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Closed-Loop Cortical Control of Direction
Using Support Vector Machines
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Abstract—Motor neuroprosthetics research has focused on
reproducing natural limb motions by correlating firing rates of
cortical neurons to continuous movement parameters. We pro-
pose an alternative system where specific spatial-temporal spike
patterns, emerging in tasks, allow detection of classes of behavior
with the aid of sophisticated nonlinear classification algorithms.
Specifically, we attempt to examine ensemble activity from motor
cortical neurons, not to reproduce the action this neural activity
normally precedes, but rather to predict an output supervisory
command to potentially control a vehicle. To demonstrate the
principle, this design approach was implemented in a discrete
directional task taking a small number of motor cortical signals
(8-10 single units) fed into a support vector machine (SVM) to
produce the commands Left and Right. In this study, rats were
placed in a conditioning chamber performing a binary paddle
pressing task mimicking the control of a wheelchair turning left
or right. Four animal subjects (male Sprague-Dawley rats) were
able to use such a brain-machine interface (BMI) with an average
accuracy of 78% on their first day of exposure. Additionally, one
animal continued to use the interface for three consecutive days
with an average accuracy over 90%.

Index Terms—Brain—-machine interface (BMI), cortical control,
neural prosthetics, wheelchair control.

1. INTRODUCTION

ODERN neuroscience has revealed that thousands of

cortical neurons contribute to every aspect of even our
most mundane movements. One cannot twitch a finger without
first setting off a firestorm of activity in the cortex. While prac-
tical communication between cortical neurons and an external
device dates back years before [1], [2], Georgopoulos’ concept
of cosine tuning in the primary motor cortex [3] and his later
population vector algorithm [4] has shaped much of modern
neuroprosthetics. Georgopoulos and his colleagues were able
to serially record hundreds of neurons from the motor cortex
of monkeys reaching for targets in two- and three-dimensional
(2- and 3-D) spaces. They observed that a significant number of
motor cortical neurons had preferred directions. When move-
ments were executed in the preferred direction of the neuron, its
firing rate increased while movements away from the preferred
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direction decreased the firing rate. This concept is commonly
called cosine tuning since the most popular model used to ex-
plain the firing rate of a given neuron is one where the firing rate
is proportional to the cosine of the angle between the movement
direction and the preferred direction. By assuming the distribu-
tion of the preferred directions of the cells accessible is uniform
throughout space, the population vector algorithm was devel-
oped. This algorithm reconstructed the movement direction by
averaging the preferred directions of all the cells weighted by
the normalized firing rate of the cell.

Many groups have since successfully regressed activity
from large numbers of cortical neurons collected simultane-
ously on multielectrode arrays onto some aspect of future
limb movement. This alone is impressive and has even al-
lowed the functional replacement of natural limbs in simple
laboratory reaching tasks [5]-[7]. To date, only a handful of
neuroprosthetics results have been of a closed-loop nature
[5]-[8]. Closed-loop brain—-machine interface (BMI) systems
allow users real-time interaction with a neuroprosthetic system
where they can actuate an external device while receiving
feedback to correct errors and plan for future use. Some widely
accepted results in neuroprosthetics derive from open-loop
system studies [9], [10]. That is, studies in which researchers
gather sophisticated neural and kinematic data and later attempt
to determine to what degree they can reconstruct the kinematic
data given the neural data.

The first modern closed-loop BMI study was [8]. Here, rats
were trained to depress a lever to move a water dripper arm and
receive a water reward. Dozens (40-60) of microwires were im-
planted into the motor cortex and thalamus of 6 rats. Neural
recordings were taken and synchronized to the position of the
rat’s response lever. Various algorithms (population rate, prin-
cipal component analysis, recurrent neural networks) were then
used to regress the lever position onto the neural recordings. The
lever was then disconnected and the position of the dripper arm
was instead controlled by the output of the regression algorithm.
The authors claimed that four of the six rats could use the inter-
face.

Serruya et al. [5] followed this with a study in which monkeys
were able to control the position of a 2-D cursor. Initially trained
using a planar manipulandum to control the position of a cursor
on a screen, signals from tens (7-30) of motor neurons, recorded
from Utah electrodes, were regressed against both position and
velocity. One monkey was allowed to control the cursor using
the neural control with time to target results similar to manipu-
landum control.
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Taylor et al. [6] demonstrated the feasibility of employing
dozens (~ 40) of motor neurons when working in a closed-loop
environment. Monkeys were trained to move a 3-D cursor in
virtual reality by moving their wrist in a workspace. Parameters
for a modified population vector algorithm could then be iden-
tified. Subsequently, the monkey’s wrist was restrained and he
was forced to use the signals from his motor cortex to direct the
cursor position. The algorithm could also adapt parameters to
better estimate the mapping between neural signals and 3-D ve-
locity over time.

Carmena et al. [7] showed a study in which both the 2-D po-
sition and velocity of hand motions as well as a gripping force
were regressed based on 30 min of data. The two monkeys in this
study used the brain interface to control a robot arm, which was
tracked and fed back to the animal as a cursor on a 2-D screen.
Unlike most earlier studies that focused primarily on motor cor-
tical areas, monkeys in this study had hundreds (96-320) of mi-
crowires implanted in many brain areas. In this and similar pre-
vious studies, the animals were placed in a laboratory environ-
ment to perform stereotypical tasks with a goal to regenerate a
step-by-step movement trajectory of the arm movement.

Recently, Musallam et al. [11] published a study in which
they used cognitive signals primarily from the parietal reach
region to determine intended movement to one of 4-8 targets.
Using from 200 to 1100 ms of data from 1-16 neurons during a
prereach hold period, classification rates from 25.6% to 75.2%
were reported. Additionally the expected size, type, and proba-
bility of reward could be determined to some degree.

In this and other relevant studies, neuroscientists seek to un-
derstand the motor system by examining the effect on motor
behavior induced by cortical action. In the past two decades,
studies of the motor cortex, especially those interested in BMIs
have focused on generating mappings to determine an animal’s
limb movements from its motor cortical firing activities. While
it is important to understand how the nervous system controls
movement, we are interested primarily in devising a system
that can practically move from initial studies of simple tasks to
someday improving the quality of life for human patients.

Motivated by creating realistic devices that can provide pa-
tients with tangible increases in quality of life, we focus on a
scenario of possibly controlling a vehicle that is not controlled
from second-to-second by updating some 3-D trajectory, which
many research groups aspire to, but rather is controlled by high
level commands from the user. It is conceivably useful to tell a
wheelchair to “Go Left,” “Stop,” or “Veer Right,” and let sensors
and actuators on the wheelchair work out the trajectory details,
as opposed to constantly setting and resetting the trajectory of
the wheelchair. This can be viewed as a series of simple asyn-
chronous decisions. We view driving toward a goal a likely ob-
jective of such a device and seek to model such a situation using
rats driving toward a lighted cue object. In this study, we use a
driving surrogate task with paddle pressing in a conditioning
box to mimic the trajectory of decisions needed to pilot a ve-
hicle toward a cue.

Driving with supervisory commands requires deriving a dis-
crete control signal. One of the objectives of this study is to ex-
plore if it is possible to devise such an abstract supervisory con-
trol command from the firing patterns in the motor and premotor

73

regions. Specifically in this study, rats were trained to press pad-
dles on the left and right sides of their conditioning chamber. We
do not try to ask how the recorded neurons, individually or col-
lectively, in the motor cortex are involved with the trajectory of
the paw or shoulder, especially since we allow the rat to vary this
trajectory at will. What is important is that some neurons are ac-
tively involved with movements that eventually lead to the man-
ifestation of a high-level output like “press the left paddle” and
that by computing with these neurons one can begin to detect
the control signal corresponding to “press the left paddle.” This
is not a trivial problem if one only records from a small number
of neurons in a single hemisphere. For example, there seems to
be little difference in how an animal presses two identical pad-
dles varying only in their spatial location by about 15 cm and
presumably little difference in how the cortex controls certain
aspects of limb movement. However, as shown in the data and
analysis following, features do exist in the neural data that allow
the determination of the rat’s directional control signal.

The task of discriminating between Left and Right classes of
responses by creating a mapping from neural activity to move-
ment control signals is ideally suited to support vector machines
(SVMs) [12]. The SVM is a classification algorithm that is rig-
orously posed so that few free parameters are needed to develop
a robust classifier even for high-dimensional data. In fact, the
evaluation of the decision function at the heart of the SVM is
based on a subset of the training data. The support vector ma-
chine has successfully been applied to data sets from many fields
often resulting in improvement over traditional methods.

In the following study, we devised a test system that allowed
us to determine to what extent it is possible to derive supervisory
commands for generating a correct paddle press control signal
from a handful of electrode recordings spanning a broad sample
of the motor cortex. We trained rats in a directional task within
a conditioning chamber mimicking wheelchair driving control,
allowing them to complete the task in any way they desired.
We then examined cortical recordings preceding left and right
paddle presses and used an SVM to create a closed-loop BMI
system. This system functionally replaced the paddle pressing,
allowing rats who had never interacted with such a system be-
fore to achieve an average accuracy of 78% on the first day of
exposure to the interface. This accuracy was significantly better
than that predicted by a naive Bayesian algorithm. Further, the
calibration of the SVM model and its parameters was based on
less than 100 trials of real paddle press tasks where only the time
when the rat was asked to press the paddle was noted and not
any specifics of the path or timing of the motion.

II. METHODS
A. Surgical Implantation

Four male Sprague—Dawley rats were used in this research.
The animals were implanted with 2 x 4 arrays of 50 pm
tungsten wires coated with polyimide and spaced 500 pm
apart for a total array size of approximately 1.5 x 0.5 mm.
The surgical procedure is similar to that described in [13]. In
brief, rats (weighing 250-400 g) were initially anesthetized
with a mixture of ketamine (5 mg/kg), xylazine (0.5 mg/kg),
and acepromaizine (0.1 mg/kg) and supplemented as needed
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Fig. 1. Rat’s view of the conditioning chamber.

to maintain areflexia. The physiological state of the animal
was monitored for blood oxygen saturation and heart rate. The
animal was placed in a stereotactic frame (Kopf Instruments,
CA) and warmed with a water blanket maintained at 37 °C.
The skin and fascia covering the surgical site was removed to
the cranium and two stainless steel bone screws were placed
on either side of the midline in the parietal plates to provide
anchors for the dental acrylic. Another small craniotomy was
opened to insert a stainless steel ground wire. The exposed
craniotomies were then covered with GelFoam™ and the entire
surgical site was sealed with dental acrylic. The electrode
connector (Omnetics, MN) was also cemented in place with
dental acrylic.!

The implant was centered +3 mm anterior, +2 mm lateral
from bregma, and —2 mm ventral from the surface of the dura
mater. The implant site was intended to broadly sample the
motor cortical area [14] including neck, forepaw, and shoulder
regions. The rat motor region is often referred to as having
rostral (analogous to pre- or supplementary motor cortex) and
caudal (analogous to primary motor cortex) regions. The im-
plant site targets the rostral region for two reasons, first re-
sponses in the rostral region seem less tightly coupled (tempo-
rally) to movement initiation or cessation but remain highly cor-
related to kinematics, and amongst cells with large degrees of
modulation, rostral cells favor premovement bursts over bursts
later in the movement [15].

B. Animal Training and Behavioral Task

Rats were placed in an operant conditioning chamber (Med
Associates, VT) equipped with retractable paddles on the left
and right (Med Associates PN ENV-112CM) as well as a
nonretractable paddle in the center panel, named the “ready
paddle” (Med Associates PN ENV-110RM). A custom made
food trough was placed in the center panel, under the center
panel lights (Fig. 1). Three horizontally spaced red light-emit-
ting diode (LED) indicators were installed on each of the three
custom made panels. Of the three lights, only the noncenter
LEDs on the left and right panels, and the center LED on the
center panel were used. These LED indicators are referred to

IThe Institutional Animal Care and Use Committee at Arizona State Univer-
sity approved the experimental protocol for this investigation.

as outside left, inside left, center, inside right, and outside right
for convenience.

During the training phase before the electrodes were im-
planted, the rat began a trial by pressing the nonretractable
central ready paddle. One of the four cue LEDs on either
the left or right panel was illuminated. Two seconds later the
retractable paddles extended. With each press of the paddle,
an audible sound was produced in addition to the light being
shifted to the left or right one step corresponding to a left or
right press, respectively. The rat was trained to move the light
toward the center by properly pressing the paddles until the
center light was illuminated. For example, if the outside left
light was initially lit, the rat was expected to press the left
paddle twice to turn on the light in the center. If the rat stopped
responding once the center LED was on, he was rewarded with
a food pellet (45 mg Noyes). Two behaviors could result in a
brief time out: responses that moved the light out of the box
(i.e., pressing the left paddle when the outside right light was
illuminated) or lack of response within an allowed response
window (i.e., 10 s without response). The light must remain in
the center position for 1 s to receive a food reward. If the rat
responded before this one second was up the light would move
past the center. This could be corrected if the proper paddle
was pressed within the allowed response window. During the
entire task performance, the animal was free to move about the
conditioning chamber and produce natural movements.

C. Neural Data

After an animal had achieved a task performance level in
excess of 90% in training (90% of the trials ended in food
rewards), microwire arrays were implanted into his right
hemisphere motor cortical areas. While handedness was
demonstrated in most animals, this was not taken into account
when selecting the hemisphere to implant. This was due to two
major observations: 1) the animal was freely moving during the
task and thus free to implement any paddle pressing strategy,
and 2) that the implanted electrodes covered a broad range of
his motor cortex.

Implanted rats were then placed in the behavioral apparatus
again where action potentials from the microwires were ampli-
fied and recorded using an NMAP system (Plexon Inc., TX).
A custom interface was built to allow the paddle press, paddle
extension, cue illumination, and start and end of trial signals to
be utilized simultaneously by the Med Associates system and
recorded by the digital inputs of the NMAP system.

Little preprocessing was done to the recorded data. Often
visual inspection would suggest that activity from more than
one neuron influenced the potential on a single electrode. When
a clear distinction could be made amongst multiple waveform
patterns they were treated as separate neural signals. Tradition-
ally, such neural information has been treated as discrete events
marked at times when extra-cellular potentials indicate an action
potential has fired in a neuron close to the electrode. This leaves
alist of times when action potentials, commonly called “spikes,”
are detected. This list of discrete events can be dealt with di-
rectly or transformed into a continuous variable. Most methods
that perform this transformation are estimating the mean firing



OLSON et al.: CLOSED-LOOP CORTICAL CONTROL OF DIRECTION USING SVMS

75

Salient Event

Neural Spike Raster T

> Time

[T T Il
T I T

NAV of Vector Length K=10

for the i-th neuron

Neuron 1

(1101213737412 T1[012]
== ,_>

Bin Size Latency

Neuron i
Neuron N

Concatenated NAV ——— A — P

from N neurons
for a trial

|Bin1 l... |BinK| PP |Bin1| oo |BinK| cee |Bin1| ceos |BinK|

Fig. 2. Construction of an NAV.

rate of a neuron over a given time interval. In this study, tem-
poral bins are formed and the number of events that take place
in a given bin are counted to provide such an estimate.

Neural activity vectors (NAVs) were created from binned
spike times. To bin the data into NAVs, three parameters must
be selected: bin size, latency, and window size. Bin size refers to
a period of time in which spike events are counted. A window,
usually containing several bins, is the period of time under
consideration in the classification algorithms. The vector length
is the number of bins in a window. The last bin is aligned to
some salient event (e.g., paddle press) with an offset called the
latency. The convention adopted in this study aligns the last bin
before an event if the latency is negative, and places the last bin
after an event for positive latencies. In the following studies,
NAVs refer to a vector of concatenated NAVs each formed from
a separate neuronal signal. Such formulation aims at capturing
the spatial-temporal nature of a neural representation and serves
as inputs to a nonlinear mapping between neural input and the
rat’s paddle pressing control signal. An example of creating an
NAV for N neurons with vector length of 10 and a negative
latency is shown in Fig. 2.

D. SVM Implementation

Prediction algorithms are at the heart of all of the closed loop
BMI studies. The two broad classes of prediction algorithms that
are used are regression and classification. Regression algorithms
attempt to map inputs to a continuous space of output variables.
For example, monkey reaching task can map neural signals into
a2-D velocity space in a subset of 2. Classification algorithms,
on the other hand, map inputs onto a set of discrete classes usu-
ally with no implied ordering.

The prediction algorithm used here to map neural signals to a
specific output class is the SVM. Intuitively, the SVM attempts
to construct a separating line (or specifically a separating hyper-
plane) in a high-dimensional space to divide classes of data from
one another. This separation is done to increase the “margin”
between the two classes and is based on a subset of the training
data called the support vectors. It is not always possible to ab-
solutely separate two classes and, therefore, an alternative for-
mulation of the problem utilizes risk minimization to optimally
determine the linear separation. SVMs are popular not only be-
cause of their rigorous formulation, but also because they are
widely applicable in real-world problems. The flexibility of the

system is not hampered by high-bias problems that can some-
time plague highly flexible systems (i.e., the overfitting problem
of many approximation methods).

Training the SVM requires labeled sets of data. In this study,
+1 was assigned to NAVs from a window associated with a right
paddle press control signal, and —1 for a left paddle press con-
trol signal. We then seek to define a function on NAVs such that
when evaluated at an input with a right NAV the output is pos-
itive, and vice versa. This is called the decision function. The
solution for such a function is elegantly posed as a quadratic
programming problem. Details of this problem and its solution
appear in [16]. What is critical here is that the SVM allows us
to solve for a function, based on a subset of the training exam-
ples called the support vectors, mapping NAVs into classes of
behaviors corresponding to movement control signals.

SVMs have been developed extensively since they were
introduced by Vapnik for solving classification and nonlinear
function approximation problems. The training condition of
SVMs can be reformulated as a convex quadratic programming
(QP) problem hence a global and unique solution to the problem
may be obtained by various numerical techniques. An upper
bound on testing errors is theoretically available in terms of the
Vapnik—Chervonenkis dimension.

Consider the binary classification problem. The training data
consists of N pairs {(X;,y:)}~; with input X, € R" and
binary class labels y; € {—1,1}. The classifier takes the form

y(X) = sign(WT¢(X) +b)

where ¢ maps the input space R™ to a high-dimensional fea-
ture space R, and W is a weight matrix. The evaluation of the
optimal separating hyperplane will lead to the following opti-
mization problem:

N
. 1 -
wdn,, {§W WMZ&}

t=1
subject to  y (W' h(Xe) +b) >1-¢&
and

& >0, t=0,...,N.

geeey

The &;’s are slack variables which reflect the level of misclas-
sifications for nonseparable samples and -y is a tuning parameter
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that expresses the relative sensitivity of the solution to misclas-
sified examples. By constructing the Lagrangian, we deal with
the dual optimization problem

N 1 N N
{Z ap — 2 Z Z atasytysK(Xtv XS)}
t=1

t=1 s=1

max
Qs XN

subject to 0 <y <y

N
Z apyy =0
t=1

where K(X;, X,) = ¢(X;)T¢(X,) is a kernel function. Var-
ious types of kernel functions may be chosen so long as they
satisfy the Mercer condition [16]. Popular choices include poly-
nomials, radial basis functions (RBFs), and sigmoid functions.
This study uses RBF kernels.

The formulation leads to the decision function with the form

N
FX) =) e K(X, Xy) +b.
t=1

The observations which appear in the decision function, i.e.,
the data points with nonzero coefficients o, are called support
vectors. Therefore, the complexity of the constructed learning
machine depends on the number of support vectors rather than
the dimension of the feature space.

E. Closed-Loop System

The closed-loop system is a real-time interface that seeks to
use the predictions of directional control signals from the SVM
algorithm to replace the actual pressing of paddles by the rat.
So, when neural input indicates a control signal corresponding
to the rat’s desire to press the left/right paddle is detected, a relay
on the left/right side of the chamber is actuated to functionally
replace the paddle and send an audible reinforcement to the rat.
Thus, the only difference in the task is the replacement of paddle
pressing with the closed-loop system.

For the purposes of this study, only the inside left and inside
right cues were given. This allowed both correct and incorrect
trials to be given appropriate feedback: Correct trials moved the
cue to the middle and resulted in a reward, incorrect trials moved
to the corresponding outside light and result in a brief time-out.
Refer to Fig. 3 for an illustration of the closed-loop system.

Fig. 4 is an illustration of how a traditional offline view of
the task differs from the challenges faced in an online interface
with respect to how NAVs are aligned. A major challenge for the
closed-loop system is one of temporal alignment for obtaining
NAVs. If the goal is only to record data and later make offline
predictions, alignment is not a problem since the actual paddle
press time is known and NAVs can be aligned to such events
(with positive or negative latencies) as shown in the top panel
of Fig. 4. In closed-loop applications, predicting paddle presses,
or more precisely directional control signals, should occur with
data available before any paddle is pressed. Waiting for a paddle
press to occur is not appropriate since this is obviously too late
to functionally replace said paddle press.

Instead of a fixed intertrial interval, which could sometimes
catch the rat off guard grooming himself, this system allowed
the rat to control the pace of the session. To accommodate this

- o e Digital
Bin Data swW o gt :
NAV Decision Function Oulpul utpu
Class
Spike
Times BMI
NMAP
Neural Left or Right
Signals Relay

Rat

Visual, Auditory, & Reward
Feedback

Fig. 3. Diagram of the closed-loop BMI system.

and ensure the rat was paying attention at the start of the trial,
the ready paddle was added above the food trough (Fig. 1) and
the animal was trained to press this paddle to start the task. At
the start of the task, the cue light was immediately lit and 2 s
later the paddles extended. This allowed alignment of NAVs to
the paddle deployment time (or 2 s after the start of trial, refer
to online calibration in Fig. 4). NAV parameters for animals in
the closed-loop system were fixed at bin size of 100 ms, latency
of —100 ms, and vector length of 10 bins after systematic op-
timization [17], thus the classification decision could be made
before the paddles would normally be extended.

To derive the closed-loop SVM control decision function, an
online calibration process was first conducted (Fig. 4). Calibra-
tion of the SVM came from the first 99-100 trials of the day.
These trials were conducted with physical paddle pressing while
collecting NAVs. The data from the correctly executed trials
were then used to train the SVM model and to obtain the SVM
parameters.

On all subsequent trials, the SVM model and parameters ob-
tained from online calibration were applied, functionally re-
placing the paddles. Thus, after the rat started a trial by pressing
the ready paddle, an NAV was extracted from the recorded data.
The SVM decision function was evaluated at the NAV to deter-
mine if the neural signal corresponded to the left or right control
signal class, and the corresponding relay was actuated elimi-
nating the need for the paddles to be deployed (Fig. 3).

The total task duration (calibration and closed-loop system
control) was about 45 min. Four rats were trained for this study
and results from their first day of utilizing the interface with
8-10 neural signals are presented. Fig. 5 is an example of the
perievent histograms of 10 neurons from R4 during a closed-
loop experiment.

III. RESULTS
A. Closed-Loop Study

Four rats were used to evaluate the performance of the closed-
loop system. As discussed earlier, online calibration trials were
conducted first to obtain the SVM model and its parameters.
In the following, we make use of a few accuracy measures to
illustrate how well the rats interfaced with the neuroprosthesis.
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Fig. 5. Perievent histograms of firing activities of ten neurons of R4 in a closed-loop experiment. Each row shows the average firing rate (per second per trial) for
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Table I is a summary of the results from those rats tested on TABLE 1

the closed-loop system. The number of recorded neurons used ONLINE STUDY RESULTS

in the study is given in the second column of the table. The third Number of | Accuracy of Cross- Online
column shows the accuracy of the rat in the paddle pressing NIZ?;e Sl‘Jnngilte Ca[l,‘att’iré‘ltéo“ Validation | Control
phase. That is, how many of the calibration trials were correctly Used Press Accuracy | Accuracy
executed by the rat using paddle pressing. This number should E; 190 g;gg 3?17)2 ;ggg
be thought of as how likely the rat is to plan a correct directional R3 3 333 7870 7170
control decision in the algorithm decision window. R4 10 89.00 87.64 85.81
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TABLE 1I
CONFUSION MATRICES FOR ONLINE CONTROL
Trial | Percentage | Percentage Overall
C Classified classified A
US| Tas Left as Right couracy
Rl Left 58.18 41.82 77.03
Right 4.46 95.54
Right 40.78 59.22
R3 Left 62.96 37.04 71.70
Right 19.23 80.77
R4 Left 91.57 8.43 85.81
Right 21.54 78.46

To obtain a quantitative evaluation of how the SVM model
may perform for online application, a leave-one-out cross vali-
dation was performed utilizing the correct paddle pressing trials.
This shows how often an NAV from a calibration trial would
have been classified correctly if it were not one of the calibra-
tion trials. To some extent, these results, shown in the fourth
column, suggest to us how “separable” the calibration data is.
The final column shows the ability of each animal to use the
closed-loop system. That is, of the trials, the rat completed using
the interface, how many resulted in the correct paddle being ac-
tuated. The accuracy of the online closed-loop trials ranges from
71.70% to 85.81% (mean 77.72%) and are all well above 50%
expected by chance.

Table II elucidates the nature of the errors in the online trials
with confusion matrices. Here, we see that of the trials cued as
Left or Right, what the accuracy is for the closed-loop system
and what the type I and type II errors are, respectively. Note
that the number of Left and Right trials is not always equal and
thus the average of Left and Right accuracies is not necessarily
the overall accuracy.

TABLE III
ONLINE STUDY COMPARISON DATA
SVM
Rat Online Bf;é;Zn
Name Control Accuracy
Accuracy
RI 77.03 65.32
R2 76.33 64.73
R3 71.70 58.49
R4 85.81 62.84

B. Naive Bayesian Comparison

To determine the effectiveness of the SVM algorithm and thus
the closed-loop system, the results obtained thus far were com-
pared to analysis by standard methods using extensive offline
data analysis. Specifically, we prepared a naive Bayesian classi-
fier [18] for each rat by utilizing the same calibration data with
which the closed-loop SVM classifier was trained. The classifier
was then tested using the neural data collected and acted upon
during the online closed-loop study. That is, we compare the two
approaches using the same training and testing data. The results
follow in Table I1I. The results again demonstrated that the SVM
is a robust and effective tool in implementing the closed-loop
system.

C. Prolonged Use and Winning Streaks

One of the rats (Rat 4) used the interface for three consec-
utive days (with 100 calibration trials at the beginning of each
day). The confusion matrices and overall accuracies follow in
Table I'V. The average accuracy over all three days was 90.51%.

In addition, to further examine usage trends from the closed-
loop system and thus give us an idea of how well a given rat
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TABLE IV
CONFUSION MATRICES OVER DAYS
Trial | Percentage | Percentage Overall
Classified classified

Cues as Left as Right Accuracy
Dayl Left 91.57 8.43 85.81

Right 21.54 78.46
Day2 Left 93.83 6.17 92.14

Right 10.17 89.83
Day3 Left 91.89 8.11 93.55

N2 Rieht 200 96.00

could form a trajectory in a driving task, we extracted winning
streak data from all four rats on the first day of online recording.
A winning streak is measured as the number of trials that the rats
were able to successfully use the interface before a mistake was
made. Fig. 6 summarizes the results and compares the rats’ per-
formance with the case of making decisions simply by chance.
It is obvious from the results that there is a level of control dis-
played by all four rats.

IV. CONCLUSION

This study introduces the first step along the path to a practical
BMI for a driving task. First, we have shown that with a small
number of nonspecific motor cortical neurons, nonstereotyp-
ical experimental conditions, and using behavioral and neural
data in a real-time fashion, we could build a useful system al-
lowing four rats to functionally replace paddle pressing move-
ments with high degrees of accuracy. Second, we have shown
that in this study we could improve accuracy of the task by over
10% without adding neurons, but by utilizing a sophisticated al-
gorithm. Finally, we have shown that one animal was able to use
the interface successfully over the course of three days with his
overall accuracy improving each day.

Our success with determining directional control signal has
inspired us to look further into the idea of a supervisory closed-
loop system directing a vehicle. We have begun to expand the
system into actual vehicle control and soon hope to allow for
full velocity control using an asynchronous system interacting
with a highly sophisticated vehicle capable of sensing its sur-
rounding and interpreting the supervisory commands in light of
such sensor readings.
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