximately
���	� faster.

TABLE III
COMPARISON OF OUR PLACEMENT RESULTS WITH VARIOUS ACADEMIC PLACERS.

CAPO-I, MPG-MS, FENGSHUI 2.4 (FS 2.4), CAPO 9.1, FENGSHUI 5.0 (FS 5.0) AND BONNPLACE (BP)

Half Perimeter Wirelength RunTime
Ckt

Our � �������	�
���
 � ��� �����
���
 � ����� �
���
 � ��������� �
���
 � �� �� !
"��
 #��
���
 Our Capo 9.1 � ��������� �
���
 FS 5.0
� �� �� !
"��

[4] [7] [11] [2] [6] (sec) (sec) (sec)

ibm01 2.45 1.62 1.23 0.98 1.05 1.01 0.92 10 219 20.90 142 13.55
ibm02 4.91 1.70 1.51 1.09 1.06 1.08 1.00 34 457 13.50 245 7.24
ibm03 7.32 1.66 1.53 1.03 1.20 1.16 0.96 27 735 26.87 284 10.38
ibm04 8.14 1.66 1.29 0.98 1.11 1.05 1.01 38 771 20.11 323 8.43
ibm05 10.24 1.12 1.06 0.99 1.00 0.96 0.98 34 684 20.10 372 10.93
ibm06 6.01 1.71 1.53 1.13 1.25 1.14 1.09 37 809 21.59 437 11.66
ibm07 10.99 1.43 1.25 1.07 1.11 1.05 0.95 105 1236 11.75 586 5.57
ibm08 12.38 1.71 1.32 1.10 1.13 1.04 1.02 121 1322 10.91 647 5.34
ibm09 13.79 1.42 1.35 1.00 1.11 1.00 0.96 94 1375 14.69 660 7.05
ibm10 31.65 1.92 1.38 1.18 1.18 1.11 1.04 162 2666 16.48 1085 6.71
ibm11 20.30 1.40 1.31 0.98 1.08 0.97 0.94 132 2172 16.47 891 6.76
ibm12 34.18 1.51 1.30 1.04 1.17 1.06 0.93 189 3413 18.03 1011 5.34
ibm13 25.21 1.56 1.50 0.99 1.16 0.98 0.96 170 4288 25.24 1189 7.00
ibm14 37.76 1.49 1.15 1.02 1.07 1.03 1.00 316 5091 16.11 2553 8.08
ibm15 52.56 1.34 1.25 0.99 1.13 0.97 0.94 415 6399 15.42 3171 7.64
ibm16 58.37 N/A 1.24 1.05 1.21 1.03 0.99 417 7211 17.28 3626 8.69
ibm17 69.89 1.32 1.12 1.01 1.08 0.99 0.95 624 6782 10.87 3935 6.31
ibm18 45.39 1.21 1.12 0.99 1.05 0.98 1.01 769 5163 6.71 3471 4.51

Average 1.52 1.30 1.03 1.12 1.03 0.98 16.84 7.84

VII. CONCLUSION AND FUTURE WORK

In this paper we extend the efficient analytical placement
tool FastPlace to handle mixed-mode designs. The current im-
plementation handles the wirelength minimization problem. It
produces better results than state-of-the-art academic placers
in a significantly lesser runtime.

Routability and timing are key concerns for industrial de-
signs. Future extensions to our work would be in considering
the problem of timing driven placement and routability driven
placement. Also, the current implementation does not handle
rotation and mirroring for the macro blocks. We will be work-
ing on handling these constraints for mixed mode placement in
the future.

REFERENCES

[1] Standard performance evaluation corporation. http://www.spec.
org/.

[2] S. N. Adya, S. Chaturvedi, J. A. Roy, D. Papa, and I. L. Markov. Unifi-
cation of partitioning, floorplanning and placement. In Proc. IEEE/ACM
Intl. Conf. on Computer-Aided Design, pages 550–557, 2004.

[3] S. N. Adya and I. L. Markov. ISPD02 IBM-MS Mixed-size
Placement Benchmarks. http://vlsicad.eecs.umich.edu/
BK/ISPD02bench/.

[4] S. N. Adya and I. L. Markov. Consistent placement of macro-blocks
using floorplanning and standard-cell placement. In Proc. Intl. Symp. on
Physical Design, pages 12–17, 2002.

[5] S. N. Adya and I. L. Markov. Combinatorial techniques for mixed-
size placement. ACM Trans. Design Automation of Electronics Systems,
10(1):58–90, January 2005.

[6] U. Brenner and M. Struzyna. Faster and better global placement by a
new transportation algorithm. In Proc. ACM/IEEE Design Automation
Conf., pages 591–596, 2005.

[7] C. C. Chang, J. Cong, and X. Yuan. Multi-level placement for large-
scale mixed-size IC designs. In Proc. Asia and South Pacific Design
Automation Conf., pages 325–330, 2003.

[8] H. Eisenmann and F. Johannes. Generic global placement and floorplan-
ning. In Proc. ACM/IEEE Design Automation Conf., pages 269–274,
1998.

[9] S. Goto. An efficient algorithm for the two-dimensional placement prob-
lem in electrical circuit layout. IEEE Trans. Circuits and Systems, CAS-
28(1):12–18, 1981.

[10] A. B. Kahng and Q. Wang. An analytical placer for mixed-size place-
ment and timing-driven placement. In Proc. IEEE/ACM Intl. Conf. on
Computer-Aided Design, pages 565–572, 2004.

[11] A. Khatkhate, C. Li, A. R. Agnihotri, M. C. Yildiz, S. Ono, C.-K. Koh,
and P. H. Madden. Recursive bisection based mixed block placement. In
Proc. Intl. Symp. on Physical Design, pages 84–89, 2004.

[12] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. VLSI module
placement based on rectangle-packing by the sequence pair. IEEE Trans.
Computer-Aided Design, 15(12):1518–1524, December 1996.

[13] M. Pan, N. Viswanathan, and C. Chu. An efficient and effective detailed
placement algorithm. In Proc. IEEE/ACM Intl. Conf. on Computer-Aided
Design, To Appear, 2005.

[14] N. Viswanathan and C. C.-N. Chu. ISPD04 IBM Standard Cell
Benchmarks with Pads. http://www.public.iastate.edu/
˜nataraj/ISPD04_Bench.html.

[15] N. Viswanathan and C. C.-N. Chu. FastPlace: Efficient analytical place-
ment using cell shifting, iterative local refinement and a hybrid net
model. In Proc. Intl. Symp. on Physical Design, pages 26–33, 2004.

[16] K. Vorwerk and A. Kennings. An improved multi-level framework for
force-directed placement. In Proc. Conf. on Design Automation and Test
in Europe, pages 902–907, 2005.

[17] K. Vorwerk, A. Kennings, and A. Vannelli. Engineering details of a sta-
ble force-directed placer. In Proc. IEEE/ACM Intl. Conf. on Computer-
Aided Design, pages 573–580, 2004.

[18] B. Yao, H. Chen, C.-K. Cheng, N.-C. Chou, L.-T. Liu, and P. Suaris.
Unified quadratic programming approach for mixed mode placement. In
Proc. Intl. Symp. on Physical Design, pages 193–199, 2005.

[19] H. Yu, X. Hong, and Y. Cai. MMP: A novel placement algorithm for
combined macro block and standard cell layout design. In Proc. Asia
and South Pacific Design Automation Conf., pages 271–276, 2000.

