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Administrative Stuff

« Homework 10 is due on Monday Nov. 10 @ 10pm.



Administrative Stuff

« We are starting with Chapter 6 from the textbook



First Design Pattern:
Moore Machines



Moore Machine:
A Type of Finite State Machine (FSM)

[ Figure 6.3 from the textbook ]



w =1

Finite number of states (nodes).
Discrete state transitions (edges).
Only “in” one state at a time.
One reset state

Every state has an outgoing state transition for each possible input.
[ Figure 6.3 from the textbook ]



The next state depends on both
the current state and the current input.

[ Figure 6.3 from the textbook ]



The output depends only on the current state.

[ Figure 6.3 from the textbook ]
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Let’s do a simulation
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In general, we need to
start tracing from the
beginning to know
which state the FSM
is in. It may not be
clear from a short
sequence of outputs.
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Inferring the States
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Inferring the States

th 4 t t3 t4 ts tg t7 tg to Tty
Clock
1
w
0
z (1) AlA| B/ A B|Cc|A| Bllc|c|A
| | | | | | | |
Clockcycle: to t; to t3 tg ts tg t7 tg to tio
w 0 1 0 1 1 0 1 1 1 0 1
z o o0 o0 o0 o 1 o0 o 1 1 0




What is the meaning

of each state?
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What is a State?

It 1s not really a memory of every past input
(We might run out of space to remember it all!)

Rather, 1t 1s a characterization or snapshot of the pattern
of inputs that have come before.



Moore Machine Implementation

The state diagram 1s just an 1llustration to
help us describe and reason about how the
FSM will behave 1n each of its states.

So, how do we turn it into a circuit?



Moore Machine Implementation

Memory Combinational

Combinational _
Elements = circuit

circuit

Clock

Note: The W and Z lines need not be wires. They can be buses.

[ Figure 6.1 from the textbook ]
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circuit

is encoded 1in the flip-flop array.

Any usable “memory” of the preceding input sequence



FSM States

The Flip-Flop array stores an encoding of the
current state.
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FSM States

The Flip-Flop array stores an encoding of the
current state.

current state

o)
\
@ 9 L \

ot+1) \

\L L L
D QI D QI D QI D QI

Clock




FSM States

The Flip-Flop array stores an encoding of the
current state.

\ Q0

next state
O(t+1) \

\L L L
D QI D QI D QI D QI

Clock




State Storage

next current
state state
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Any usable “memory” of the preceding input sequence

is encoded 1in the flip-flop array.



State Encoding

Each of the states in our design is identified by
a distinct code.

If we use 3 flip-flops, then the FSM can have up
to 23 = & distinct states.

So, when the flip-flop array contains the code
011, we say that the machine 1s 1n state 0/1.



Synchronous Design
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Every active clock edge causes a state transition.

Combinational
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Synchronous Design
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We expect the input signals to be stable

before the active clock edge occurs.



Synchronous Design
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There 1s a whole other class of sequential circuits that are

asynchronous, but we will not study them in this course.



Sequential Circuits: Key Ideas

The current output depends on something about the
preceding sequence of inputs (and maybe the current
output).

Using memory elements (1.¢., flip-flops), we design the
circuit to remember some relevant information about
the prior inputs.



Moore Machine Example



w = 1

We need to find both the next state logic and the
output logic implied by this machine.

[ Figure 6.3 from the textbook ]
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state w=20 w= z
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Present
state

A
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Next state

[ Figure 6.4 from the textbook ]



How to represent the States?

One way is to encode each state with a 2-bit binary number

A~00
B ~ 01
cC~10



How to represent the states?

One way is to encode each state with a 2-bit binary number

A~00
B ~ 01
cC~10

How many flip-flops do we need?



Let’s use two flip-flops
to hold the machine’s state
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Let’s pick D Flip-Flops.
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We will call y, and y, the present state variables.

We will call Y, and Y, the next state variables.

[ Figure 6.5 from the textbook ]
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Two zeros on the output JOINTLY represent state A.



State = Y2 Y1
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This flip-flop output pattern represents state B.



State = Y2 Y1

Clock

This flip-flop output pattern represents state C.
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What does this flip-flop output pattern represent?



State = Y2 Y1
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This would be state D, but we don't have one
in this example. So, this is an impossible state.
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We will call y, and y, the present state variables.

We will call Y, and Y, the next state variables.

[ Figure 6.5 from the textbook ]



Q(t+1) = Y,Y, Q) =y,y,
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We will call y, and y, the present state variables.

We will call Y, and Y, the next state variables.

[ Figure 6.5 from the textbook ]
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We need to find logic expressions for
Y1(W7 Y1, yZ)’ YZ(Wf Y1, y2)a and Z(y11 y2)

[ Figure 6.5 from the textbook ]
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We need to find logic expression

[ Figure 6.5 from the textbook ]



Present Next state Output
state w=0 w= z
A A B 0
B A C 0
C A C 1

Suppose we encoded our states in the same
order in which they were labeled:

A~00
B~ 01
C~10

[ Figure 6.4 from the textbook ]
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Present Next state Output
state =0 w = z
A A B 0
B A C 0
C A C 1

Next state
Present
state =0 w = Output
Z

00
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10
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The finite state
machine will
never reach a state
encoded as 11.

[ Figure 6.6 from the textbook ]




We arbitrarily
chose these as our
state encodings.
We could have

used others.
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[ Figure 6.6 from the textbook ]
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[ Figure 6.6 from the textbook ]
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Q) = yzy, and Q(1+1) = Y5,
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Note that the textbook draws these K-Maps
differently from all previous K-maps
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Don’t care conditions simplify the combinatorial logic
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[ Figure 6.7 from the textbook ]



Draw the Circuit Diagram
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[ Figure 6.8 from the textbook ]



Draw the Circuit Diagram
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[ Figure 6.8 from the textbook ]
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Draw the Circuit Diagram
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[ Figure 6.8 from the textbook ]



Clock

Moore Type

Combinational
circuit

___=| Flip-flops |—e—

Combinational
circuit




Don’t Forget to Add the Reset Line
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[ Figure 6.8 from the textbook ]



Don’t Forget to Add the Reset Line
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[ Figure 6.8 from the textbook ]



When the reset
signal is equal to
zero it puts the
machine back to its
start state, which is
state 00 (or A)
in this case.
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[ Figure 6.8 from the textbook ]



When the reset
signal is equal to
zero it puts the
machine back to its
start state, which is
state 00 (or A)
in this case.
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[ Figure 6.8 from the textbook ]
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[ Figure 6.9 from the textbook ]
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Summary: Designing a Moore Machine
e Obtain the circuit specification.

e Derive a state diagram.

e Derive the state table.

e Decide on a state encoding.

e Encode the state table.

e Derive the output logic and next-state logic.
e Draw the circuit diagram

e Add a reset signal.



Questions?



THE END



