
Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

CprE 2810:
Digital Logic

Synchronous Sequential Circuits
Basic Design Steps

CprE 2810: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

• Homework 10 is due on Monday Nov. 10 @ 10pm.

Administrative Stuff

• We are starting with Chapter 6 from the textbook

First Design Pattern:
Moore Machines

Moore Machine:
A Type of Finite State Machine (FSM)

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

[Figure 6.3 from the textbook]

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

• Finite number of states (nodes).
• Discrete state transitions (edges).
• Only “in” one state at a time.
• One reset state
• Every state has an outgoing state transition for each possible input.

[Figure 6.3 from the textbook]

The next state depends on both
the current state and the current input.

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

[Figure 6.3 from the textbook]

The output depends only on the current state.

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

[Figure 6.3 from the textbook]

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

input
output

Let’s do a simulation

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

In general, we need to
start tracing from the
beginning to know
which state the FSM
is in. It may not be
clear from a short
sequence of outputs.

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

Inferring the States

Inferring the States

A B CA A A AB B C C

What is the meaning
of each state?

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

What is a State?

It is not really a memory of every past input
(We might run out of space to remember it all!)

Rather, it is a characterization or snapshot of the pattern
of inputs that have come before.

Moore Machine Implementation

The state diagram is just an illustration to
help us describe and reason about how the

FSM will behave in each of its states.

So, how do we turn it into a circuit?

Combinational
circuit

Memory
Elements

Clock

Combinational
circuit Z

W

Note: The W and Z lines need not be wires. They can be buses.

[Figure 6.1 from the textbook]

Moore Machine Implementation

State Storage

Combinational
circuit

Flip-Flop
Array

Clock

Combinational
circuit Z

Q(t) W

Any usable “memory” of the preceding input sequence
is encoded in the flip-flop array.

Q(t+1)

The Flip-Flop array stores an encoding of the
current state.

Q(t+1)

Clock

Q(t)

FSM States

The Flip-Flop array stores an encoding of the
current state.

Q(t+1)

Clock

Q(t)

FSM States

current state

The Flip-Flop array stores an encoding of the
current state.

Q(t+1)

Clock

Q(t)

FSM States

next state

State Storage

Combinational
circuit

Flip-Flop
Array

Clock

Combinational
circuit Z

Q(t) W

Any usable “memory” of the preceding input sequence
is encoded in the flip-flop array.

Q(t+1)

current
 state

next
 state

Each of the states in our design is identified by
a distinct code.

If we use 3 flip-flops, then the FSM can have up
to 23 = 8 distinct states.

So, when the flip-flop array contains the code
011, we say that the machine is in state 011.

State Encoding

Every active clock edge causes a state transition.

Combinational
circuit

Flip-Flop
Array

Clock

Combinational
circuit Z

W Q(t) Q(t+1)

Synchronous Design

We expect the input signals to be stable
before the active clock edge occurs.

Combinational
circuit

Flip-Flop
Array

Clock

Combinational
circuit Z

W Q(t) Q(t+1)

Synchronous Design

There is a whole other class of sequential circuits that are
asynchronous, but we will not study them in this course.

Combinational
circuit

Flip-Flop
Array

Clock

Combinational
circuit Z

W Q(t) Q(t+1)

Synchronous Design

Sequential Circuits: Key Ideas

The current output depends on something about the
preceding sequence of inputs (and maybe the current
output).

Using memory elements (i.e., flip-flops), we design the
circuit to remember some relevant information about
the prior inputs.

Moore Machine Example

We need to find both the next state logic and the
output logic implied by this machine.

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

[Figure 6.3 from the textbook]

Present Next state Output
state w = 0 w = 1 z

A
B
C

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

Present Next state Output
state w = 0 w = 1 z

A A B 0
B A C 0
C A C 1

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

[Figure 6.4 from the textbook]

How to represent the States?

One way is to encode each state with a 2-bit binary number

A ~ 00
B ~ 01
C ~ 10

How to represent the states?

One way is to encode each state with a 2-bit binary number

A ~ 00
B ~ 01
C ~ 10

How many flip-flops do we need?

Let’s use two flip-flops
to hold the machine’s state

Clock

y1

y2Y2

Y1

Let’s pick D Flip-Flops.

Clock

y1

y2Y2

Y1 D Q

Q

D Q

Q

We will call y1 and y2 the present state variables.

We will call Y1 and Y2 the next state variables.
[Figure 6.5 from the textbook]

Clock

y1

y2Y2

Y1 D Q

Q

D Q

Q

Two zeros on the output JOINTLY represent state A.

Clock

y1

y2Y2

Y1

0

0
D Q

Q

D Q

Q

State = y2 y1

This flip-flop output pattern represents state B.

Clock

y1

y2Y2

Y1

0

1
D Q

Q

D Q

Q

State = y2 y1

This flip-flop output pattern represents state C.

Clock

y1

y2Y2

Y1

1

0
D Q

Q

D Q

Q

State = y2 y1

What does this flip-flop output pattern represent?

Clock

y1

y2Y2

Y1

1

1
D Q

Q

D Q

Q

State = y2 y1

This would be state D, but we don't have one
in this example. So, this is an impossible state.

Clock

y1

y2Y2

Y1

1

1
D Q

Q

D Q

Q

State = y2 y1

We will call y1 and y2 the present state variables.

We will call Y1 and Y2 the next state variables.
[Figure 6.5 from the textbook]

Next State Logic Output Logic

Clock

y1

z

w
y2Y2

Y1 D Q

Q

D Q

Q

We will call y1 and y2 the present state variables.

We will call Y1 and Y2 the next state variables.
[Figure 6.5 from the textbook]

Next State Logic Output Logic

Clock

y1

z

w
y2Y2

Y1

Q(t) = y2 y1 Q(t+1) = Y2Y1

D Q

Q

D Q

Q

We need to find logic expressions for
Y1(w, y1, y2), Y2(w, y1, y2), and z(y1, y2).

[Figure 6.5 from the textbook]

Next State Logic Output Logic

Clock

y1

z

w
y2Y2

Y1 D Q

Q

D Q

Q

We need to find logic expressions for
Y1(w, y1, y2), Y2(w, y1, y2), and z(y1, y2).

[Figure 6.5 from the textbook]

Next State Logic Output Logic

Clock

y1

z

w
y2Y2

Y1 D Q

Q

D Q

Q

Present Next state Output
state w = 0 w = 1 z

A A B 0
B A C 0
C A C 1

Suppose we encoded our states in the same
order in which they were labeled:

A ~ 00
B ~ 01
C ~ 10

[Figure 6.4 from the textbook]

Present Next state Output
state w = 0 w = 1 z

A A B 0
B A C 0
C A C 1

Present
Next state

state w = 0 w = 1 Output

z

A 00
B 01
C 10

11

The finite state
machine will

never reach a state
encoded as 11.

[Figure 6.6 from the textbook]

Present Next state Output
state w = 0 w = 1 z

A A B 0
B A C 0
C A C 1

Present
Next state

state w = 0 w = 1 Output

y 1 Y 2 Y 1 Y 2 Y 1
z

A 00 00 01 0
B 01 00 10 0
C 10 00 10 1

11 dd dd d

2 y

We arbitrarily
chose these as our
state encodings.
We could have

used others.

[Figure 6.6 from the textbook]

Present
Next state

state w = 0 w = 1 Output

y 1 Y 2 Y 1 Y 2 Y 1
z

00 00 01 0
01 00 10 0
10 00 10 1
11 dd dd d

2 y

w y2 y1 Y2 Y1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Q(t) = y2y1 and Q(t+1) = Y2Y1

y2 y1 z

0 0

0 1

1 0

1 1[Figure 6.6 from the textbook]

w y2 y1 Y2 Y1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Q(t) = y2y1 and Q(t+1) = Y2Y1

y2 y1 z

0 0 0

0 1 0

1 0 1

1 1 d[Figure 6.6 from the textbook]

Present
Next state

state w = 0 w = 1 Output

y 1 Y 2 Y 1 Y 2 Y 1
z

00 00 01 0
01 00 10 0
10 00 10 1
11 dd dd d

2 y

Present
Next state

state w = 0 w = 1 Output

y 1 Y 2 Y 1 Y 2 Y 1
z

00 00 01 0
01 00 10 0
10 00 10 1
11 dd dd d

2 y

w y2 y1 Y2 Y1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Q(t) = y2y1 and Q(t+1) = Y2Y1

y2 y1 z

0 0 0

0 1 0

1 0 1

1 1 d[Figure 6.6 from the textbook]

w y2 y1 Y2 Y1

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 d

1 0 0

1 0 1

1 1 0

1 1 1

Q(t) = y2y1 and Q(t+1) = Y2Y1

y2 y1 z

0 0 0

0 1 0

1 0 1

1 1 d[Figure 6.6 from the textbook]

Present
Next state

state w = 0 w = 1 Output

y 1 Y 2 Y 1 Y 2 Y 1
z

00 00 01 0
01 00 10 0
10 00 10 1
11 dd dd d

2 y

w y2 y1 Y2 Y1

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 d

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 d

Q(t) = y2y1 and Q(t+1) = Y2Y1

y2 y1 z

0 0 0

0 1 0

1 0 1

1 1 d[Figure 6.6 from the textbook]

Present
Next state

state w = 0 w = 1 Output

y 1 Y 2 Y 1 Y 2 Y 1
z

00 00 01 0
01 00 10 0
10 00 10 1
11 dd dd d

2 y

Present
Next state

state w = 0 w = 1 Output

y 1 Y 2 Y 1 Y 2 Y 1
z

00 00 01 0
01 00 10 0
10 00 10 1
11 dd dd d

2 y

w y2 y1 Y2 Y1

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 d

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 d

Q(t) = y2y1 and Q(t+1) = Y2Y1

y2 y1 z

0 0 0

0 1 0

1 0 1

1 1 d[Figure 6.6 from the textbook]

w y2 y1 Y2 Y1

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 d d

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 d

Q(t) = y2y1 and Q(t+1) = Y2Y1

y2 y1 z

0 0 0

0 1 0

1 0 1

1 1 d[Figure 6.6 from the textbook]

Present
Next state

state w = 0 w = 1 Output

y 1 Y 2 Y 1 Y 2 Y 1
z

00 00 01 0
01 00 10 0
10 00 10 1
11 dd dd d

2 y

w y2 y1 Y2 Y1

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 d d

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 d d

Q(t) = y2y1 and Q(t+1) = Y2Y1

y2 y1 z

0 0 0

0 1 0

1 0 1

1 1 d[Figure 6.6 from the textbook]

Present
Next state

state w = 0 w = 1 Output

y 1 Y 2 Y 1 Y 2 Y 1
z

00 00 01 0
01 00 10 0
10 00 10 1
11 dd dd d

2 y

Present
Next state

state w = 0 w = 1 Output

y 1 Y 2 Y 1 Y 2 Y 1
z

00 00 01 0
01 00 10 0
10 00 10 1
11 dd dd d

2 y

w y2 y1 Y2 Y1

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 d d

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 d d

Q(t) = y2y1 and Q(t+1) = Y2Y1

y2 y1 z

0 0 0

0 1 0

1 0 1

1 1 d[Figure 6.6 from the textbook]

w y2 y1 Y2 Y1

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 d d

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 d d

Q(t) = y2y1 and Q(t+1) = Y2Y1

y2 y1 z

0 0 0

0 1 0

1 0 1

1 1 d

w 00 01 11 10

0

1

0

1 0

y 2 y 1

w
00 01 11 10

0

1

0 d

1 d

y 2 y 1

d

d

0

0

0

0

0

0

1

0 1

0

1

0

d

y 1

0

1

y 2

Y 1

Y 2

z

Note that the textbook draws these K-Maps
differently from all previous K-maps
(the most significant bit indexes the rows).

Y 1 wy1 y 2 =

Y 2 wy1 y 2 wy1 y 2 + =

z y 1 y 2 =

Y 1 wy1 y 2 =

Y 2 wy1 wy2 + =

z y 2 =

w y 1 y 2 + () =

Ignoring don't cares Using don't cares

Don’t care conditions simplify the combinatorial logic

[Figure 6.7 from the textbook]

w 00 01 11 10

0

1

0

1 0

y 2 y 1

w
00 01 11 10

0

1

0 d

1 d

y 2 y 1

d

d

0

0

0

0

0

0

1

0 1

0

1

0

d

y 1

0

1

y 2

Y 1

Y 2

z

[Figure 6.8 from the textbook]

Draw the Circuit Diagram

[Figure 6.8 from the textbook]

Y2= w (y1 + y2)

Y1= w y1 y2

Draw the Circuit Diagram

this is the
next-state logic

[Figure 6.8 from the textbook]

Y2= w (y1 + y2)

Y1= w y1 y2

z = y2

Draw the Circuit Diagram

this is the
output logic

this is the
next-state logic

[Figure 6.8 from the textbook]

Y2= w (y1 + y2)

Y1= w y1 y2

z = y2

Draw the Circuit Diagram

these are the
flip-flops

Combinational
circuit

Flip-flops

Clock

Q
W

Z
Combinational

circuit

Moore Type

[Figure 6.8 from the textbook]

Don’t Forget to Add the Reset Line

[Figure 6.8 from the textbook]

Don’t Forget to Add the Reset Line

Reset

[Figure 6.8 from the textbook]

When the reset
signal is equal to
zero it puts the

machine back to its
start state, which is

state 00 (or A)
in this case.

0

0

0

State A=00

[Figure 6.8 from the textbook]

0

0

0

1

1

State A=00

When the reset
signal is equal to
zero it puts the

machine back to its
start state, which is

state 00 (or A)
in this case.

0

1

0

00

0

1

1

0
0 0

1

1

1

State A=00State = y2 y1

0

1

0

00

0

1

1

0
0 0

1

1

0

State A=00

0

1

0

00

0

1

1

0
0 0

1

1

0è1

State A=00

1

1

0

01

0

1

1

0
0 0

1

1

1

State A=00

1

1

0

01

0

1

1

0
0 0

1

1

0

State A=00

1

1

0

10

1

1

0

0
1 1

1

0

0è1

State B=01

0

1

0

10

0

1

0

0
1 1

1

0

1

State B=01

0

1

0

10

0

1

0

0
1 1

1

0

0

State B=01

0

1

0

00

0

1

1

0
0 0

1

1

0è1

State A=00

1

1

0

01

0

1

1

0
0 0

1

1

1

State A=00

1

1

0

01

0

1

1

0
0 0

1

1

0

State A=00

1

1

0

10

1

1

0

0
1 1

1

0

0è1

State B=01

1

1

0

10

1

1

0

0
1 1

1

0

1

State B=01

1

1

0

10

1

1

0

0
1 1

1

0

0

State B=01

1

1

1

00

1

0

1

1
0 1

0

1

0è1

State C=10

output z=1

0

1

1

00

0

0

1

1
0 1

0

1

1

State C=10

output z=1

0

1

1

00

0

0

1

1
0 1

0

1

0

State C=10

output z=1

0

1

0

00

0

1

1

0
0 0

1

1

0è1

State A=00

t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
1
0

1

0

1
0

1

0

Clock

w

y 1

y 2

1

0
z

[Figure 6.9 from the textbook]

t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
1
0

1

0

1
0

1

0

Clock

w

y 1

y 2

1

0
z

0

0

1

0

0

1

0

0

0

0

0

0

0

0

1

0

1

0

0

1

0

1

t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
1
0

1

0

1
0

1

0

Clock

w

y 1

y 2

1

0
z

0

0

1

0

0

1

0

0

0

0

0

0

0

0

1

0

1

0

0

1

0

1

t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
1
0

1

0

1
0

1

0

Clock

w

y 1

y 2

1

0
z

0

0
A

1

0
B

0

1
C

0

0
A

0

0
A

0

0
A

0

0
A

1

0
B

1

0
B

0

1
C

0

1
C

t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
1
0

1

0

1
0

1

0

Clock

w

y 1

y 2

1

0
z

A B CA A A AB B C C

Summary: Designing a Moore Machine
● Obtain the circuit specification.

● Derive a state diagram.

● Derive the state table.

● Decide on a state encoding.

● Encode the state table.

● Derive the output logic and next-state logic.

● Draw the circuit diagram

● Add a reset signal.

Questions?

THE END

