
An Efficient and Effective Detailed Placement
Algorithm

Min Pan, Natarajan Viswanathan and Chris Chu
Department of Electrical and Computer Engineering

Iowa State University, Ames, IA 50011
Email:

�
panmin, nataraj, cnchu � @iastate.edu

Abstract— In the past few years there has been a lot of
research in the area of global placement. In comparison, not
much attention has been paid to the detailed placement problem.
Existing detailed placers either fail to improve upon the excellent
solution quality enabled by good global placers or are very slow.
To handle the above problems we focus on the detailed placement
problem. We present an efficient and effective detailed placement
algorithm to handle the wirelength minimization problem. The
main contributions of our work are: (1) an efficient Global Swap
technique to identify a pair of cells that can be swapped to reduce
wirelength; (2) a flow that combines the Global Swap technique
with other heuristics to produce very good wirelength; (3) an
efficient Single-Segment Clustering technique to optimally shift
cells within a segment to minimize wirelength.

On legalized mPL5 global placements on the IBM Standard-
Cell benchmarks [1], our detailed placer can achieve ����� �	� ,
��
�� ��� and �
� ��� more wirelength reduction compared to Feng-
shui5.0, rowIroning and Domino respectively. Correspondingly we
are
�� ��� , �
� ��� and ����� faster. On the ISPD05 benchmarks [19],
we achieve ������� and �
����� more wirelength reduction compared
to Fengshui5.0 and rowIroning respectively. Correspondingly we
are
������ and �
�
�� faster.

I. INTRODUCTION

In recent years, the role of placement in the physical design
of large chips has become very critical. Placement tools are
not only used to place the cells for the subsequent routing
step, but are also used to guide synthesis and floorplanning
stages. Placement is no longer a point tool in the current
physical synthesis flow [21]. It has become a major contributor
to timing closure results.

Traditionally, placement is separated into two stages, global
and detailed placement. The main purpose of global placement
is to distribute the cells evenly over the placement region and
optimize certain objectives such as wirelength. As we want to
maintain a global view, some approximation has to be made to
simplify the problem. Also, the global placement pays more
attention to the relative positions among cells globally. Hence,
it neglects some local problems. Detailed placement works on
the legalized placement to further improve the solution quality.
It is more constrained than global placement as it optimizes the
objectives by transforming one legal placement solution into
another. Because of this nature, more accurate models such as
half-perimeter wirelength are used in detailed placement.

Acknowledgements: This work was partially supported by the Semiconduc-
tor Research Corporation under Task ID 1206.

Previous literature has mainly focused on the problem of
global placement. These algorithms apply various approaches
including analytical placement [7], [9], [11], [14], [16], [18],
[22], simulated annealing [20], [24], and partitioning / clus-
tering [4], [6], [26]. Recently, there have been significant
improvements in terms of both solution quality and runtime.
On a set of IBM benchmarks, [7], [16] reported very good
wirelength and FastPlace [22] achieved runtimes many times
faster than other state-of-the-art placement algorithms.

However, compared to global placement, there has been
much less work in terms of detailed placement. [2], [3],
[5] employed a window-based branch-and-bound method for
detailed placement. Alternatively, Dragon [24] used a greedy
cell exchange algorithm. Domino [8] transformed the place-
ment problem into a transportation problem that was solved
using a network flow algorithm. Kahng et al. [15] employed
combinatorial techniques to perform legalization and detailed
placement based on several different objectives. In [17], the
single-row problem was solved optimally using a dynamic
programming approach. In [13], Hur and Lillis proposed a
technique called optimal interleaving and also incorporated the
dynamic clustering technique [12].

Current detailed placement techniques are either not very
effective or too slow. The window-based technique is very
local if the window size is small. If a big window is used, the
runtime is not affordable. Domino is considered a very good
detailed placer but it consumes a lot of runtime. In [23], it
was observed that Domino can achieve an average wirelength
reduction of 5.9% over FastPlace on the IBM benchmarks.
Hence, we believe that significant improvements in terms of
wirelength reduction can be made at the detailed placement
stage. It was also observed that the FastPlace+Domino flow
was on average 7.6 � slower than FastPlace. Considering that
current global placers can generate high-quality solutions in a
very short time, it is necessary to have efficient detailed placers
to further improve the solution quality of global placement.

In this paper, we present an efficient and effective detailed
placement algorithm that can work on both row-based standard
cell placement and placement in the presence of fixed macros.
The main contributions of our work are:
� An efficient Global Swap technique to identify a good

pair of cells to swap globally based on their optimal
positions while all other cells are fixed.

� A Vertical Swap technique that swaps a cell with a nearby
cell in the segment above or below so as to move it in
the direction of its optimal position.� A Local Re-ordering technique that re-orders consecutive
standard cells locally to reduce the wirelength.� A Single-Segment Clustering technique that places stan-
dard cells optimally within a segment. It solves the same
problem as the Single-Row Problem in [17]. Compared
with the dynamic programming method of [17], this
technique can get the optimal solution much faster.

We compare our detailed placer with three detailed placers:
postprocessing in Fengshui5.0, rowIroning from the Capo9.1
package and Domino on two benchmark suites: IBM Standard-
Cell benchmark suite [1], [22] and ISPD05 benchmark suite
[19]. On the IBM benchmarks, on global placements gen-
erated by mPL5 [7] and legalized by the Placement Utility
from the Capo9.1 package, our detailed placer can achieve
19.0%, 13.2% and 0.5% more wirelength reduction com-
pared to Fengshui5.0, rowIroning and Domino respectively.
Correspondingly we are 3.6 � , 2.8 � and 15 � faster. On
the ISPD05 benchmarks, we achieve 8.1% and 9.1% more
wirelength reduction compared to Fengshui5.0 and rowIroning
respectively. Correspondingly we are 3.1 � and 2.3 � faster.

The rest of the paper is organized as follows: Section II
provides an overview of our detailed placement algorithm.
Section III describes the techniques used in our detailed placer.
Experimental results and discussions are presented in Section
IV followed by our conclusions in Section V.

II. OVERVIEW

Our detailed placer works on a legalized placement. The
placement can be a legalized row-based standard cell place-
ment or a legalized placement with all macros fixed. For
standard cell placement, the placeable segments are the rows
specified in the placement region. For the placement with
macros, the whole placement region is divided into placeable
segments based on the macros and placement blockages. In
both cases, the detailed placer only works on the standard
cells in the placeable segments to improve the wirelength.

The detailed placer consists of four key techniques: Global
Swap, Vertical Swap, Local Re-ordering and Single-Segment
Clustering. Global Swap is the technique that gives us the most
benefit. For any cell � , it tries to identify a good swap pair,
so that � after the swap would be in the position that gives
the best wirelength when all other cells are fixed. Because
the target position can be close to or far from the current
position of � , this technique moves a cell globally to reduce
the wirelength. The Vertical Swap tries to swap a cell � with
another nearby cell in the segment above or below so as to
move � towards its best position. Although this technique is
similar to Global Swap, it is more local and faster. It tries to fix
some local problems in the vertical direction. In the horizontal
direction, we employ a Local Re-ordering technique to find
a better order for consecutive standard cells within segments.
Finally, a Single-segment Clustering technique is developed to
optimally place the standard cells within a segment while cells

 Detailed Placement Algorithm

Perform Single-Segment Clustering

Repeat

 Perform Global Swap

 Perform Vertical Swap

 Perform Local Re-ordering

Until no significant improvement in wirelength

Repeat

 Perform Single-Segment Clustering

Until no significant improvement in wirelength

Fig. 1. Detailed Placement Flow.

in all other segments are fixed. A near-optimal implementation
based on this technique has the time complexity linear to the
number of cells in a segment.

The flow of our detailed placement algorithm is summarized
in Figure 1. We first apply the Single-Segment Clustering
technique to obtain a relatively good starting solution for the
main steps of the algorithm. In the main loop, Global Swap,
Vertical Swap and Local Re-ordering are employed to reduce
the wirelength until there is no significant improvement.
Finally, we re-apply the clustering to get better positions for
the cells within the segments without changing their order.

III. DETAILED PLACEMENT TECHNIQUES

In this section, we describe the techniques used in our
detailed placer.

A. Global Swap

The basic idea behind Global Swap is to find the “optimal
region” for a cell � in the placement region and swap � with
a cell � or a space � in the “optimal region”. We define the
“optimal region” and describe the method to find it in Section
III-A.1. In Section III-A.2 we discuss the penalty charged for
any overlap created during a swap. Finally, in Section III-A.3
we describe swapping based on the “optimal region” and the
penalty for overlap.

1) Optimal Region: Given all other cells in the circuit are
fixed, the “optimal region” for a cell � is defined as the region
to place � where the wirelength is optimal. This region is
determined based on the median idea of [10].

For any cell � , we traverse all the nets connecting to it (noted
as �!) and find their bounding boxes. Here, cell � is excluded
from the nets when computing their bounding boxes. For each
net "$#$�! , we find its bounding box (%'&)("�* , %,+-("�* , .
&)("�* , .�/'("�*
- the left, right, lower and upper boundaries). From [10], the
optimal position for � is given by (%1032�4 , .-032�4), where %1032�4
and .-032�4 are the medians of the % series (% & (�56* , % + (75�* , % & (89* ,
% + (89* , ...) and . series (. & (75�* , . / (�56* , . & (8	* , . / (8	* , ...) of bounding
boxes. In general, the optimal position is a region rather than a
point as the total number of elements in the % and . series are
even. This region is the “optimal region” for cell � . In some
cases, the “optimal region” can degrade to a point or a line

yl[2]

yl[3]

yu[2]

yl[1]

yu[3]

yu[1]

xr[3] xl[3] xr[1] xr[2]

Net2

Net1

Net3

1

2

3

4

5

6

7

8

xl[2] xl[1]

Optimal
 Region

Fig. 2. Optimal Region.

when the two medians of the % and/or the . series carry the
same value. Figure 2 shows the optimal region for cell 5 . There
are three nets connecting to cell 5 (�;:�<�5 , �=:�<>8 and �=:�<)?).
The nets are denoted by closed dashed lines: �;:�<�5 includes
cells 5 , 8 , ? and @ ; �;:�<>8 includes cells 5 , A and B ; �;:�<)?
includes cells 5 , C and D . The bold boundary boxes are the
bounding boxes for the nets excluding cell 5 . The light lines
are the grids constructed by the % series (%'&)(75�* , %,+�(75�* , %�&>(8	* ,
%,+�(8	* , %�&>(?9* , %,+�(?9*) and . series (.�&)(75�* , .-/,(75�* , .
&)(89* , .�/'(89* , .
&)(?9* ,
.�/,(?9*). The shadowed region is the optimal region for cell 5 .

2) Penalty on Overlap: For a cell � , although we find
its optimal region, it may not be possible to move it into
the optimal region. The reason being that since the detailed
placer transforms one legalized placement to another, it is not
allowed to have any overlap among cells. Therefore, we need
to consider the effect of any resulting overlap among cells
when swapping or moving cell � . If a swap causes an overlap, a
consequent legalization has to be done to resolve it. Therefore,
we need to have a method to model the overlap and consider
it when we try to make a swap. We now discuss the method
to add a penalty on a swap when it creates an overlap.

If we swap two cells that are not of the same size, the
space at the smaller cell may not be enough to hold the bigger
cell. Also, If we swap a cell with a space, the space may be
smaller than the cell. Both cases may lead to an overlap after
swapping. To resolve this overlap, the cells in the segment
need to be shifted. We introduce a penalty on this shifting
effect. In addition, if the total width of the cells in a segment
after swapping is greater than the segment width, we just
neglect the swap.

For swapping two cells, if there is no overlap after the
swap, no penalty is applied; otherwise, a penalty is charged.
For swapping a cell with a space, if the space is equal to or
bigger than the cell size, no penalty is applied. Otherwise, a
penalty is charged. In order to characterize the penalty more
accurately, we have two types of penalties: EF5 and EG8 . EF5 is
the penalty on shifting the closest two cells to resolve overlap.

P1 = (wi – s) ×××× wt1
P2 = (wi – S1) ×××× wt2

Penalty on swapping two cells i and j :

j

Segi i

j1 j2 s1 s4 s2 s3

Segi i

s1 s2 s

S1 = ws1 + ws + ws2

S1 = ws1 + ws2 + ws3 + ws4

Segs

Penalty on swapping a cell i with a space s :

Segj

P1 = ((wi – wj) – (s2+s3)) ×××× wt1
P2 = ((wi – wj) – S1) ×××× wt2

Fig. 3. Penalty for swapping two cells with different sizes and swapping a
cell with a space.

EG8 is the penalty on shifting cells other than the closest two
cells. Figure 3 illustrates an example to compute EF5 and EG8 .
The bold boxes are the cells and the light boxes are segments.
The dotted lines show the positions after swap for the cells
swapped. Consider the case we swap cell � (width HI) in
segment ��:�J� with another cell � (width HLK) in segment ��:�J9K
that is in the optimal region of � . Assume the size of � is larger
than � . The two cells left and right to � are �
M and ��N . The
two closest spaces left to � are �
M and ��N , and the two closest
spaces right to � are �	O and ��P . The total width of spaces
�9M , ��N , ��O , ��P is S1. EF5 is the wirelength increase caused by
shifting �
M and ��N . If QR5TSVUWH YX H K�Z , the total shift of �
M and
� N to resolve overlap is UWH[X H\K Z]X U^� NL_ � O Z . We make EF5
proportional to this shift. If QR5T`VUWH[X HaK Z , only shifting � M
and � N cannot resolve the overlap and we need to shift more
cells in ��:�J	K . EG8 is the penalty of shifting cells other than � M
and � N in ��:6J	K . In this case EG8 is proportional to the shift on
cells other than � M and � N , which is UbHc X HaK Z]X QR5 . Hence,
we set EF5 and EG8 as follows:

EF5IdeU>UbH fX H K	ZgX Uh��N _ ��O Z>Z �iH[<�5
EG8GdjU>UWH fX H K	ZgX QR5 Z �iH[<>8 (1)

where H[<�5 and H[<>8 are the two weights on the shift. For the
case where we swap � with a space � , the way to get the
penalty is similar to that for swapping two cells. The only
difference is that the width difference is H 1Xlk dmH and QR5
is the sum of the widths of � , the closest space left to � and
the closest space right to � .

Since the shifts in EF5 and EG8 have the dimension of length,
the two weights H[<�5 and HI<>8 are just constants with no
dimension. Because we do not want to disturb the original
placement too much, large overlap is discouraged by setting
H[<>8 much higher than H[<�5 .

3) Global Swap Based on Optimal Region: Based on the
optimal region and the penalty on overlap, we develop a Global
Swap technique to swap each cell with a cell or space in its
optimal region. Since there could be several cells and spaces
in the optimal region, we have many choices. We use a term

“benefit” n as a measure for selecting the cell or space in the
optimal region. The “benefit” for a swap has two components:
one is the the difference between the total wirelength before
and after the swap, the other is the penalty charged on the
created overlap. If the wirelength before and after the swap
are o M and o N , respectively, the “benefit” can be obtained by
equation (2).

nedpU^o M X o N ZgX EF5 X EG8 (2)

If nrq k , it means that we will benefit from the swap.
Otherwise, the resulting placement is worse than original. Of
course, the “benefit” we compute is not accurate because the
real wirelength change due to resolving the overlap is hard
to measure. We only use a simple penalty on shifting cells to
model this wirelength change. Based on the “benefit”, we do
the swapping as follows. For each standard cell � , we find its
optimal region and try to swap it with every cell � and space �
in the optimal region of � . We measure the “benefit” for each
swap and pick the � or � with the best “benefit” to perform
the swap. If the best “benefit” has a value less than zero we
do not make a swap as it would increase the wirelength.

In this technique, we look at the optimal region for a cell
to find a good target position. The optimal region can be
close to or far from the current position. Hence, compared to
the traditional window-based branch-and-bound methods, our
Global Swap technique has a more global view when repairing
the positions of cells. In Table I, we show the distribution
of the cells according to the distance of the cells from their
respective optimal regions before and after 1 iteration of
Global Swap for the circuit ibm01. The unit of the distance
is the standard row height. Distance 0 means the cell is in its
optimal region. It is clear that our technique is very effective
in moving cells towards their optimal region.

TABLE I
DISTRIBUTION OF CELLS BASED ON THE DISTANCE FROM THEIR OPTIMAL

REGIONS BEFORE AND AFTER 1 ITERATION OF GLOBAL SWAP

Distance 0 (0,1] (1,2] (2,3] (3,4] sFt
before 30.0% 36.8% 18.0% 6.4% 3.4% 5.4%
after 33.0% 39.3% 17.1% 5.3% 2.2% 3.1%

In the actual implementation, to save runtime, for a selected
cell, we do not pick the cell with the best “benefit” in its
optimal region. Instead, we pick the first “good” cell that
can give us certain “benefit”. Another issue is that after
swapping two cells with different sizes, the placement is
no longer legal. Overlaps are created around the bigger cell
and spaces are created around the smaller cell. We need to
re-legalize the segments containing the two cells. However,
legalization after every swap will be very time consuming.
In the implementation, we legalize the whole placement after
all the segments has been traversed. Of course, we will lose
some accuracy on the positions of cells, but experiments
show that this inaccuracy does not affect the final wirelength
significantly.

B. Vertical Swap

In the Global Swap technique, for a cell � , we may not find
a good candidate cell or space in its optimal region to swap
with it. There could be two reasons for this. First, the size of
� is large and the optimal region of � is congested. Hence, the
segments that span the optimal region cannot hold � . Second,
in order to hold � , many cells have to be shifted to legalize
the placement which introduces a high penalty.

To increase the possibility for a good swap and reduce the
vertical wirelength locally, we have a Vertical Swap technique
very similar to the Global Swap. The idea of Vertical Swap
is to move a cell vertically toward its optimal region. This
technique is not as greedy as Global Swap. Every time it only
moves a cell up or down by one row. For a cell � , if the optimal
region is above / below the current position, a few nearby
cells above / below � are considered to be candidates. We use
the same penalty as in Global Swap to estimate the effect of
overlap and pick the best candidate to swap with � . We observe
that if we interleave the Vertical Swap with Global Swap, the
wirelength decrease is faster than only applying Global Swap.
We believe that this is because the Vertical Swap is not very
greedy and has more flexibility in moving the cells. At the
same time, it may increase the possibility for Global Swap.
In addition, this technique is much faster than Global Swap
because for each cell, the number of candidate cells considered
for swap are much less than in Global Swap.

C. Local Re-ordering

With Vertical Swap fixing local vertical errors, we need
a technique to fix local horizontal errors. Although Global
Swap can also fix horizontal errors, it is quite expensive to
use it to fix local problems. Therefore, we propose a very
fast Local Re-ordering technique to handle this problem. For
any u consecutive cells within a segment, we try all possible
left-right ordering of cells and pick the order giving the best
wirelength. In this technique, we also need to decide the
position of the cells in each order. To speed-up the technique,
we consider the cells as a group and make the left boundary of
the group as the left boundary of the first cell in the original
order and the right boundary of the group as the right boundary
of the last cell in the original order. Then for each order, we
keep the left and right boundaries of the group and evenly
distribute the cells inside the group. Since we have the Single-
Segment Clustering technique to take care of the cell positions,
we do not pay much attention to the exact positions of the cells
during Local Re-ordering.

In our detailed placer, we set u;dm? . The reason is that u$d
8 means pairwise swapping and it is too constrained. But if we
choose u;dv@ , it will be 4 times slower and the improvement
is not so significant. Compared to the conventional window-
based technique, Local Re-ordering has a 3-cell window in
one row and is very local. But since we have the Global Swap
technique, it is only used to efficiently fix local errors.

D. Single-Segment Clustering

After the main loop of the detailed placer we fix the seg-
ments and the ordering within the segments for all the standard
cells. We now want to further reduce the wirelength by moving
the cells inside the segments. For a legalized placement, if we
fix the order of the cells in one segment and the positions of
the cells in all other segments, the problem becomes a fixed-
order single segment problem described below.

Fixed-Order Single Segment Placement Problem:
Given a segment Q in the placement region with u
standard cells wx5�yzwT8�y6{|{7{|yzw}u , whose left-to-right order
is fixed (wR is left to w~K if �a���). All cells not in Q are
fixed. Find a non-overlapping placement for the segment
Q so that the total half-perimeter wirelength is minimized.

This problem is basically the same as the Single-Row
Problem in [17]. In [17], the authors proposed a dynamic
programming algorithm to solve the problem optimally. In the
following part, we describe a more efficient algorithm that can
also solve the problem optimally.

First, we define some terms used in our algorithm. A cluster
is a standard cell or a group of standard cells abutted together
(retaining the original order of standard cells). Clustering is
the operation to abut two clusters to form a new cluster (the
width of the new cluster is the sum of the widths of the
original clusters). The wirelength function of x-coordinate of
a cluster is a convex piecewise linear function W(x) when all
other objects are fixed. The slopes for the linear pieces are
{7{|{7y X ?�y X 8�y X 5-y k y65�y�8�yz?�y6{|{|{ The slope 0 part is the optimal
region in x-direction for the cluster. The points where the
function changes slope are called bounds. These bounds are
the left and right boundaries of the bounding boxes for the nets
connecting to the cluster. Optimal Region Center of a cluster
is the middle point of the optimal region in x-direction when
all the objects (standard cells and macro blocks) not part of
the cluster are fixed.

In order to find the optimal region for a cluster w in segment
Q , we need to fix the positions for all the other objects. But
the standard cells in Q are not fixed. Therefore, if w has
connections to any standard cells in Q , the bounds for w cannot
be determined. However, since we fix the order of the standard
cells in Q , we know the left-right orders between the cells. We
use this information to get the bounds so that the optimality
of the solution will not be affected. The method to get the
bounds is as follows. When computing the bounding box for
any net � connecting to w , if � is connecting to a standard
cell wT� in Q , we will assume wT� at the end of the segment
Q , i.e., if w � is left to w , we assume w � is at the left end of
segment Q ; otherwise, w � is at the right end of segment Q .
Although we are not using the real position for w � , we will
not affect the optimality of the position of w because the left-
right order of w and w � has to be maintained. The main idea
of the algorithm is to put every cluster at its Optimal Region
Center. If there is overlap between two clusters, we perform

Single-Segment Clustering Algorithm

num_old_cluster ← n
Initialize old_cluster[i] as standard cell Ci , i =1, 2, …, num_old_cluster .
do
 Find the bounds list and the Optimal Region Center Xic for Ki ,
 and set X(old_cluster[i]) = Xic
 newcount ← 1 // the count for the number of new clusters
 new_cluster[1] ← old_cluster[1] // initialize the first new cluster
 j ← 1
 while(j < num_old_cluster)
 do
 if new_cluster[newcount] and old_cluster[j+1] has overlap
 Cluster new_cluster[newcount] and old_cluster[j+1] to form the
 new new_cluster[newcount]
 Merge the bounds list for new_cluster[newcount] and old_cluster[j+1]
 to get the new bounds list for new_cluster[newcount]
 Find the Optimal Region Center Xc for new_cluster[newcount]
 based on the new bounds list
 X(new_cluster[newcount]) ← Xc
 else
 newcount ← newcount + 1 //begin a new cluster new_cluster[newcount+1]
 j ← j+1

 num_old_cluster ← newcount
 old_cluster[i] ← new_cluster[i] (i =1, …, newcount)
until no overlap among old_cluster[i] , (i =1, …, num_old_cluster)
Assign the Ci (i =1, 2, …, n) to the positions according to the positions of the
old_cluster[j] (j =1, 2, …, num_old_cluster) they belong to

Fig. 4. Single-Segment Clustering Algorithm.

clustering and form a new cluster. The new cluster will not
be broken at any later stage. Then we put the new cluster at
its Optimal Region Center. We iteratively perform clustering
until all the cells are put at Optimal Region Center without any
overlap. If any optimal region boundary is out of the segment
range, we will assign it at the closest boundary. In this way,
no cell will be put out of the segment. The pseudo-code of the
Single-Segment Clustering Algorithm is given in Figure 4.

Theorem 1 The Single-Segment Clustering Algorithm finds
the optimal solution for the Fixed-Order Single Segment
Placement Problem.
Due to the page limit, we only give the sketch of the proof.

Proof: It is not hard to see that if the clusters are
formed correctly, then the solution obtained by our algorithm is
optimal. To show that we will not form wrong clusters, assume
on the contrary that the clustering in the optimal solution is
different from our solution.

Consider a gap in the optimal solution surrounded by a pair
of cells a and b that are in the same cluster in our solution.
Suppose a and b are clustered together when we merge clusters
A and B in some step of our algorithm. See Fig. 5 for an
illustration. Without loss of generality, we can assume there
is no gap within cluster A and within cluster B in the optimal
solution. Otherwise, we can consider the gap within cluster
A or cluster B instead. Since we merge cluster A and cluster
B together at some point, A and B cannot be at the optimal
region at the same time if their order is not changed. For any
solution, either A wants to move left or B wants to move right
(or both) to reduce the wirelength. We can always generate a
better wirelength than the optimal solution by moving either
A or B towards the gap without creating any overlap. This is
a contradiction. Thus, our solution should be optimal.

a
A

b
B

a
A

b
B

b
B

a
A

Our solution

Optimal solution

Better solution

Fig. 5. Proof of optimality of Single-Segment Clustering Algorithm.

We now analyze the complexity of the algorithm. There are
u cells in total, and the maximum number of clustering is u X 5 .
In the clustering operation, every step needs constant time ex-
cept merging the two bounds lists. The merge takes linear time
to the number of bounds � . The complexity of the algorithm
is �FUbu�� Z . However, in practice, it can be much better. In
our implementation, we are not keeping all the bounds for the
clusters. Instead, we only keep a constant number of bounds
for every cluster. Therefore, the merge also takes constant time.
The total complexity of the algorithm is �FUWu Z . Of course, it
will compromise the optimality, but experiments show that
even using a small constant will not degrade the solution
appreciably. In implementation, the constant we choose is 5�B .
Table II shows different results when using different constants
on the D 4W� segment of ibm01. It shows that even if a small
constant is used, the result can be very close to optimal.
Moreover, the segment we choose here is one that has a lot of
room to reduce the wirelength. For the 59� 4 to C 4W� segment in
ibm01, just using 8 bounds can achieve the optimal solution.

TABLE II
THE RELATIONSHIP BETWEEN # BOUNDS AND WIRELENGTH DECREASE

ON THE 8TH SEGMENT OF IBM01

#bounds 4 8 12 16 20 opt
WL dec 13600 14060 14210 14377 14425 14425

Although this algorithm can give the optimal solution for a
segment, we still need to run it iteratively as it is only optimal
when all cells not in the current segment are fixed. Since we
change the cell positions segment by segment, we need to run
several iterations to find good positions for the cells.

IV. EXPERIMENTAL RESULTS

We consider the ISPD04 IBM Standard-Cell Benchmark
suite [1], [22] and the ISPD05 Benchmark suite [19] for
our experiments. The placement tools considered are our new
detailed placer, post-processing in Fengshui 5.0 [26], rowIron-
ing in the Capo9.1 package [4], and Domino [8]. For post-
processing in Fengshui 5.0, we use the default control string
used in the complete flow of Fengshui 5.0 which is, -reorder
“r,4,4:r,4,2:r,4,2:r,4,1:r,4,1:r,4,1”. For rowIroning, we use the
default options on “-ironPasses -ironWindow -ironOverlap -
ironTwoDim” used in the complete Capo9.1 flow.

We run mPL5 and Capo9.1 to get the global placements for
both IBM and ISPD05 benchmarks. Since we have to disable
both the legalizer and detailed placer in mPL5, the global
placements created by mPL5 are not legalized. We therefore

use the Placement Utilities in the Capo9.1 package to legalize
the mPL5 global placements. For Capo9.1, we disable the
greedy swapping and rowIroning in the overall flow to get
the legalized global placements. All the results are generated
on a Linux machine with Intel Pentium 4, 3.00GHz CPU and
2GB memory.

The half-perimeter wirelength and runtime results on IBM
benchmarks for Fengshui5.0, rowIroning, Domino and our
detailed placer are reported in Tables III and IV. Table III
gives the results for different detailed placers on the global
placements generated by mPL5+Legalizer. On average our
detailed placer gives 19.05% better wirelength with a 3.62 �
speed-up over Fengshui5.0. Compared with rowIroning, we
are 13.22% better in wirelength and 2.79 � faster. Compared
with Domino, we can achieve 0.54% better wirelength and are
around 15 � faster. In addition, on average, we can reduce the
wirelength of the legalized placement by nearly 30%. This
shows that there is a lot of room for the detailed placer to
improve the global placement solution. From Table IV, for
the Capo9.1 global placements, our detailed placer is 1.17%
better than Fengshui 5.0 in wirelength with a 4.48 � speed-up.
We are also 1.91% better than rowIroning in wirelength and
5.66 � faster. Compared with Domino, we are 0.55% better in
wirelength and 13.45 � faster.

Tables V and VI show the comparison results on the recent
ISPD05 benchmarks. This benchmark set has fixed/movable
macros with a large number of cells. For bigblue4 we were
unable to obtain the global placement solution of Capo9.1 as
the placer ran out of memory on our machine. Also, we were
unable to generate feasible solutions using Domino on this
set of benchmarks. Hence, only Fengshui 5.0 and rowIroning
are used for comparison. Table V gives the results for dif-
ferent detailed placers on the global placements generated by
mPL5+Legalizer. On average our detailed placer gives 8.06%
better wirelength with a 3.05 � speed-up over Fengshui5.0.
Compared with rowIroning, we are 9.12% better in wirelength
and 2.29 � faster. From Table VI, on the Capo9.1 global
placements, our detailed placer is 2.04% better than Fengshui
5.0 in wirelength with a 2.81 � speed-up. We are also 0.89%
better than rowIroning in wirelength and 2.18 � faster.

From the comparisons made in Tables III–VI, our detailed
placer can achieve better solution quality in much less run-
time as compared to other detailed placers. For the ISPD05
benchmarks, our detailed placer has lesser speed-up over
Fengshui5.0 and rowIroning because it runs for more iterations
to reach the stopping criterion, whereas Fengshui5.0 and
rowIroning have fixed number of passes to run the algorithms.
On the global placements generated by Capo9.1, all the
detailed placers get lesser improvement than on the global
placements generated by mPL5+Legalizer. A possible reason
could be that Capo9.1 has done many local optimizations dur-
ing partitioning at the lowest level. Therefore, most of the local
errors have been fixed. Another interesting observation is that
although the wirelengths of the global placements generated
by mPL5+Legalizer are much higher than that generated by
Capo9.1, the final results obtained on the mPL5+Legalizer

TABLE III
COMPARISON OF DETAILED PLACERS ON MPL5+LEGALIZER GLOBAL PLACEMENT ON IBM BENCHMARKS (M AVERAGE OVER 17 CIRCUITS,

FENGSHUI5.0 FAILED ON IBM08, N AVERAGE OVER 17 CIRCUITS, DOMINO FAILED ON IBM17)

mPL+LG Ours Fengshui5.0 RowIroning Domino
WL(1e6) WL(1e6) Impv runtime(s) Impv , runtime/Our Impv , runtime/Our Impv , runtime/Our

ibm01 2.423 1.732 -28.49% 6 -14.99% 2.81 -18.15% 3.87 -29.79% 14.33
ibm02 4.745 3.701 -21.99% 14 -9.05% 2.51 -13.98% 2.72 -21.97% 9.42
ibm03 6.624 4.792 -27.67% 14 -12.36% 2.70 -17.27% 3.13 -28.16% 10.02
ibm04 8.696 5.893 -32.23% 20 -12.47% 2.32 -18.52% 2.73 -32.51% 14.11
ibm05 12.074 10.106 -16.30% 23 -7.21% 2.45 -10.75% 2.54 -16.94% 10.47
ibm06 7.390 5.335 -27.81% 15 -12.04% 4.67 -16.59% 4.19 -29.09% 24.24
ibm07 11.576 8.380 -27.61% 26 -11.47% 3.78 -17.05% 3.32 -27.46% 16.78
ibm08 12.714 9.361 -26.37% 77 NA NA -16.90% 1.28 -26.49% 7.98
ibm09 15.267 9.648 -36.80% 35 -14.40% 3.48 -20.79% 3.03 -36.45% 20.81
ibm10 26.403 17.665 -33.09% 53 -12.22% 3.23 -18.23% 2.73 -32.62% 23.22
ibm11 22.128 14.411 -34.87% 46 -12.95% 4.07 -19.71% 3.13 -34.73% 19.44
ibm12 32.378 22.803 -29.57% 61 -10.61% 2.97 -16.34% 2.53 -28.83% 21.12
ibm13 27.249 17.050 -37.43% 62 -13.31% 4.21 -19.69% 2.94 -36.50% 12.77
ibm14 47.110 32.006 -32.06% 117 -11.34% 5.04 -18.23% 2.56 -31.86% 14.86
ibm15 60.133 39.474 -34.35% 146 -11.21% 5.60 -17.27% 2.50 -34.58% 12.42
ibm16 69.489 43.892 -36.84% 199 -12.13% 4.40 -19.54% 2.05 -36.75% 13.62
ibm17 93.186 62.078 -33.38% 191 -10.91% 4.88 -17.04% 2.28 NA NA
ibm18 67.687 41.759 -38.30% 484 -11.86% 2.50 -21.11% 0.92 -39.69% 7.03

-30.84% -11.79%1 3.621 -17.62% 2.79 -30.30%2 14.862

TABLE IV
COMPARISON OF DETAILED PLACERS ON CAPO9.1 GLOBAL PLACEMENT ON IBM BENCHMARKS (M AVERAGE OVER 17 CIRCUITS, FENGSHUI5.0

FAILED ON IBM08)

CAPO Ours Fengshui5.0 RowIroning Domino
WL(1e6) WL(1e6) Impv runtime(s) Impv , runtime/Our Impv , runtime/Our Impv , runtime/Our

ibm01 1.840 1.788 -2.83% 4 -2.44% 4.74 -0.78% 10.79 -2.68% 15.84
ibm02 3.850 3.715 -3.50% 7 -2.35% 5.11 -1.72% 9.02 -4.64% 15.91
ibm03 5.165 4.977 -3.64% 9 -2.19% 4.88 -1.48% 8.83 -2.84% 11.82
ibm04 6.151 5.938 -3.47% 17 -1.89% 2.98 -1.30% 5.54 -3.57% 7.85
ibm05 10.110 9.822 -2.84% 14 -1.07% 4.47 -0.66% 7.04 -2.85% 11.60
ibm06 5.628 5.415 -3.78% 19 -2.36% 3.89 -1.47% 5.60 -3.69% 19.92
ibm07 9.468 9.208 -2.74% 23 -2.01% 4.85 -1.16% 6.60 -2.18% 18.31
ibm08 9.933 9.582 -3.53% 70 NA NA -0.98% 2.36 -2.83% 5.87
ibm09 10.483 10.192 -2.77% 23 -2.31% 6.28 -1.48% 8.18 -1.40% 23.52
ibm10 19.271 18.723 -2.84% 50 -1.64% 3.84 -0.95% 4.95 -1.54% 18.53
ibm11 15.540 15.121 -2.69% 33 -1.92% 6.39 -1.27% 7.37 -1.35% 23.69
ibm12 24.833 24.055 -3.14% 90 -1.44% 2.28 -0.93% 2.97 -2.04% 8.87
ibm13 18.561 18.005 -2.99% 44 -2.07% 6.40 -1.31% 6.90 -1.68% 10.95
ibm14 34.573 33.655 -2.66% 131 -1.62% 4.90 -0.91% 3.85 -2.13% 9.59
ibm15 42.702 41.556 -2.68% 149 -1.63% 5.48 -1.05% 4.10 -2.68% 9.58
ibm16 49.597 48.173 -2.87% 192 -1.55% 4.81 -0.85% 3.53 -2.19% 9.25
ibm17 68.990 67.251 -2.52% 167 -1.37% 2.46 -0.81% 2.37 -1.63% 12.71
ibm18 45.020 43.750 -2.82% 218 -1.66% 2.38 -0.94% 1.84 -2.57% 8.34

-3.02% -1.85%1 4.481 -1.11% 5.66 -2.47% 13.45

TABLE V
COMPARISON OF DETAILED PLACERS ON MPL5+LEGALIZER GLOBAL PLACEMENT ON ISPD05 BENCHMARKS

mPL+LG Our Fengshui5.0 RowIroning
WL(1e8) WL(1e8) Impv runtime(s) Impv runtime/Our Impv runtime/Our

adaptec1 0.925 0.864 -6.53% 96 -3.63% 3.52 -2.85% 3.95
adaptec2 1.139 1.036 -9.05% 177 -4.99% 2.36 -3.81% 2.56
adaptec3 3.206 2.506 -21.84% 427 -6.83% 2.02 -6.65% 1.99
adaptec4 3.040 2.279 -25.02% 481 -9.45% 2.01 -7.71% 1.66
bigblue1 1.221 1.106 -9.38% 152 -6.45% 3.30 -4.25% 3.43
bigblue2 2.183 1.925 -11.84% 620 -6.93% 2.95 -4.33% 1.55
bigblue3 5.024 4.038 -19.63% 1473 -7.90% 2.99 -8.68% 1.43
bigblue4 10.535 9.230 -12.39% 2273 -5.05% 5.23 -4.46% 1.73

-14.46% -6.40% 3.05 -5.34% 2.29

TABLE VI
COMPARISON OF DETAILED PLACERS ON CAPO9.1 GLOBAL PLACEMENT ON ISPD05 BENCHMARKS

CAPO Our Fengshui5.0 RowIroning
WL(1e8) WL(1e8) Impv runtime Impv runtime/Our Impv runtime/Our

adaptec1 0.918 0.906 -1.26% 112 0.56% 2.89 -0.78% 3.44
adaptec2 1.027 1.010 -1.61% 171 0.80% 2.30 -0.80% 2.57
adaptec3 2.538 2.509 -1.16% 399 0.37% 2.93 -0.62% 1.97
adaptec4 2.654 2.637 -0.65% 410 0.51% 3.22 -0.60% 2.06
bigblue1 1.167 1.135 -2.72% 214 0.65% 2.27 -0.88% 2.43
bigblue2 1.813 1.783 -1.68% 985 0.07% 1.95 -1.01% 0.94
bigblue3 4.444 4.270 -3.92% 1051 -1.70% 4.11 -2.11% 1.84

-1.86% 0.18% 2.81 -0.97% 2.18

global placements are better than that obtained on Capo global
placements. The reason may be because the legalizer disturbs
the global placements of mPL5 by a significant amount, but
most of these errors can be fixed by the detailed placer.

V. CONCLUSIONS

In this paper, we present an efficient and effective detailed
placement algorithm. It consists of a Global Swap technique
to swap cells based on their optimal regions, a Vertical Swap
technique to fix local errors vertically, a fast Local Re-ordering
technique to repair the local order horizontally, and a Single-
Segment Clustering technique that can optimally place the
cells in a segment when cells in all other segments are
fixed. We also give the flow to apply these four techniques.
Experiments on two sets of benchmarks show that our detailed
placer can achieve better solution quality in much shorter time
compared to Fengshui 5.0, rowIroning and Domino.

The algorithm presented in this paper is a wirelength-
driven placement algorithm. Other objectives such as timing-
driven placement and congestion-driven placement should be
considered in the physical synthesis flow. Our future work will
focus on efficient algorithms considering these objectives.

ACKNOWLEDGMENT

The authors would like to thank Gi-Joon Nam and Charles
Alpert of IBM for providing the ISPD05 benchmarks; Igor
Markov and Jarrod Roy for the Capo placement tool; Jason
Cong and Kenton Sze for the mPL placement tool; Frank
Johannes and Bernd Obermeier for the Domino placer.

REFERENCES

[1] ISPD04 IBM Standard Cell Benchmarks with Pads.
http://www.public.iastate.edu/ � nataraj/ISPD04 Bench.html.

[2] S. N. Adya, and I. L. Markov. Consistent Placement of Macro-Blocks
using Floorplanning and Standard-Cell Placement. In Proc. Intl. Symp.
on Physical Design, pp. 12-17, 2002.

[3] A. Agnihotri et al. Fractional Cut: Improved Recursive Bisection
Placement. In Proc. IEEE/ACM Intl. Conf. on Computer-Aided Design,
pp. 307, 2003.

[4] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Can recursive bisection
produce routable placements? In Proc. ACM/IEEE Design Automation
Conf., pp. 477-482, 2000.

[5] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Optimal Partitioners
and End-Case Placers For Standard-Cell Layout. In IEEE Trans. on
Computer-Aided Design, vol. 19, pp. 1304-13, 2000.

[6] T. Chan, J. Cong, T. Kong, and J. Shinnerl. Multilevel optimization
for large-scale circuit placement. In Proc. IEEE/ACM Intl. Conf. on
Computer-Aided Design, pp. 171-176, 2000.

[7] T. Chan, J. Cong, K. Sze. Multilevel generalized force-directed method
for circuit placement. In Proc. Intl. Symp. on Physical Design, pp. 185-
192, 2005.

[8] K. Doll, F. M. Johannes, and K. J. Antreich. Iterative Placement
Improvement by Network Flow Methods. IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, 13(10):1189-1200, 1994.

[9] H. Eisenmann and F. Johannes. Generic global placement and floor-
planning. In Proc. ACM/IEEE Design Automation Conf., pp. 269-274,
1998.

[10] S. Goto. An Efficient Algorithm for the Two-Dimensional Placement
Problem in Electrical Circuit Layout. In IEEE Transitions on Circuits
and Systems, Vol. CAS-28, No. 1, pp. 12-18, 1981.

[11] B. Hu and M. Marek-Sadowska. FAR: Fixed-points addition and
relaxation based placement. In Proc. Intl. Symp. on Physical Design,
pp. 161-166, 2002.

[12] S.-W. Hur and J. Lillis. Relaxation and Clustering in a Local Search
Framework: Application to Linear Placement. In Proc. ACM/IEEE
Design Automation Conf., pp.. 360-366, 1999.

[13] S.-W. Hur and J. Lillis. Mongrel: Hybrid Techniques for Standard Cell
Placement. In Proc. IEEE/ACM Intl. Conf. on Computer-Aided Design,
pp. 165-170, 2000.

[14] S.-W. Hur, et al. Force directed Mongrel with physical net constraints.
In Proc. ACM/IEEE Design Automation Conf., pp.. 214-219, 2003.

[15] A. B. Kahng, I. L. Markov and S. Reda. On Legalization of RowBased
Placements. In Proc. Great Lakes Symp. on VLSI, pp. 214-219, 2004.

[16] A. B. Kahng and Q. Wang. Implementation and extensibility of an
analytical placer. In Proc. Intl. Symp. on Physical Design, pp. 18-25,
2004.

[17] A. B. Kahng, P. Tucker and A. Zelikovsky. Optimization of Linear
Placements for Wirelength Minimization with Free Sites. In in Asia
and South Pacific Design Autom. Conf., pp. 241-244, 1999.

[18] J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich. Gordian: VLSI
placement by quadratic programming and slicing optimization. IEEE
Trans. Computer-Aided Design, 10(3):356-365, 1991.

[19] Gi-Joon Nam, Charles J. Alpert, Paul Villarrubia, Bruce Winter and
Mehmet Yildiz. The ISPD2005 placement contest and benchmark suite.
In Proc. Intl. Symp. on Physical Design, pp. 216-220, 2005.

[20] C. Sechen and A. L. S. Vincentelli. Timberwolf 3.2: A new standard
cell placement and global routing package. In Proc. ACM/IEEE Design
Automation Conf., pp. 432-439, 1986.

[21] R. Varadarajan. Convergence of placement technology in physical
synthesis: Is placement really a point tool? In Proc. Intl. Symp. on
Physical Design, page 7, 2003.

[22] N. Viswanathan, and Chris C. N. Chu. FastPlace: Efficient Analytical
Placement using Cell Shifting, Iterative Local Refinement and a Hybrid
Net Model. In Proc. Intl. Symp. on Physical Design, pp. 26-33, 2004.

[23] N. Viswanathan, and Chris C. N. Chu. FastPlace: Efficient Analytical
Placement using Cell Shifting, Iterative Local Refinement and a Hybrid
Net Model. IEEE Trans. Computer-Aided Design, 24(5):722-733, 2005.

[24] M. Wang, X. Yang, and M. Sarrafzadeh. Dragon2000: Standard-cell
placement tool for large industry circuits. In Proc. IEEE/ACM Intl.
Conf. on Computer-Aided Design, pp. 260-263, 2000.

[25] Z. Xiu, J. D. Ma, S. M. Fowler, and R. A. Rutenbar. Large-Scale
Placement by Grid-Warping. In Proc. ACM/IEEE Design Automation
Conf., pp. 351-356, 2004.

[26] M. C. Yildiz and P. H. Madden. Global objectives for standard cell
placement. In Proc. 11th Great Lakes Symposium on VLSI, pp. 68-72,
2001.

