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Administrative Stuff

• Homework 10 is due on Monday Nov. 10 @ 10pm.



Administrative Stuff

• We are starting with Chapter 6 from the textbook



First Design Pattern:
Moore Machines



Moore Machine:
A Type of Finite State Machine (FSM)
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Reset 

B: z = 0 A: z = 0 w 0 = 
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w 0 = 

w 0 = w 1 = 

[ Figure 6.3 from the textbook ]



C: z = 1 

Reset 

B: z = 0 A: z = 0 w 0 = 

w 1 = 

w 1 = 

w 0 = 

w 0 = w 1 = 

• Finite number of states (nodes).
• Discrete state transitions (edges).
• Only “in” one state at a time.
• One reset state
• Every state has an outgoing state transition for each possible input.

[ Figure 6.3 from the textbook ]



The next state depends on both 
the current state and the current input.
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[ Figure 6.3 from the textbook ]



The output depends only on the current state.
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[ Figure 6.3 from the textbook ]
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input
output



Let’s do a simulation
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In general, we need to 
start tracing from the 
beginning to know 
which state the FSM 
is in. It may not be 
clear from a short 
sequence of outputs.

C: z = 1 

Reset 

B: z = 0 A: z = 0 w 0 = 

w 1 = 

w 1 = 

w 0 = 

w 0 = w 1 = 



Inferring the States



Inferring the States

A B CA A A AB B C C



What is the meaning 
of each state?

C: z = 1 

Reset 

B: z = 0 A: z = 0 w 0 = 
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w 1 = 

w 0 = 

w 0 = w 1 = 



What is a State?

It is not really a memory of every past input
(We might run out of space to remember it all!)

Rather, it is a characterization or snapshot of the pattern 
of inputs that have come before.



Moore Machine Implementation

The state diagram is just an illustration to 
help us describe and reason about how the 

FSM will behave in each of its states.

So, how do we turn it into a circuit?



Combinational 
circuit 

Memory 
Elements

Clock 

Combinational 
circuit Z 

W 

Note: The W and Z lines need not be wires. They can be buses.

[ Figure 6.1 from the textbook ]

Moore Machine Implementation



State Storage

Combinational 
circuit 

Flip-Flop 
Array

Clock 

Combinational 
circuit Z 

Q(t) W 

Any usable “memory” of the preceding input sequence 
is encoded in the flip-flop array.

Q(t+1) 



The Flip-Flop array stores an encoding of the 
current state.

Q(t+1)

Clock

Q(t)

FSM States



The Flip-Flop array stores an encoding of the 
current state.

Q(t+1)

Clock

Q(t)

FSM States

current state



The Flip-Flop array stores an encoding of the 
current state.

Q(t+1)

Clock

Q(t)

FSM States

next state



State Storage

Combinational 
circuit 

Flip-Flop 
Array

Clock 

Combinational 
circuit Z 

Q(t) W 

Any usable “memory” of the preceding input sequence 
is encoded in the flip-flop array.

Q(t+1) 

current
 state

next
 state



Each of the states in our design is identified by 
a distinct code.

If we use 3 flip-flops, then the FSM can have up 
to 23 = 8 distinct states.

So, when the flip-flop array contains the code 
011, we say that the machine is in state 011.

State Encoding



Every active clock edge causes a state transition.

Combinational 
circuit 

Flip-Flop 
Array

Clock 

Combinational 
circuit Z 

W Q(t) Q(t+1) 

Synchronous Design



We expect the input signals to be stable 
before the active clock edge occurs.

Combinational 
circuit 

Flip-Flop 
Array

Clock 

Combinational 
circuit Z 

W Q(t) Q(t+1) 

Synchronous Design



There is a whole other class of sequential circuits that are 
asynchronous, but we will not study them in this course.

Combinational 
circuit 

Flip-Flop 
Array

Clock 

Combinational 
circuit Z 

W Q(t) Q(t+1) 

Synchronous Design



Sequential Circuits: Key Ideas

The current output depends on something about the 
preceding sequence of inputs  (and maybe the current 
output).

Using memory elements (i.e., flip-flops), we design the 
circuit to remember some relevant information about 
the prior inputs.



Moore Machine Example



We need to find both the next state logic and the 
output logic implied by this machine.

C: z = 1 

Reset 

B: z = 0 A: z = 0 w 0 = 

w 1 = 

w 1 = 

w 0 = 

w 0 = w 1 = 

[ Figure 6.3 from the textbook ]



Present Next state Output
state w = 0 w = 1 z 

A 
B 
C 

C: z = 1 

Reset 

B: z = 0 A: z = 0 w 0 = 

w 1 = 

w 1 = 
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w 0 = w 1 = 



Present Next state Output
state w = 0 w = 1 z 

A A B 0 
B A C 0 
C A C 1 

C: z = 1 

Reset 

B: z = 0 A: z = 0 w 0 = 

w 1 = 

w 1 = 
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w 0 = w 1 = 

[ Figure 6.4 from the textbook ]



How to represent the States?

One way is to encode each state with a 2-bit binary number

A ~ 00
B ~ 01
C ~ 10



How to represent the states?

One way is to encode each state with a 2-bit binary number

A ~ 00
B ~ 01
C ~ 10

How many flip-flops do we need?



Let’s use two flip-flops 
to hold the machine’s state



Clock

y1

y2Y2

Y1



Let’s pick D Flip-Flops.

Clock

y1

y2Y2

Y1 D Q 

Q 

D Q 

Q 



We will call y1 and y2 the present state variables.

We will call Y1 and Y2 the next state variables.
[ Figure 6.5 from the textbook ]
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Two zeros on the output JOINTLY represent state A.

Clock

y1

y2Y2

Y1

0

0
D Q 
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D Q 

Q 

State = y2 y1



This flip-flop output pattern represents state B.
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This flip-flop output pattern represents state C.
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What does this flip-flop output pattern represent?

Clock

y1

y2Y2

Y1

1

1
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Q 

State = y2 y1



This would be state D, but we don't have one 
in this example. So, this is an impossible state. 

Clock

y1

y2Y2

Y1

1

1
D Q 

Q 

D Q 

Q 

State = y2 y1



We will call y1 and y2 the present state variables.

We will call Y1 and Y2 the next state variables.
[ Figure 6.5 from the textbook ]

Next State Logic Output Logic

Clock

y1
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We will call y1 and y2 the present state variables.

We will call Y1 and Y2 the next state variables.
[ Figure 6.5 from the textbook ]
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We need to find logic expressions for
Y1(w, y1, y2),  Y2(w, y1, y2),  and  z(y1, y2).

[ Figure 6.5 from the textbook ]
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We need to find logic expressions for
Y1(w, y1, y2),  Y2(w, y1, y2),  and  z(y1, y2).

[ Figure 6.5 from the textbook ]
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Present Next state Output
state w = 0 w = 1 z 

A A B 0 
B A C 0 
C A C 1 

Suppose we encoded our states in the same 
order in which they were labeled:

A ~ 00
B ~ 01
C ~ 10

[ Figure 6.4 from the textbook ]



Present Next state Output
state w = 0 w = 1 z 

A A B 0 
B A C 0 
C A C 1 

Present 
Next state 

state w = 0 w = 1 Output

z 

A 00
B 01
C 10

11

The finite state 
machine will 

never reach a state 
encoded as 11.

[ Figure 6.6 from the textbook ]



Present Next state Output
state w = 0 w = 1 z 
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Present 
Next state 

state w = 0 w = 1 Output

y 1 Y 2 Y 1 Y 2 Y 1 
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11 dd dd d 

2 y 

We arbitrarily 
chose these as our 
state encodings. 
We could have 

used others.

[ Figure 6.6 from the textbook ]
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Note that the textbook draws these K-Maps
differently from all previous K-maps 
(the most significant bit indexes the rows).
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w y 1 y 2 + ( ) = 

Ignoring don't cares Using don't cares 

Don’t care conditions simplify the combinatorial logic

[ Figure 6.7 from the textbook ]
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[ Figure 6.8 from the textbook ]

Draw the Circuit Diagram



[ Figure 6.8 from the textbook ]

Y2= w (y1 + y2)

Y1= w y1 y2

Draw the Circuit Diagram

this is the 
next-state logic



[ Figure 6.8 from the textbook ]

Y2= w (y1 + y2)

Y1= w y1 y2

z = y2

Draw the Circuit Diagram

this is the 
output logic

this is the 
next-state logic



[ Figure 6.8 from the textbook ]

Y2= w (y1 + y2)

Y1= w y1 y2

z = y2

Draw the Circuit Diagram

these are the 
flip-flops
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Moore Type



[ Figure 6.8 from the textbook ]

Don’t Forget to Add the Reset Line



[ Figure 6.8 from the textbook ]

Don’t Forget to Add the Reset Line

Reset



[ Figure 6.8 from the textbook ]

When the reset 
signal is equal to 
zero it puts the 

machine back to its 
start state, which is 

state 00  (or A) 
in this case.

0

0

0

State A=00



[ Figure 6.8 from the textbook ]
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When the reset 
signal is equal to 
zero it puts the 

machine back to its 
start state, which is 

state 00  (or A) 
in this case.
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[ Figure 6.9 from the textbook ]
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Summary: Designing a Moore Machine
● Obtain the circuit specification.

● Derive a state diagram.

● Derive the state table.

● Decide on a state encoding.

● Encode the state table.

● Derive the output logic and next-state logic.

● Draw the circuit diagram

● Add a reset signal.



Questions?



THE END


