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ABSTRACTFloorplan area minimization is an important problem be-cause many modules have shape 
exibilities during the 
oor-planning stage. Area minimization in general non-slicing
oorplan is a complicated problem. Many previous workshave attempted to tackle this problem [9; 6; 5; 1] usingheuristics or numerical methods but none of them can solveit optimally and e�ciently. In this paper, we show how thisproblem can be solved optimally by a geometric program-ming using Lagrangian relaxation. The resulting Lagrangianrelaxation subproblem is so simple that the size of each mod-ule can be found in constant time. We implemented our ideain a simulated annealing framework based on the sequencepair representation. The area minimization procedure is in-voked in every iteration of the annealing process but the to-tal execution time is still very much faster than that of themost updated previous work [4]. For a benchmark data with49 modules, we take 19.5 hours using a 270 MHz Sun Ultra 5while the convex programming approach in [4] takes sevendays using a 250 MHz DEC Alpha. This area minimizationmethod will be applicable to any other 
oorplanning algo-rithm which uses constraint graphs to �nd module positionsin the �nal packing.
1. INTRODUCTIONFloorplanning has become increasingly important in phys-ical design of VLSI circuits because of the advance in thedeep sub-micron technology. Many 
oorplanning algorithmswere proposed in recent years and many of them use con-straint graphs to �nd module positions in the �nal packing.Unfortunately, it is not known how shape 
exibility of soft

modules can be handled in constraint graphs e�ciently. Thisis an important problem because soft modules are commonin the 
oorplanning stage when many designs are not donein details yet. Some previous works [9; 6; 5; 1] have at-tempted to tackle this problem but none of them succeededin obtaining the optimal solution e�ciently.There are two types of 
oorplan: slicing and non-slicing.Slicing 
oorplan is a 
oorplan which can be obtained bycutting rectangles recursively. Non-slicing 
oorplan is onewhich is not restricted to be slicing. Figure 1 shows an ex-ample of each. Non-slicing 
oorplan is a more general repre-sentation and it can describe all kinds of packings. Howeverslicing 
oorplan has an important advantage over non-slicing
oorplan, which is, there are e�cient algorithms to han-dle shape 
exibility in slicing 
oorplan optimally. A wellknown approach by Wong et. at [10] uses shape curve torepresent all possible shapes of a module. Wang et. al [8]and Moh et. al [2] use numerical optimization methods.Moh et. al [2] formulate the problem as a geometric pro-gramming and �nd its global minimum using some standardconvex optimization techniques. However their formulationsare all limited to placement topology of rectangular dissec-tion, i.e. slicing.This area minimization problem becomes much more com-plicated in non-slicing 
oorplan. Both Pan et. al [6] andWang et. al [9] try to generalize Stockmeyer's algorithm [7]to non-slicing 
oorplan. Kang et. al [1] extend the BSGmethod [5] to handle soft modules using heuristics. Thesemethods are either sub-optimal or not applicable to all gen-eral non-slicing structures. Murata et. al [4] follow the frame-work of [2] and try to reduce the number of variables andfunctions when formulating the problem so as to improvethe e�ciency. However, the execution time of their methodto �nd an exact solution is still very long. It takes sevendays to solve a problem with 49 modules.We will present an e�cient method to handle shape 
exi-bilities of soft modules in general 
oorplans optimally. Theproblem is formulated as a geometric program but we use



the Lagrangian relaxation technique [3], a general techniquefor constrained non-linear optimization, to solve the prob-lem e�ciently. This technique transforms the problem intoa sequence of subproblems called Lagrangian relaxation sub-problems. Each subproblem can be signi�cantly simpli�edby the Kuhn-Tucker conditions. The resulting subproblemis so simple that the size of each module can be found inconstant time.The rest of this paper is organized as follow. We will formu-late the problem in the next section. Section three describesbrie
y the sequence pair 
oorplanning algorithm. We for-mulate the geometric program in section four. In section�ve, we will explain in details the Lagrangian relaxation.Experimental results will be given in the last section.
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Slicing Floorplan Non-slicing FloorplanFigure 1: Slicing and Non-slicing Floorplan
2. PROBLEM FORMULATIONWe consider two kinds of modules: hard modules and softmodules. A hard module is a module whose dimension is�xed. A soft module is one whose area is �xed but its di-mension can be changed as long as its aspect ratio, i.e. theratio of height to width, is within a given range. In thisproblem, we are given n modules of areas A1, A2, ..., An andtheir aspect ratio ranges [r1;min; r1;max], [r2;min; r2;max ], ...,[rn;min; rn;max ]. In case of a hard module, the maximumand minimum aspect ratio will be the same.A packing of a set of modules is a non-overlap placementof the modules. A feasible packing is a packing such thatthe widths and heights of the soft modules are consistentwith their aspect ratio constraints and area constraints. Wemeasure the area of a packing as the area of the smallestrectangle enclosing all the modules.We are also given the netlist information: net1; net2; :::;netmand the relative positions of the I/O pins p1; p2; :::; pq alongthe boundary of the chip. For each net neti where 1 � i �m, we are given its weight and the I/O pin and the set ofmodules it is connected to. Our objective is to obtain a fea-sible packing minimizing a linear combination of the totalpacking area and the interconnect cost.We use the simulated annealing technique to search the solu-tion space. For each intermediate solution in the annealingprocess, there can be many di�erent realizations of the pack-ing due to the shape 
exibility of the soft modules. The mostimportant contribution of our work is an e�cient method tominimize the total area optimally given a certain packingtopology described by the vertical and horizontal constraintgraphs.

3. SEQUENCE PAIR AND CONSTRAINT
GRAPHWe use sequence-pair to represent a general 
oorplan in theannealing process. A sequence-pair of a set of module is apair of combinations of the module names. For example, s =(abcd; bacd) is a sequence-pair of the module set fa; b; c; dg.We can derive the relative positions between the modulesfrom a sequence-pair s by the following rules:H-constraint: If s = ( :: a :: b ::; :: a :: b :: ), then moduleb is on the right of module a.V-constraint: If s = ( :: a :: b ::; :: b :: a :: ), then moduleb is below module a.We can use constraint graphs to represent these horizontaland vertical placement constraints. A horizontal (vertical)constraint graph Gh (Gv) for a set of n modules is a graphof n vertices with the vertices representing the modules andthe edges representing the horizontal (vertical) placementconstraints. For example, if module b is on the right ofmodule a, we add an edge from a to b in the horizontalconstraint graph. Similarly, if module b is above module a,we add an edge from a to b in the vertical constraint graph.We can build these graphs directly from the sequence-pairrepresentation s:� Add an edge from a to b in the horizontal constraintgraph Gh if s = ( :: a :: b ::; :: a :: b :: ).� Add an edge from b to a in the vertical constraintgraph Gv if s = ( :: a :: b ::; :: b :: a :: )

4. FORMULATION OF THE GEOMETRIC
PROGRAMWe are given n modules M1, M2, ..., Mn of areas A1, A2,..., An. For each module Mi where 1 � i � n, its min-imum and maximum aspect ratios are ri;min and ri;maxrespectively. The minimum and maximum width are thusLi = pAi=ri;max and Ui = pAi=ri;min respectively. Letxi denote the smallest x position of the lower left cornerof module i satisfying all the horizontal constraints in thehorizontal constraint graph Gh. Similarly, yi denotes thesmallest y position of the lower left corner of module i sat-isfying all the vertical constraints in the vertical constraintgraph Gv. Then for each edge e(i; j) from module i to mod-ule j in Gh, we have the following constraint:xi +wi � xjwhere wi is the width of module i. Similarly, for each edgee(i; j) from module i to module j in Gv, we have the follow-ing constraint: yi + Aiwi � yj



In the horizontal constraint graph Gh, we denote the set ofsources and sinks by sh and th respectively where a sourceis a vertex without in-coming edge and a sink is a vertexwithout out-going edge. Similarly, we use sv and tv to de-note the set of sources and sinks in Gv respectively. Thenfor each module i in sh: xi = 0;and for each module i in sv:yi = 0;For simplicity, we add one dummy vertex labeled n + 1 toeach Gh and Gv. Edges e(i; n+ 1) are added to Gh for alli 2 th and, similarly, e(i; n+1) are added to Gv for all i 2 tv.From now onwards, we assume that the constraint graphsGh and Gv contain these additional vertices and edges. Theproblem can be formulated as the following geometric pro-gramming PP (Primal Problem):Minimize xn+1yn+1Subject to xi +wi � xj 8e(i; j) 2 Gh (A)yi + Aiwi � yj 8e(i; j) 2 Gv (B)Li � wi � Ui 81 � i � n (C)
5. LAGRANGIAN RELAXATIONAccording to the Lagrangian relaxation procedure, we canintroduce non-negative multipliers, called Lagrange multi-pliers, to the constraints in order to get rid of those dif-�cult constraints and incorporate them into the objectivefunction. Let �i;j denotes the multiplier for the constraintxi + wi � xj in (A) and �i;j denotes the multiplier for theconstraint yi + Aiwi � yj in (B). Let ~� and ~� be vectors ofall the Lagrange multipliers introduced to the constraints in(A) and (B) respectively. Then the Lagrangian relaxationsubproblem associated with the multiplier ~� and ~�, denotedby LRS=(~�; ~�), becomes:Minimize xn+1yn+1 +Pe(i;j)2Gh �i;j(xi + wi � xj) +Pe(i;j)2Gv �i;j(yi + Aiwi � yj)Subject to Li � wi � Ui 81 � i � nLetQ(~�; ~�) denotes the optimal value of the problem LRS=(~�; ~�).We de�ne the Lagrangian dual problem LDP of PP as fol-lows: Maximize Q(~�; ~�)Subject to ~� � 0 and ~� � 0Since PP can be transformed into a convex problem, we canapply Theorem 6.2.4 of [3] and imply that if (~�; ~�) is the op-timal solution to LDP , the optimal solution of LRS=(~�; ~�)will also optimize PP .

5.1 Simplification of the Lagrangian Relax-
ation SubproblemThe Lagrangian relaxation subprogram LRS=(~�; ~�) can begreatly simpli�ed using the Kuhn-Tucker conditions. Con-sider the Lagrangian � of PP [3]:� = xn+1yn+1 + Xe(i;j)2Gh �i;j (xi +wi � xj) +Xe(i;j)2Gv �i;j(yi + Aiwi � yj) +X1�i�n ui(Li �wi) + X1�i�n vi(wi � Ui)= xn+1yn+1 � Xe(i;n+1)2Gh �i;n+1xn+1 �Xe(i;n+1)2Gv �i;n+1yn+1 +X1�i�n( Xe(i;j)2Gh �i;j � Xe(j;i)2Gh �j;i)xi +X1�i�n( Xe(i;j)2Gv �i;j � Xe(j;i)2Gv �j;i)yi +X1�i�n(( Xe(i;j)2Gh �i;j)wi + ( Xe(i;j)2Gv �i;j)Aiwi ) +X1�i�n ui(Li �wi) + X1�i�n vi(wi � Ui)The Kuhn-Tucker conditions imply that @�=@xi = 0 and@�=@yi = 0 for all 1 � i � n + 1 at the optimal solutionof PP . Therefore, in searching for the ~� and ~� to optimizeLDP , we only need to consider those multipliers such thatthese conditions are satis�ed. Therefore for all 1 � i � n:@�=@xi = Xe(i;j)2Gh �i;j � Xe(j;i)2Gh �j;i = 0@�=@yi = Xe(i;j)2Gv �i;j � Xe(j;i)2Gv �j;i = 0and @�=@xn+1 = yn+1 � Xe(i;n+1)2Gh �i;n+1 = 0@�=@yn+1 = xn+1 � Xe(i;n+1)2Gv �i;n+1 = 0Rearrange: Xe(j;i)2Gh �j;i = Xe(i;j)2Gh �i;j (1)Xe(j;i)2Gv �j;i = Xe(i;j)2Gv �i;j (2)



and yn+1 = Xe(i;n+1)2Gh �i;n+1xn+1 = Xe(i;n+1)2Gv �i;n+1We use 
 to denote the set of (~�; ~�) satisfying the aboverelationship ((1) and (2)) for a given pair of horizontal andvertical constraint graphs. If (~�; ~�) 2 
, the objective func-tion F of LRS=(~�; ~�) becomes:F = X1�i�n(( Xe(i;j)2Gh �i;j)wi + ( Xe(i;j)2Gv �i;j)Aiwi ) �Xe(i;n+1)2Gh �i;n+1xn+1 � Xe(i;n+1)2Gv �i;n+1yn+1 +( Xe(i;n+1)2Gh �i;n+1)( Xe(i;n+1)2Gv �i;n+1)where (Pe(i;n+1)2Gh �i;n+1)(Pe(i;n+1)2Gv �i;n+1) is a con-stant for a �xed (~�; ~�).
5.2 SolvingLRS=(~�; ~�)In this section, we consider solving the Lagrangian relax-ation subproblem LRS=(~�; ~�) when (~�; ~�) 2 
, i.e. comput-ing wi for 1 � i � n. F can be written as:F = k + X1�i�n(( Xe(i;j)2Gh �i;j)wi + ( Xe(i;j)2Gv �i;j)Aiwi )where k = (Pe(i;n+1)2Gh �i;n+1)(Pe(i;n+1)2Gv �i;n+1) is aconstant. Di�erentiate F with respect to wi in order to getthe optimal value of wi to minimize F :@F@wi = 0Xe(i;j)2Gh �i;j � Aiw2i Xe(i;j)2Gv �i;j = 0wi = sAi �Pe(i;j)2Gv �i;jPe(i;j)2Gh �i;jRecall that wi must lie within the range [Li; Ui]. Let w�idenote rAi�Pe(i;j)2Gv �i;jPe(i;j)2Gh �i;j . Since @F=@wi is positive forwi < w�i and negative for wi > w�i , the optimal wi can becomputed as: wi = minfUi;maxfLi; w�i ggThe algorithm Find-Width outlines the steps to solve LRS=(~�; ~�):

Algorithm Find-width/* This algorithm solves PP ((~�; ~�) optimally given(~�; ~�) 2 
 */Input: Areas A1, A2, ..., AnLower bounds of widths L1, L2, ..., LnUpper bounds of widths U1, U2, ..., UnConstraint graphs Gv and GhLagrange multipliers (~�; ~�) 2 
Output: Widths w1, w2, ..., wn1. For i = 1 to n2. sum1 = sum2 = 03. For all e(i; j) 2 Gh4. Compute sum1 = sum1 + �i;j5. For all e(i; j) 2 Gv6. Compute sum2 = sum2 + �i;j7. If (sum1 6= 0) and (sum2=sum1 � 0)7. Compute w� =pAi � sum2=sum18. wi = minfUi;maxfLi; w�gg
5.3 SolvingLDPAs explained above, we only need to consider those (~�; ~�) 2
 in order to maximize Q(~�; ~�) in the LDP problem. Weused a subgradient optimization method to search for theoptimal (~�; ~�). Starting from an arbitrary (~�; ~�) 2 
 instep k, we will move to a new pair (~�0; ~�0) by following thesubgradient direction:�0i;j = [�i;j + �k(xi +wi � xj)]+�0i;j = [�i;j + �k(yi + Aiwi � yj)]+where [x]+ = � x if x > 0;0 if x � 0:and �k is a step size such that limk!1�k = 0 andP1k=1 �k =1. After updating ~� and ~�, we will project (~�0; ~�0) back tothe nearest point ( ~��; ~��) in 
 and solve the Lagrangianrelaxation subproblem LRS=( ~��; ~��) using the method de-scribed in section 5.2. This procedure is repeated until thesolution converges. The following algorithm summarizes thesteps to solve LDP :Algorithm Solve-LDP/* This algorithm solves the LDP problem optimally.Given the placement topology described by the con-straint graphs, it computes the optimal values for thewidths of the modules to minimize the total packingarea. */Input: Areas A1, A2, ..., AnLower bounds of widths L1, L2, ..., LnUpper bounds of widths U1, U2, ..., UnConstraint graphs Gv and GhOutput: Widths w1, w2, ..., wn1. Initialize (~�; ~�) and �1



2. k = 13. Repeat4. Call Find-width()5. Compute xi; yi 81 � i � n+ 1 using thelongest path algorithm6. Compute �0i;j = [�i;j + �k(xi +wi � xj)]+8e(i; j) 2 Gh7. Compute �0i;j = [�i;j + �k(yi + Aiwi � yj)]+8e(i; j) 2 Gv8. Project (~�0; ~�0) to ( ~��; ~��) such that( ~��; ~��) 2 
9. k = k + 110. (~�; ~�) = ( ~��; ~��)11. Until wi's converge
5.4 ProjectionAs described above, we used a subgradient optimizationmethod to search for the optimal (~�; ~�). Starting from anarbitrary (~�; ~�) 2 
, we will move to a new pair (~�0; ~�0)by following the subgradient direction. (~�0; ~�0) will then beprojected back to the nearest point ( ~��; ~��) in 
 based onthe 2-norm measure. This projection step is done by �ndingan orthonormal bases ~�1; : : : ; ~�p; ~�1; : : : ; ~�q of 
. Then~�� = pXi=1(~�0 � ~�i)~�i~�� = qXi=1(~�0 � ~�i) ~�iTo �nd the orthonormal bases spanning 
, we �rst �nd aset I of independent vectors spanning 
 using the GaussianElimination. Then we apply the Gram-Schmidt process toobtain the orthonormal bases from I. Notice that in equa-tion (1) and (2), each variable will appear at most twiceand their coe�cients are either 1 or -1, so the GaussianElimination step takes O(n2) time, instead of O(n3), wheren is the total number of modules and there is no 
oatingpoint division throughout the whole process. In addition,the structure of the constraint graphs remains unchanged ifwe exchange two modules in a move, so we do not need tore-compute the orthonormal bases in those cases.
6. EXPERIMENTAL RESULTSWe tested our 
oorplanner on a set of MCNC benchmarkdata. For each experiment, the initial temperature is de-cided such that an acceptance ratio is 95% at the beginning.The temperature is lowered at a constant rate (0.9) and thenumber of iterations at one temperature step is a constant.All the experiments were carried out on a 270 MHz SunUltra 5.We did two sets of experiments. In the �rst set, we allowthe aspect ratio of each module to range from 0.1 to 10.0in order to compare the results with [4]. Table 1 showsthe comparison. For ami33, it takes us about 3 hours toobtain a packing with 1.2% deadspace while the result givenby [4] is about 21 hours. For ami49, our approach needs

about 19.5 hours while [4] records about 7 days. We can seethat our method is much more useful practically in terms ofrunning time and the packing quality is also good.In the second set of experiments, we allow the aspect ratioof each module to range from 0.5 to 2.0. [0:5;2] is a morereasonable range and this can better demonstrate the speedand quality of the 
oorplanning algorithm. Table 2 displaythe result. Figure 2 and 3 show two result packings.Our Method [4]Data n Deadspace % Time (sec) Time (sec)xerox 10 0.0 54 789apte 9 0.0 41 1198hp 11 0.2 71 1346ami33 33 1.2 10628 75684ami49 49 3.1 70234 612103Table 1: Comparing with the results in [4]Data n % Deadspace (%) Time (sec)xerox 10 0.0 63apte 9 0.1 43hp 11 1.3 108ami33 33 2.0 13899ami49 49 6.1 96815Table 2: Results of testing with the benchmark datausing aspect ratio bound [0:5;2:0]
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Figure 2: A result packing of ami33 with aspect ratiobound [0:5; 2:0]. It has 2% deadspace.
7. REMARKSIn this paper, we presents a method to minimize area ingeneral non-slicing 
oorplan. We formulate the problem asa convex program and simplify it using Lagrangian Relax-ation. Experimental results show that our approach worksmuch faster than previous methods and gives high qualitypackings. The step size � for the subgradient optimization
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48Figure 3: A result packing of ami49 with aspect ratiobound [0:1; 10:0]. It has 3% deadspace.of ~� and ~� is an important factor a�ecting the packing qual-ity. We are interested in �nding appropriate value for thisparameter automatically. Besides, the implementation canbe further improved to increase the speed. We will continueto work on these issues in the future.
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