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Abstract—This extended abstract describes a new represen-
tation that can be used for recognizing and imitating object
manipulation tasks, which is based on detecting the co-movement
patterns between visual features. The representation consists
of a sequence of graphs that evolve over time as the activity
progresses. The nodes in these graphs correspond to the features
that are tracked by the robot. The edges correspond to the
movement dependencies between pairs of tracked visual features.
The representation was tested on two manipulation tasks in which
a human attempted to insert small blocks inside container and
non-container objects. The results show that the robot was able
to use the graph-based representation to distinguish between
these two tasks. Furthermore, the robot was able to relate its
own actions with these objects to the human actions through the
similarities in the resulting graph sequences.

I. INTRODUCTION

Imitation learning frameworks in robotics often focus on
replicating motor trajectories provided by humans as closely
as possible [2]] [3]. This approach works well when the task
is to imitate gross motor movements. When the goal is to
imitate object manipulation tasks, however, this is no longer
sufficient. In this case, in addition to imitating the motor
actions, the robot must also reproduce the spatial and the
temporal relations between the objects. When manipulating
objects, motor movements that otherwise look the same may
result in completely different outcomes [6]]. For example, if
the robot’s task is to imitate a person dropping a block inside
a container, then even if the robot executes perfect motor
trajectories the block may still hit the rim and fall outside
the container, which will produce a different result.

We propose a new representation for encoding important
aspects of object manipulation tasks that is based on detect-
ing visual movement dependencies. These dependencies are
captured in the form of sequences of graphs. The vertices in
these graphs correspond to different visual features tracked
by the robot (e.g., the human’s hand and the objects). An
edge between two vertices indicates that there is a statisti-
cally significant dependency between the movements of the
corresponding pair of visual features. Conversely, lack of an
edge indicates that no such dependency is present. As the
manipulation activity unfolds, the graph structure changes to
reflect the temporal evolution of the movement dependencies.

II. RELATED WORK

Aksoy et al. [1] describe a semantic scene graph represen-
tation that can capture spatial information between different
features of objects as the human manipulates them. Each
graph could possibly encode four different spatial relationships
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Fig. 1. (Top Section) The humanoid robot, shown here performing a
manipulation sequence: 1) grasping a block, 2) waving it back and forth, 3)
dropping it into a container, and 4) waving the container. The four movement
dependency graphs that correspond to the four stages in the sequence are also
shown. (Bottom Section) A similar manipulation sequence performed by a
human, which results in a similar sequence of graphs.

between visual object features: touching, overlapping, no con-
nection, and missing feature. A sequence of them can capture
how the spatial relationships between features change over
time, which provides enough information to recognize actions
and to form object categories. Semantic scene graphs, however,
do not encode movement dependencies between objects.

A different type of activity graph representation was pro-
posed by Sridhar et al. [8]. In this case, a single graph
was used to encode spatiotemporal relationships of features
for a whole video sequence. The representation captured
spatial relationships between the features of the objects: dis-
connecting, surrounding, and touching. It also captured the
temporal intervals during which a spatial relationship persisted
between features. This was sufficient to form a hierarchical
categorization of the objects used during an activity.

III. EXPERIMENTAL SETUP

The experiments were performed using the objects shown
in Fig. 2] The objects were selected to have approximately
the same height, but they varied in terms of shape and
material properties. In one configuration the objects were
containers. Flipping the objects upside down turned them into
non-containers because both the robot and the human used
stereotyped actions that did not include a flip behavior. Besides
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Fig. 2. The objects and the blocks that were used in the experiments.
(Containers) The top two rows show the 10 containers (left-to-right, top-to-
bottom): wicker basket, plant basket, potpourri basket, flower pot, bed riser,
purple bucket, styrofoam bucket, candy basket, brown bucket, and red bucket.
(Non-containers) The middle two rows show the same 10 objects as the top
two rows, but flipped upside down. Flipping turns the containers into non-
containers for the robot, which has a fixed behavioral repertoire. See text
for more details. (Blocks) The bottom row shows the 5 blocks (left-to-right):
tennis ball, rubber ball, mega block, foam cube, and purple block.

the ten objects, five blocks (see Fig. [2) were also used during
the experiments. The blocks were also selected to vary in shape
and material. Each block was large enough to be graspable by
the robot and small enough to fit in each container.

For each of the 100 object-block combinations, both the
human and the robot performed a sequence of actions as shown
in Fig. [T} In both cases the robot recorded visual data at 15
fps and 640 x 480 pixels per frame from its left camera.
The robot has two 7-dof Barrett Whole Arm Manipulators
(WAMs) as its arms. Each WAM has a Barrett Hand as its end
effector. Rubber fingertips were put on the three fingers of the
robot’s left hand to make grasping more robust. The WAM
was controlled in real time over the CAN bus at 500 Hz.

Before the start of each robotic or human manipulation trial,
one block and one object were manually placed at marked
locations on the table. Each manipulation trial started by
grasping the object and waving it back and forth four times.
The block was then dropped above the object. Next, the object
was grasped and waved back and forth four times. Finally, the
object was dropped on the table.

IV. METHODOLOGY

A sequence of 640 x 480 images recorded at 15 fps was
captured over the duration of each trial. The robot’s interac-
tions with the objects lasted about 40 seconds, which produced
roughly 15 x 40 = 600 images per trial. Similarly, the human’s
interactions with the objects lasted about 25 seconds, which
produced roughly 15 x 25 = 375 images per trial. The robot
and the human performed 100 trials each.

A combination of color tracking and optical flow was used
to detect the movements of the features in the image se-
quences. Features were located in each image using a generic
color tracking algorithm. The change in position of each
feature from frame to frame was smoothed using Sun et al’s

optical flow algorithm [9]. Movement was detected when the
position of a feature changed by more than 5 pixels between
two consecutive frames. To eliminate extraneous movements,
a box filter of width 5 was applied to the movement detection
sequence. The output for each trial was a movement detection
sequence for the block, the object, and the hand.

To represent the temporal evolution of the movement de-
pendencies, a sliding temporal window of size 3 seconds was
used to extract sequences of movement dependency graphs.
For each temporal window and for each of the three pairs
of tracked features (i.e., hand-block, hand—object, and block—
object), a 2x 2 contingency table was calculated using detected
movements of visual features. Each table has 4 cells that
correspond to the 4 combinations of two binary movement
variables. Note that the four cells of a contingency table add
up to the number of frames spanned by the sliding window
because they summarize the movement data from these frames.
In our case, they add up to 45 (i.e., 3 seconds x 15 fps). The
cells of the first 44 contingency tables for a trial add up to less
than 45 because the sliding window only partially intersects
with the data at these locations.

The cells of a contingency table indicate how often the
two features were moving together (diagonal entries) and also
how often one feature was moving while another feature was
not moving (off-diagonal entries). The contingency tables are
updated incrementally as the temporal window slides over the
interactive timeline.

The edges of the movement dependency graphs correspond
to statistically significant movement dependencies between
pairs of features. The G-test of independence [ was per-
formed on each contingency table to decide if an edge should
be added or deleted in the movement dependency graph.
The G-test performs statistical hypothesis testing and selects
between the null hypothesis and the alternative hypothesis.
The null hypothesis is that the movements of two features A
and B are independent. The alternative hypothesis is that the
movements of these two features are dependent. The G-test
uses the p-value to make this decision. If the p-value is below
a chosen significance level, then the G-test rejects the null
hypothesis and accepts the alternative hypothesis (i.e., an edge
is added). Otherwise, the G-test accepts the null hypothesis and
rejects the alternative hypothesis (i.e., an edge is deleted). In
this work, 0.05 was chosen as the threshold for the p-value
because this significance level is commonly used in statistics.
Because the temporal window is advanced one frame at a time,
the number of graphs in the sequence equals the number of
video frames in the trial.

V. RESULTS

Before relating human and robotic manipulation trials, it can
be helpful to establish a similarity between human hands and
robotic end effectors. This can be accomplished by analyzing
the corresponding sequences of movement dependency graphs.
As shown in Fig. 3] the most active node in movement depen-
dency graph sequences that correspond to human manipulation
trials is the human hand. Similarly, the most active node in



1 Iﬂq
e - g

(a) Robot Trials (b) Human Trials
Fig. 3. This figure shows that the hand is the most active node in the
movement dependency graphs. For both robot and human trials, the hand
feature participates in the largest number of movement dependencies with
other features. The plots were constructed by adding the number of edges
incident to a given vertex over the entire graph sequence. The similarity
between the two plots is striking.
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movement dependency graph sequences that correspond to
robotic manipulation trials is the robot’s end effector.

The second most active node is the block node, which
is followed by the object node. The structure of the two
histograms is very similar, which suggests that the cumulative
degrees of the nodes in the sequences of the movement de-
pendency graphs can capture how different entities participate
in manipulation actions. The observed structural similarity
also suggests that the graph sequences can capture certain
manipulation aspects that are invariant across similar tasks
even if the tasks are performed by humans or robots.

Fig. 4] shows a 200 x 200 distance matrix D that was com-
puted from the corresponding movement dependency graph
sequences using the dynamic time warping (DTW) algorithm
[5] [4] for both the robot and the human trials. Before
computing D, a 200 x 200 cost matrix C' was computed,
where each element of C' was equal to the cost of the optimal
DTW alignment for a pair of movement dependency graph
sequences. Because the cost matrix C' can be non-symmetric,
the distance matrix D was computed by averaging C' with its
transpose: D = (C + CT) /2.

The distance matrix D shows that the graph-based repre-
sentation can be used to detect meaningful differences in the
structure of different manipulation tasks. As can be seen from
Fig. [ two manipulation trials that were performed with non-
containers are typically similar even if the robot performed
one of them and the human performed the other one (bottom-
right quadrant of the matrix). Equally important is the fact that,
according to the distance matrix D, human and robotic manip-
ulation trials with containers are not similar to manipulation
trials with non-containers (the two off-diagonal quadrants).
The region of the similarity matrix D for containers (top-
left quadrant) is not as clear as the region for non-containers
because the robot dropped the block outside of the container
in 20 out of the 50 manipulation trials with containers and the
human did the same in 14 out of 50 trials. In other words, only
66 out of 100 sequences represented in that region actually
reflect containment of the block in any way.

VI. CONCLUSION AND FUTURE WORK

This paper introduced a new graph-based representation to
describe the movement dependencies between objects during
manipulation tasks. The proposed representation was able to
capture invariants in the structure of manipulation sequences
despite the fact that some of them were performed by a
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Fig. 4. The distance matrix based on dynamic time warping. Lighter entries
indicate smaller distances. Darker entries indicate greater distances.

human and others were performed by a robot. The results
also showed that the representation can be used to establish
a correspondence between human hands and robotic end
effectors based on the fact that they participate in the largest
number of interactions with objects during manipulation tasks.

Future work can extend the representation to include the
strength of movement dependency between two features. Cur-
rently, the edges in the movement dependency graphs are
unweighted. Because all dependencies are represented equally,
certain information obtained from manipulation tasks is lost.
For example, a ball can bounce inside a container as the
robot is shaking it, but the container will move only when
the hand moves. The weights assigned to the graph edges
could distinguish between these stronger and weaker cases of
movement dependencies.

Future work can use this representation to identify “what”
the robot should imitate. For example, to imitate, the robot
can sequence its behaviors to match an observed sequence
of movement dependency graphs instead of trying to match
the exact motor trajectory. Future work can also associate
transitions between graphs with contact events to help the
robot learn to imitate faster. Finally, additional experiments are
necessary to validate this representation on a larger number of
manipulation tasks with more objects.
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