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ABSTRACT

In this paper, we consider the delay minimization problem of
a wire by simultaneously considering buffer insertion, buffer
sizing and wire sizing. We consider three versions of the
problem, namely using no buffer, using a given number of
buffers, and using optimal number of buffers. We provide
elegant closed form optimal solutions for all these versions.

1. INTRODUCTION

As VLSI technology continues to scale down, interconnect
delay has become the dominant factor in deep submicron
design. Recently, many works have been done on buffer in-
sertion, buffer sizing and/or wire sizing in order to reduce
the interconnect delay (e.g. [1, 2, 3, 4, 6, 7, 8, 9, 11, 12,
13, 14, 15, 16] ). Currently, the best solutions to the buffer
insertion, buffer sizing and/or wire sizing problems are ei-
ther iterative algorithms which locally optimize the size of
a wire segment or the size of a buffer at each step, or by
dynamic programming. However, both approaches require
long running time and large amount of memory in order to
have accurate results.

In this paper, we consider the delay minimization prob-
lem of a wire by simultaneously considering buffer insertion,
buffer sizing and wire sizing. Given the length of the wire,
the driver resistance and load capacitance, we are allowed to
divide the wire into segments and to optionally insert buffers
between any two adjacent segments. The sizes of buffers and
the lengths and widths of segments can all be changed in or-
der to minimize the delay from source to sink. Note that wire
sizing we are considering here is more general than those in
previous works as the lengths of segments can also be varied,
as long as the total length is L. The buffer insertion problem
is also different as buffers can be inserted anywhere, rather
than having some pre-defined candidate buffer locations.

We solve several variants of this problem. We call the most
sophisticated version of it BISWIS (simultaneous Buffer In-
sertion/Sizing and Wlre Sizing problem), which can be de-
fined formally as follows: The input is the length of the wire
L, the driver resistance Rp, the load capacitance Cp (to-
gether with other electrical parameters) and the total num-
ber of segments n to be used. The output variables are listed
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below. Let m be the number of buffers used. (Therefore the
wire is separated by the buffers into m + 1 pieces). For
0 < 7 < m, let n; be the number of segments between the
jth buffer and the (j 4+ 1)th buffer (with n¢ being the num-
ber of segments between the source and the first buffer and
N, being the number of segments between the last buffer
and the sink). For 1 < j < m, let b; be the size of the
gth buffer. For 1 < ¢ < n, let I; and h; be the length
and width of the ith segment respectively. The objective
is to minimize the delay D from source to sink over m,
no,...,Nm, b1,...,bm, l1,..., 1y and hi,..., h, simultane-
ously, with constraints no+---+nm,m =nand iy +---+1, = L.
We give a closed form optimal solution to this problem. See
Figure 1 for an illustration of BISWIS.
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Figure 1. [Ilustration of the BISWIS problem. The input
is L,Rp,Cr, and n. The output is m, ng,...,m, b1,...,b0m,
l1,...,lp and hy,..., hy. We provide a closed form optimal solu-
tion of it which minimizes the delay.

Note that n is a parameter that allows us to determine
how good the solution will be. We can get a smaller delay
by using a larger value of n.

In order to solve BISWIS, we first consider two simpler
variants of it. The first one is that no buffer is allowed.
Therefore, this is the problem of delay minimization by wire
sizing alone. We call this version WIS (Wlre Sizing prob-

lem). The second variant is that the number of buffers
m is given as input. The objective is to minimize D over
no,...,Nm, b1,...,bm, l1,..., 1y and hi,..., h, simultane-

ously, with constraints no+---+nm,m =nand iy +---+1, = L.
We call this version BISWIS/m (simultaneous Buffer Inser-
tion/Sizing and Wlre Sizing problem with m buffers).



These two problems are key intermediate steps to solve
BISWIS. They are also very interesting practically by them-
selves. Because instead of using the optimal number of
buffers, we may want to use less or not to use any at all.
In these cases, we will need these simpler versions. We pro-
vide closed form optimal solutions for both of them.

The remainder of this paper is organized as follows: In
Section 2, we will consider WIS. The closed form solution
is summarized in Theorem 1. In Section 3, we will con-
sider BISWIS/m. The closed form solution is summarized
in Theorem 2. Then in Section 4, by showing how to find
the optimal number of buffers, we give a closed form solu-
tion for BISWIS. The result is summarized in Theorem 3.
In Section 5, we will discuss some interesting observations
and implications of our results. We will also discuss how to
extend our results to handle nets with tree topology and to
handle wire fringing capacitance.

Many proofs in this paper contain a lot of tedious ma-
nipulation of complicated mathematical expressions and so
only proof outlines are given due to space limitation. Please
read [5] for proof details.

The following are the notations of the electrical parameters
used in this paper:

e Rp: Driver resistance.

e (1. Load capacitance.

e ro: Unit wire resistance.

e ¢o: Unit wire area capacitance.

¢ c4: Unit gate capacitance of buffer.
e 14 Unit gate resistance of buffer.

e ¢4 Unit diffusion capacitance of buffer.

Elmore delay model [10] is used here for delay calculation.
A wire segment is modeled as a w-type RC circuit as shown
in Figure 2. A buffer is modeled as a switch-level RC circuit
as shown in Figure 3.
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Figure 2. The model of a wire segment of length [ and width h
by a m-type RC circuit.

Figure 3. The model of a buffer of size b by a switch-level RC

circuit.

2. WIRE SIZING

In this section, we consider the case when no buffer is used.
Therefore, we consider the delay minimization problem from
source to sink by sizing the n segments of the wire. We call
this the WIS problem. See Figure 4 for an illustration.

The delay D can be written as a function of I;’s and h;’s:
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Figure 4. Illustration of the WIS problem. The input is

L,Rp,Cr, and n. The output is l1,...,ln and hy,...,hy. We
provide a closed form optimal solution of it which minimizes the
delay.
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We want to minimize D with respect to l;’s and h;’s. We
show the optimal solution is that the wire is divided into
equal length segments and the widths of the segments form
a geometric progression (i.e. for 1 <i < n, h; = hia'~! for
some constants h; and oz).

Lemma 1 If f(z) = Az + B/z + C where A > 0, B > 0,
and A, B, C are independent of ©, then f(x) is minimum

when x = \/B/A.

Proof: f'(x) = A—B/»® = 0 = » = \/BJ/A. Also
F"(/BJA) = 2A\/A/B > 0. o

Lemma 2 If f(z) = A2® 4+ Bx + C where A > 0, and A,
B, C are independent of x, then f(x) is minimum when & =
—B/(24).

Proof: f'(z) = 2Az + B = 0 = z = —B/(24). Also
f(z)y=24>0. O

For any segment, the upstream resistanceis the sum of all
resistances from the driver (or the last buffer before the seg-
ment) to the segment (excluding the segment). The down-
stream capacitance is the sum of all capacitances from the
segment (excluding the segment) to the sink (or the next
buffer after the segment).

Lemma 3 For the optimal solution of WIS, for any @ such

. C
that 1 <1 <n, h; = ro~p

, where Ry and Cp are the up-
CoRz/{

stream resistance and the downstream capacitance of segment
1 respectively.

Proof:
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D =
h;

Ru(colihi + Cp) +



+ terms independent of h;
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=  h;- Rucol; + e roCpl; 4+ terms independent of h;
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Lemma 4 For the optimal solution of WIS, hy > -+ > h,,.

Proof: For any i, the upstream resistance of segment 1 is
smaller than that of segment ¢ + 1 and the downstream ca-
pacitance of segment ¢ is larger than that of segment ¢ + 1.
So by Lemma 3, h; > hi41. 0

Lemma 5 For the optimal solution of WIS, l; =l =--- =
l,=L/n.

Proof outline: Consider segment ¢ and segment ¢ + 1. Let
Ry be the upstream resistance of segment ¢ and C'p be the
downstream capacitance of segment ¢4 1. Note that R;; and
Cp are independent of h;, h;41, {; and iy if {; + 141 if fixed.

D = Ru(colihi + colitrhiy1 + CD)
Tol,‘ Col,‘h,‘
h; (
Tol,‘+1 Coli+1hi+1
hiy1 2

terms independent of h;, hit1, l; and li41  (2)

_|_

+ colivihiy1 + CD)

+Cp)

By Lemma 3,

S To(Coli+1hi+1+CD)
po= el ®

ToCD

h; _— 4

i co(Ru + roli [hi) “)

Let I =1, ~+liy1. If we substitute /;41 by I —1, into (2) and
simplify,

D = (roco—roco h;;l )li2
hipil | roC
+  (Rucohi — Rucohiy1 + T000h1+1 Toh‘D
— Tocoi - TOCD )l,

hit1
+ terms independent of I;

By Lemma 4, roco — rocohiti1/hi > 0. So by Lemma 2 and
after simplification,

1. Cp 1 R
o= 5L+ —= — —hi) (5)

co hit1 o

Using (3), (4) and (5) to eliminate h; and h;y1, we can show

l; = L/2. That means l; = liy1 = ﬁ/2 In other words,
11212::ln:L/n a

Lemma 6 For the optimal solution of WIS, hi,ha,..., hy
form a geometric progression.

Proof outline: Consider segment z, segment ¢ + 1 and seg-
ment ¢ + 2. Let Ry be the upstream resistance of segment
1 and Cp be the downstream capacitance of segment ¢ + 2.
Let I = L/n. By Lemma 5, l; =141 = liy2 = 1.

By Lemma 3,

he = \/To(colhi+1 + colhiyo + CD)

(6)

co R

ro (Colhz‘+2 + CD)

hy = —_— = 7

i co(Ru + rol/hi) (7)
ToCD

h; 8

+2 \/CO(RZ/{ + rol/hi + Tol/hi+1) ( )

Using (6), (7) and (8) to eliminate Ry and C'p and rearrang-
ing, we get

h? higo h; hip, N hi his . hia  h _0
hzz-l-l hiy1 hiy1 hzz-l-l hzz-l-l hzz-l-l hiy1 hiy1
or equivalently,
h,‘ h,‘ hi hi
2 +1 2 11) =0
hiv1 hiy1 hit1 hit1
- . hi h; . h; h;
This implies SLLBSLE ER 1, or equivalently, JALE 2 R i,
i1 hig1 h; hit1
i h; .
as +1>0and +2 +1 > 0. So h;’s form a geometric
hiy1 hiy1
progression. a

Lemma 7 For the optimal solution of WIS, for any 1

ToCL 1 i—1
&4 2

such that 1 < ¢ < n, h; = and the

coRp an—1

2 2
delay D = rocol n + 200 — na
2n2 (1—a)?

L [ roco mnt1
fla)= ~ RDCLoz 2 +a—1 between 0 and 1.

Proof outline: Let Il = L/n. By Lemma 5, I; =1 for 1 <
i < n. By Lemma 6, we know that h; = h1a'™!, 1 < i <n,
for some a. Note that by Lemma 4, 0 < a < 1. Substituting
l;’s and h;’s into (1) and simplifying,

, where a is the root of

D = RD0L+r0coz2g

+ rocol2((n —Da+(n— 2)oz2 4+ .4 oz"_l)
+ Rpcolhi(l1+a+4---+a™™h)
TolCL 1
I F) (9)

Applying Lemma 1 by viewing (9) as a function of h;, and

C e [ roC 1
simplifying, we get hy = Z;)RZ =

Substituting ki into (9) and simplifying,

_|_

1
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e}

D = RD0L+r0coz2g

n+l 2
5 [ @ —na’+(n—1)a
—|— ToCol ( (1 — a)2

+ 2VrocoRpCL ( ; . 11__0;
a2

(10)



Differentiating (10) with respect to « and simplifying, we get

Q _ l ToCol + \/ToCoRDCL
da a—1 o

. (n—l)oz""'1 —(n+a"+(n+a—-(n-1)

d*D
We can verify that — > 0. So
da?

dD
D is minimized & — =
da
l v RpC
o roCo roCo +1D L -0 (11)
a—1 a3
roCo ntl
2 —1=0
< RDCLoz + o

where line (11) is because (n — l)oz"‘i'1 —(n+ a4+ (n+
la—(n—1)<0as0< a<1by Lemma 4.

roCo ntl

To find D, note that 1 a2 +a—1=0 Im-

RpCy
plies vVRpCL = l«/rocooznT-H/(l — a). Substitute vVRpCy
into (10) and simplify, we get the expression for D. O

By Lemma 4, we know that the optimal value of «
is between 0 and 1. Since f(0) < 0 < f(1) and
L roCo

/ _ n+1 n-1
)= Roer 2

o 2
f(a) has a unique root in 0 < a < 1, which can be eas-
ily found by bisection method for example.
The results of Lemma 5 and LLemma 7 can be summarized
by the following theorem:

+1>0for 0 < a < 1,

Theorem 1 For the optimal solution of the wire sizing prob-
lem (WIS), we have

i, = L/n for1<i<n

ToCL 1 i—1 .
h; = oy e for1<i<n
D - rocoll? n+2a —na®

mz (1—a)?

where a is the root of f(a) = L F:OCCO’ oznT_H +a—1 be-
n\ RpCp

tween 0 and 1.

Remark: A continuous version of the wire sizing problem
has been considered in [2] and [11]. That is the optimal
continuous function that describes the shape of a wire is
given in these two papers. Note that our result here is more
general as Theorem 1 implies their results when n tends to
infinity.

3. SIMULTANEOUS BUFFER
INSERTION/SIZING AND WIRE SIZING
WITH m BUFFERS

For convenience, in the rest of the paper, we will treat the
driver and the load as buffers of fixed size. We will call the
driver the Oth buffer and the load the (m + 1)th buffer. Let
bo = rg/Rp and bpmy1 = Crfcg. For 0 < 3 < m + 1, let

s; =ng+---+n;_1. In other words, s; is the total number
of segments between the driver and the jth buffers.

In this section, we consider the simultaneous buffer in-
sertion/sizing and wire sizing problem with m buffers (i.e.
BISWIS/m). Therefore, we minimize D over no,...,nm,
bi,...,bm, l1,...,l, and h1,..., h,. However, we will first
consider a restricted version of BISWIS/m such that m as
well as no, ..., ny, are fixed (with ng 4+ -+ 4+ n, = n). Note
that if we consider the piece of wire between the jth buffer
and the (j+ 1)th buffer, the sizing problem of it is similar to
the one discussed in Section 2 with n; segments. However,
the upstream resistance, which is r4/b;, and the downstream
capacitance, which 1s c¢4b;41, and the length of this piece are
not fixed as we allow variables to be changed simultaneously.
This complicates the problem a lot. In what follows, we ex-
ploit some interesting properties of the optimal solution so
that the problem can be handled.

Lemma 8 For the optimal solution of BISWIS/m with
noy...,nm fized, li =lo =--- =1, = L/n.
Proof outline: For any j, consider the jth buffer, segment
s; and segment s; + 1 (i.e. the 2 segments around the jth
buﬂer). Let Ry be the upstream resistance of segment s;
and Cp be the downstream capacitance of segment s; + 1.
Note that Ry and Cp are independent of b;, h
and lsj+1 if lsj —|—lsj+1 is fixed.

If we write D as a function of A, and hs.41, use Lemma 3
to find hsj and h5j+1, and then put then back to I and
simplify, we get

ToColsj2
D = — + 25,4/ rocoRu(cgby) + Ru(cgby)

Si h5j+17 lsj'

ToColSv+12 r r
7]+215j+1 TOCOCD—g)-l-CD—g-l-D/
2 b, b,
where D’ are terms independent of b;, he;y hejt1, ls; and

lsj+1. Putting lsj+1 = L—lsj into D and let p = \/rocorgcy,

we can write

2
D = ToColsj

b; Cp/cy A
+ <2p\/rg/Ru—2p\/ b, —rocolL lsj

. ) e
n roco L L abp D/cyg
2 b,

b Cp/c

This is a quadratic equation in [ls;. By Lemma 2, I is min-

imized when
by Cplc 7
2p4/ Tg/JRM — 2p4 /—Dbj 9 —rocol

27"0 Co

s, =

=7

(12)

Substituting l.; back to D and simplifying, we get

roco L2 b; Cplcg \ »
4 +p<%~g/3u+¢ 5, )T

+ 2 Tgchz/{CD —|—D/

D =

Consider D as a function of \/l; By Lemma 1, D) is min-
imized when b; = \/Cp/cg/(l/\/rg/Ru). Put b; into (12)




and simplify, we can show lsj = ﬁ/2 So lsj+1 = lsj. This
together with Lemma 5 implies {; =l, =--- =1, = L/n. O

By Lemma 6, we know h5j+1,h5j+2, e hS(j+1) form a ge-
ometric progression for each 0 < 3 < m. Let a; be the
constant such that h5j+,' = h5j+1oz]’_1 for 1 <1 < nj.

Lemma 9 For the optimal solution of BISWIS/m with
no,...,Nm fized, g =1 =+ = apy.

Proof outline: Let I = L./n. By Lemma 8, [; = [ for all i.
Note that if b1, ..., b, are fixed, the sizing of the piece of
wire between two adjacent buffers is basically an instance of

by Mimitl
WIS. So by Theorem 1,1 7“0007210{ - 4+a;-1—1=0
TgCgly
b nit+1
and ! roc%a * 4a; —1=0. Note that a;_; and
TgCgl541

a; are functions of b; but «;s is independent of b; for all
. . . 1 nj + 2a
; _ 15 rocol” 1y J

yFEI=L) 5 T=a,)p

2
— nja

2. Then by

Let D; =

Theorem 1, D = mrgcq + ZD]. Note that only D);_; and
j=0

D are dependent on b;. Differentiate D with respect to b,

and after a lot of simplification,

@ _ rocol® aj_1 _ aj
db; by (I—oj)? (1—ay)?
2
We can verify that db2 > 0. So
dD
D is minimized <& % =0
Qg1 ay
=4 =
(1—a;—1)? (1—ay)?

& ajm1=a; asaj_1 <landaj; <l

In other words, ag = a1 = -+ - = am,. 0

Lemma 10 For the optimal solution of BISWIS/m with
s+
,Nm  fized, by =9’

(1 —a)>

a5 for 1 <4 < noand g be-

bo for 1 < 3 < m,

Tocg

bibjt1—

ing the mdex s.t. s;+1 <1< sj41 (i.e. the ith segment is
between the jth buffer and the (j+1)th buffer), and the delay

L’ 2 a — na’
D =mrgcqg+ roco . + (m + )oz na , where o 18 the
2n?2 (1—a)?
b m+1l  ntmtl m
root of g(a) = 5 0 §% a2 — (1—a) 1 between
m+1
L
0and 1, and S = ro% 5
rgCgn

Proof outline: By Lemma 9, let ag = a1 = -+ = am =

a. Let I = L/n. Then by Theorem 1, for 0 < 57 < m,
I ToCobJ a"j2+1

rgCgbjta

+ a — 1 =0, or equivalently,

nit+1

bj+1 = \/EO{ —2oz \/l;

sit7
By (13), it is not difficult to prove that b; = SJ(IO{_T)%I)O.

bo. So a should be

S +mt1

m+1 0{7
In particular, bypqy1 = 5 (1 — a)2(m+1)

the root of the function g(a) given above. The results on
hi,...,hy, and D follow directly from Theorem 1. a

By Lemma 4, we know that the optimal « is between 0
and 1. Tt is easy to check that g(0) < 0 < g(1) and ¢'(a) > 0
for 0 < a < 1. So g(a) has a unique root in 0 < a < 1,
which can be easily found by bisection method for example.

Notice for Lemma 10 that the optimal delay ) is indepen-
dent of no, ..., nm. That means we can set ng, ..., ny, arbi-
trarily (with the constraint that ng + - - - + ny, = n) without
affecting the optimal delay. This observation together with
L.emma 8 and Lemma 10 give the following theorem:

Theorem 2 For the optimal solution of the simultaneous
buffer insertion/sizing and wire sizing problem with m buffers

(BISWIS/m), we have

n; = an arbitrary non-negative integer, for 0 < 3 <m
(s.t. ng+ -+ nm=n)
; a5j+J
b, = ST—b orl<j3<m
J (1 _ O{)2J 0 f =71 =
i, = L/n for1<i<n
1 s .
h; = rocgb]bﬂ.l — a7 for1<i<n
CoTyg 7
with j being the index s.t. s; +1 <1 < 5541
rocoll? n+ 2(m+ 1)a — na’
D = mrge .
gcd ¥ 2n? (1—a)?
Tg L .
where by = —, bmy1 = —, s;=mng+---+n;_1, a is the
bo +1 n+m+1 mt1
root of g(a 27 —(1—a) between
m-l-l
rocoL?
0and 1, and S = 970 >
rgCgn

4. SIMULTANEOUS BUFFER
INSERTION/SIZING AND WIRE SIZING
WITH OPTIMAL NUMBER OF BUFFERS

Now, we consider the BISWIS problem. Therefore we
minimize [} over m, ng,...,%m, b1,...,bm, l1,..., 1, and
hi,...,hy, simultaneously. (See Figure 1.) The following
Theorem gives a closed form optimal solution to BISWIS.

Theorem 3 For the optimal solution of the simultaneous
buffer insertion/sizing and wire sizing problem (BISWIS),
we have m is equal to the better one of |m| and [M],

A 20+ 5 —VArS+ 52 \"
where m = — [ In /Inz,
RpCy 2z

TyCy¥

T rocols .

(=) = e%/%s and S = 22 - Moreover, the optimal val-
e TgCgn

ues of no,...,Nm, b1,....bm, L, ..., ln, h1,...,hyn and D

are the same as in Theorem 2.

Proof outline: Consider the solution of D given in Theo-
rem 2 as a function m. We can show that D"(m) > 0. So D
is a convex function with respect to m. We can minimize D
by solving D'(m) = 0. The solution is 71, which may not be
an integer. As D(m) is a convex function, the integer value
that minimizes D(m) is either |m] or [m]. o



5. DISCUSSION

There are several interesting points to make about the the-
orems in this paper. Firstly, although we consider a more
general problem by allowing the lengths of segments to be
varied, the optimal solution is always that the wire is divided
into equal length segments (no matter how many buffers we
use and no matter where we put the buffers). That means
using different segment lengths does not have any advantage
with respect to delay. For previous papers which consider
delay minimization by wire sizing, the problems are usu-
ally formulated as changing segment widths while segment
lengths are given as input. In [7] and [9], they assume that
the input segment lengths are all equal and then they solve
the problems by iterative algorithms. Our results justify the
assumption they made.

Secondly, we have pointed out that the optimal delay D
is independent of ng, ni, - - That means we can put
the buffers anywhere between two adjacent segments without
affecting the optimal delay. Although this flexibility is not
useful in minimizing delay, it can be used to optimize other
objectives such as total wire area, total power consumption
or maximum wire width.

We can extend our results to handle nets with tree topol-
ogy by a similar technique as [4]. That is we use an iterative
algorithm to size the tree edges one at a time. At each time
we manipulate an edge, we keep the sizes of all the other
edges fixed and apply our solution to that edge. This method
should be much faster and use much less memory than an
iterative algorithm which divides each tree edge into several
segments and locally sizes a segment at each step.

The major weakness of our results is probably that we
have ignored wire fringing capacitance in our problem for-
mulation. Fringing capacitance will become more important
as wires will become narrower. However, the closed form so-
lution is expected to be much more complicated if fringing
capacitance 1s considered. For example, the lengths of seg-
ments will no longer be equal and the widths of segments
will no longer form a geometric progression in the optimal
solution. We have already done some works on the problem
with wire fringing capacitance consideration and we hope we
will publish them in near future.

In fact, we have done some experiments to see how good
our solution approximates the case with fringing capacitance.
We fixed the number of buffers and the buffer positions, add
half of the total fringing capacitance to Cp, (i.e. set C'r to
Cr + ¢y L/2 where ¢y is the unit wire fringing capacitance)
and then obtain a sizing solution by Theorem 2. The delay
of our solution is compared with that of the optimal solution
(obtained by an iterative algorithm). We have used many
different sets of parameters and they all show that the delay
is only a few percents off the optimal. For example, for
ro = 0.12Q, co = 0.04fF/um?, c; = 0.15fF/um, r, =
814Q um, cg = 28f F'/um, ca = 0.154ps /2 /um, Rp = 27042,
Cr =5pF, L=3000um,n=8 m=3and no =n1 =nzy =
na = 2, then the delay of our solution is only 6.1% more than
the optimal solution. Hence, we can still apply our results
to the case with fringing capacitance to obtain a reasonably
good solution.

PN 7 e
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