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Abstract

This paper presents perceptual algorithms for corridor navi-
gation, door detection and entry that can be used for explo-
ration of an unknown floor of a building. The algorithms are
fairly robust to sensor noise, do not use odometric data, and
can be implemented on a low end PC. The primary sensor
used is a laser range scanner.

Introduction
Many practical robot applications require navigation in
structured but unknown environments. Search and rescue
missions, surveillance and monitoring tasks, urban warfare
scenarios, are all examples of domains where autonomous
robot applications would be highly desirable. Deploying
robots in such scenarios is expected to reduce the risk of
losing human lives (Blitch 1999).

One scenario, for example, would be a biohazard detec-
tion mission, where a robot or a team of robots would be de-
ployed to enter and navigate an unknown building to search
and report the existence of any hazardous materials. Al-
though the building layout may be unknown, it is safe to
assume that the building will consist of several floors, where
each floor will have one or more corridors, and each corridor
will have several rooms whose entrance doors are located on
the corridor.

This paper presents several perceptual algorithms that ex-
ploit available structure to allow mobile robots to navigate
through corridors, detect doors, and enter rooms. In com-
bination the algorithms can be used for exploration of an
unknown floor of a building in the absence of any map.
The algorithms are fairly robust to sensor noise, do not rely
on odometry, and are computationally efficient. The pri-
mary sensor used is a laser range scanner. The algorithms
presented here have been demonstrated successfully at the
DARPA Tactical Mobile Robotics (TMR) Demonstration in
Rockville, Maryland in September 2000.

Related Work
Lu and Milios (Lu & Milios 1997a; 1997b) have previously
described algorithms for robot pose estimation with laser
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data. The approach that they take is registration and match-
ing. Their technique relies on constraint-based search to
align a current laser frame with a map built from previous
laser scans. The alignment of range scans is computation-
ally expensive and can be unnecessary when navigating in a
structured environment.

Other researchers (Foxet al. 1999) have used laser range
scanners for map building and robot localization. Their ap-
proach relies heavily on the assumption that the features of
the environment used for localization are not changing over
time. Therefore, it is not robust to changes in the environ-
ment (e.g., opening and closing doors) which may disorient
the robot causing it to decrease its localization certainty.
Consecutive localizations can take time which may not al-
ways be available in a warfare scenario.

The office delivery mobile robot Xavier (Simmonset al.
1997) was capable of entering rooms in order to deliver or
pick up printouts that users requested over a web-based in-
terface. Xavier used a neural network and camera images to
position itself in front of a door in order to enter a room. The
whole process was discrete rather than continuous.

The approach presented in this paper for door entry uses
a behavior similar to the docking motor schema described in
(Arkin & Murphy 1990). This schema allows the robot to
enter the room rapidly while traveling on a smooth semi-arc
trajectory (see Figure 2). The robot never stops to make sure
it is on the right track.

Mission Specification
The MissionLabmission specification system (Endoet al.
2000) was used as a test-bed for the biohazard survey exper-
iments (see Experiments Section for details).MissionLab
allows a robot mission to be specified graphically in terms
of a finite state acceptor (FSA). Figure 1 shows the FSA
used for the biohazard detection mission. We present per-
ceptual algorithms that support theProceedAlongHallway
and GoThroughDoorbehavioral assemblages. An assem-
blage is a collection of low-level behaviors aggregated in
support of a task.

The behavioral assemblageProceedAlongHallway is
composed of the motor schemasStayInHallway, Move-
DownHallway, andAvoidObstacles. StayInHallwaydirects
the robot in a direction orthogonal to the centerline of the
hallway. It requires as input the width of the hallway and the



Figure 1: Finite State Acceptor describing a biohazard de-
tection mission at a high level.

angle between the centerline of the hallway and the current
robot heading.MoveDownHallwaymoves the robot parallel
to the centerline of the hallway. The angle to the centerline
alone is sufficient input for this motor schema.AvoidOb-
staclesrepulses the robot from obstacles. Each of the three
schemas produces a vector as its output. The vectors are
adjusted according to gain values supplied by the user.

The behavioral assemblageGoThroughDoorconsists of
EnterDoorwayand AvoidObstaclesschemas. EnterDoor-
wayuses a docking schema (Arkin & Murphy 1990) to com-
pute the instantaneous force on the robot relative to the door.
The schema requires three points to compute the vector re-
sponse: two end points of the door to enter and a point on
the far side of the door that the robot should move towards
(Figure 2).

Figure 2: The docking motor schema used to enter rooms.

Perceptual Algorithms
We are motivated by the approach of (Gibson 1979) and use
affordance-based percepts to interpret sensor data. For ex-
ample, a door for the robot is defined as an affordance for
passage; a corridor is an affordance for navigation.

Corridor Detection
We begin with the assumption that hallway parameters
(width and angle with respect to the robot) can in fact be de-
termined from a single laser reading. This is a fairly strong
but generally true assumption. Two factors contribute to this
result. First, hallways have distinct features; long, straight,
parallel walls. Second, the laser range scanner is extremely
accurate1 allowing proper perceptual algorithms to detect
these features.

The SICK LMS2 200 used in our experiments has a
field-of-view of 180 degrees and returns 361 distance read-
ings (two per degree). These distances are converted in
software to Cartesian coordinates to form a laser frame
F =< p1; p2; :::; p361 >, where eachpi is a point in2D. A
local coordinate system is imposed on the laser frame such
thatp181 is always on the x-axis,p1 on the�y axis, andp361
on the+y axis. All calculations that follow are relative to
the origin of this coordinate system. Angles calculated rela-
tive to the sensor are calculated with respect to the x-axis.

Since corridors consist of long, straight walls, it is ex-
pected that many of the laser rays will intersect these walls,
yielding a frame with a large number of relevant data points.
It only needs to be determined which points fall along these
walls. Figure 3 shows a laser frame taken in a corridor with
two open doors.
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Figure 3: A Single frame of laser scanner data, positioned at
the origin.

To determine which points fall along the two parallel
walls a voting scheme is adopted. Each pointpi is allowed
to vote for the dominant orientation of the corridor. The
points cast their vote by observing the local orientation, de-
termined by a small neighborhood of points around them,
and declaring it the dominant orientation. The orientation
with the most votes is declared the orientation of the hall-
way. This is done by fitting a lineL to the local neighbor-

1Maximum error of +/-3 cm per 80 meters.
2SICK is an industrial sensor engineering company. The Laser

Measurement System (LMS) calculates the distance to an object
using the time of flight of pulsed light. A rotating mirror deflects
the pulsed light beam to many points in a semi-circle. The LMS
200 has a serial port interface, a peak power demand of 35 Watts,
and costs approximately five thousand dollars.



hood of points aboutpi. A line, L, in 2D can be described
by two parameters� and�, where� is the perpendicular dis-
tance to the lineL and� is the angle from the positive x-axis
to that perpendicular ofL (Figure 4).

Figure 4: Best fit line for a set of points.

A least-squares approach is used to fit a line to the neigh-
borhood of points. A closed form solution exists and can
be calculated efficiently (Lu & Milios 1997a). The size of
the local neighborhood was empirically determined to be 7.
Smaller values for the neighborhood can cause the lines to
be overly sensitive to small changes in contour and noise,
while larger values incur more computation with little gain
in performance.
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Figure 5: Histogram for the dominant hallway angle for Fig-
ure 3. Each bin corresponds to a two degree interval.

Step 1. A line is fit through each data point.To be more
precise, for each data pointpi in a laser frameF , a best fit
lineLi is found for the set of data pointsfpj 2 F : i � 3 �
j � i+ 3g.

Step 2. A histogram is calculated over all�i. After all
(�i, �i) pairs have been calculated, a histogram over�i is
computed. For a typical hallway and a laser scanner posi-
tion within the hallway, the histogram will have two large
humps corresponding to the two opposing walls. Exploiting
the fact that the walls are parallel, or near parallel, the two
humps can be merged if all�i outside the range[0; 180] are

rotated by 180 degrees. In this way, angles corresponding to
parallel lines will now be overlapping. Figure 5 shows the�
histogram for the laser frame displayed in Figure 3.

Step 3. The hallway angle is selected.A triangle filter
is used to smooth the histogram and the dominant angle in
the histogram is selected. This is the angle between the per-
pendicular to the left-hand wall and the laser scanner. The
angle between the perpendicular to the right-hand wall and
the sensor is 180 degrees larger. This latter angle, labeled
H�, is the one used in subsequent calculations. The bin size
of the histogram was selected to be two degrees and the tri-
angle filter used was[0:1; 0:2; 0:4; 0:2; 0:1].

Figure 6: Hallway transformation parameters.

Step 4. The winning points are divided into two sets.
The width of the hallway will be estimated from those points
that voted for the winning hallway angle. These points can
be divided into two sets corresponding to the left and right
wall: L andR. The setL consists of pointspi for which
�i 2 [0; 180]. The setR consists of pointspi for which
�i 2 [�180; 0].

Step 5. The distance to each wall is calculated using a
histogram method. A histogram is calculated over�i for
each of the two sets. Triangle filtering is again used. The
most common value is selected from each histogram. Letdl
be the distance to the left-hand wall calculated from the set
L, and letdr be the distance to the right-hand wall calculated
from the setR.

Step 6. The width of the hallway is calculated.Then the
width of the hallway,Hw, is the sum of the two distances:
Hw = dl + dr.

Step 7. The location of the robot within the hallway is
calculated. The distance between the laser scanner and the
hallway centerline, can also be calculated:Sx = dl�Hw=2.
The sign of this variable determines whether the robot is
to the right (positive) or to the left (negative) of the center-
line. There is now sufficient information to navigate along
the hallway. Let the laser scanner be positioned at the front
center of the robot and oriented in the same direction. Then
the angle of the hallway local to the robot is -H� � 90. The
width of the hallway isHw and the robot is locatedSx units
away from the hallway centerline.
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Figure 7: Aligned laser scan data.

Door Detection

The technique for doorway detection relies on the definition
of a door as an affordance for passage. It looks for openings
in the hallway that are within some acceptable width. In
the experiments, fifty centimeters was used for the minimum
doorway width and two meters for the maximum. These
numbers were used to accommodate our RWI urban robot
(Figure 8). A larger or smaller robot may have very different
acceptable ranges ofdoorway widths.

Step 1. All points in the frame are transformed so that
the hallway centerline coincides with the x-axis.This step
allows for efficient detection of openings in the two walls,
since the walls will now be horizontal. This transformation
requires a translation of(cos(H�) � Sx, sin(H�) � Sx) fol-
lowed by a rotation of�H� � 90, where againH� is the
angle between the laser scanner and the perpendicular to the
right-hand wall. The wall positions are now (0, -Hw=2) and
(0,Hw=2) and the new laser scanner position is (0,-Sx). Fig-
ure 7 displays the laser frame after the translation and rota-
tion have been performed.

Step 2. Openings in the wall are detected using a box
filter. To detect openings a box filter of size 50 cm x 50
cm is passed along each wall at 5 cm offsets. For each fil-
ter position the number of points that fall within the box is
counted. Consecutive regions with zero points are merged to
form a potential door opening. The width of that opening is
checked against the acceptabledoor widths specified earlier.

Step 3. False positives are eliminated.This method can
generate false positives, however, due to obstacles located
between the laser and the wall. To eliminate this problem
the laser frame is checked for points that are closer to the
laser scanner than the expected position of the wall and fall
in the same viewing angle as the opening. If such points
are found the opening is rejected. The coordinates of the
two endpoints of the opening (which can be represented as
a line segment) are tracked continuously, transformed into
coordinates local to the robot, and fed to theEnterDoorway
motor schema during doorway entry.

Experiments
The experiments described in this section were conducted
during the DARPA TMR Demo in Rockville, Maryland in
September 2000. The site for our demo portion was in-
side a firefighters' training facility, also known as theBurn
Building (Figure 9). The conditions inside the building
were quite different from the pristine environments found
in many robotics labs. Most walls (both corridor and room
walls) were not precisely straight due to the routine incin-
erate/extinguish exercises that have been going on for more
than a decade in that building. Light was very limited and
the air was quite dusty.

Figure 8: The RWI Urban Robot equipped with a SICK laser
scanner and a Sony pan/tilt/zoom camera.

Nevertheless, the RWI Urban robot (Figure 8) was up to
the test. Its mission was to start from one end of the build-
ing, navigate down the corridor, find a room that is labeled
as one containing biohazard materials, enter that room, find
the hazardous material, and navigate towards it. If a biohaz-
ard is found, the robot sends a picture of the material back to
the human operator. The room in question was labeled with
a biohazard sign (Figure 8). A bucket labeled ' biohazard'
was used for the biohazard material. To detect the sign and
the bucket the robot used simple color tracking. A Newton
Labs Cognachrome board performing real time color blob-
bing was used to do the tracking. The size and position of the
blob was used for detection. This simple technique serves as
a place holder for a more sophisticated sensor that would be
able to detect a biohazard directly.

Total Missions

32

Successes

29

Failures

3

Mean Run Time

62.3 seconds

STD

5.6 seconds

Table 1: Summary of the experimental results.

Thirty-two missions were attempted during a two day
period before the demo day. Of those twenty-nine were
successful - 91% success rate. Two mission failures were
caused by unreliable detection of the biohazard due to the
limited light in the building, which caused the computer vi-
sion code to fail. One failure resulted from an unsuccessful



Figure 9: The Burn Building in Rockville, MD: site of the
DARPA TMR Demo.

attempt to enter the door. Table 1 summarizes the results of
the experiments.

The corridor and door detection algorithms performed ex-
ceptionally well since the laser range scanner is not affected
by the amount of light present in the environment. In fact,
the same mission (without the biohazard sign detection) was
run successfully in complete darkness.

Summary

This paper described perceptual algorithms for corridor nav-
igation, door detection and entry that can be used for explo-
ration of an unknown floor of a building. The algorithms
use the inherent structure in building design to extract a few
parameters needed for correct navigation. To navigate down
a corridor, for example, the robot needs to know only the
width of the corridor and the angle between the centerline
of the corridor and its current heading. To enter a door, the
robot needs to know only the two endpoints of the door-
way. The algorithms presented in this paper use a laser range
scanner to detect these parameters. Experimental results
presented above show that this technique is quite reliable.
In fact, the same motor schemas and perceptual algorithms
have been used without modification to control a Nomad 200
robot that has a completely different drive mechanism than
the Urban robot.
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