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Administrative Stuff
• HW 6 is due on Monday Oct 13 @ 10pm

• HW 7 is due on Monday Oct 20 @ 10pm

• Next week: Lab 6 + TTL2

• Midterm progress report grades are due next week



2-to-1 Multiplexer



2-to-1 Multiplexer (Definition)

• Has two inputs: x1 and x2

• Also has another input line s

• If s=0, then the output is equal to x1

• If s=1, then the output is equal to x2



Graphical Symbol for a 2-to-1 Multiplexer
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[ Figure 2.33c from the textbook ]



Analogy: Railroad Switch

http://en.wikipedia.org/wiki/Railroad_switch]



Analogy: Railroad Switch

http://en.wikipedia.org/wiki/Railroad_switch]

selectx1 x2

f



Analogy: Railroad Switch

http://en.wikipedia.org/wiki/Railroad_switch]

selectx1 x2

f

This is not a perfect analogy because the trains can go in either direction, 
while the multiplexer would only allow them to go from top to bottom.



Truth Table for a 2-to-1 Multiplexer

[ Figure 2.33a from the textbook ]



Let’s Derive the SOP form



Let’s Derive the SOP form



Let’s Derive the SOP form

s x1 x2

s x1 x2

s x1 x2

s x1 x2

Where should we 
put the negation signs?



Let’s Derive the SOP form

s x1 x2

s x1 x2

s x1 x2

s x1 x2



Let’s Derive the SOP form

s x1 x2

s x1 x2

s x1 x2

s x1 x2

f (s, x1, x2) = s x1 x2 s x1 x2 s x1 x2 s x1 x2+ + +



Let’s simplify this expression

f (s, x1, x2) = s x1 x2 s x1 x2 s x1 x2 s x1 x2+ + +



Let’s simplify this expression

f (s, x1, x2) = s x1 x2 s x1 x2 s x1 x2 s x1 x2+ + +

f (s, x1, x2) = s x1 (x2 + x2)  s (x1 +x1 )x2+ +



Let’s simplify this expression

f (s, x1, x2) = s x1 x2 s x1 x2 s x1 x2 s x1 x2+ + +

f (s, x1, x2) = s x1 (x2 + x2)  s (x1 +x1 )x2+ +

f (s, x1, x2) = s x1 s x2+



Circuit for 2-1 Multiplexer
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(c) Graphical symbol(b) Circuit 

[ Figure 2.33b-c from the textbook ]

f (s, x1, x2) = s x1 s x2+



Analysis of the 2-to-1 Multiplexer 
(when the input s=0)
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Analysis of the 2-to-1 Multiplexer 
(when the input s=1)
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Analysis of the 2-to-1 Multiplexer 
(when the input s=0)

x1

0



Analysis of the 2-to-1 Multiplexer 
(when the input s=1)

x2

1



More Compact Truth-Table Representation

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 0 

1 1 1 1 

(a) Truth table 

s x1 x2 f (s, x1, x2)

[ Figure 2.33 from the textbook ]
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f (s, x1, x2)s
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4-to-1 Multiplexer



4-to-1 Multiplexer (Definition)

• Has four inputs: w0 , w1, w2, w3

• Also has two select lines: s1 and s0

• If s1=0 and s0=0, then the output f is equal to w0

• If s1=0 and s0=1, then the output f is equal to w1

• If s1=1 and s0=0, then the output f is equal to w2

• If s1=1 and s0=1, then the output f is equal to w3



Graphical Symbol and Truth Table

[ Figure 4.2a-b from the textbook ]



The long-form truth table



The long-form truth table

[http://www.absoluteastronomy.com/topics/Multiplexer]



The long-form truth table

[http://www.absoluteastronomy.com/topics/Multiplexer]identical



The long-form truth table

[http://www.absoluteastronomy.com/topics/Multiplexer]identical



The long-form truth table

[http://www.absoluteastronomy.com/topics/Multiplexer]
identical



The long-form truth table

[http://www.absoluteastronomy.com/topics/Multiplexer]
identical



Graphical Symbol and Truth Table

[ Figure 4.2a-b from the textbook ]



4-to-1 Multiplexer (SOP circuit)

[ Figure 4.2c from the textbook ]

f  = s1 s0 w0 + s1 s0 w1 + s1 s0 w2 + s1 s0 w3 



4-to-1 Multiplexer (SOP circuit)

f  = s1 s0 w0 + s1 s0 w1 + s1 s0 w2 + s1 s0 w3 
these are the four minterms in terms of s1 and s2



4-to-1 Multiplexer (SOP circuit)

f  = s1 s0 w0 + s1 s0 w1 + s1 s0 w2 + s1 s0 w3 
these are the four w inputs to the 4-to-1 MUX



Analysis of the 4-to-1 Multiplexer
( s1=0 and s0=0 )
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Analysis of the 4-to-1 Multiplexer
( s1=0 and s0=0 )
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Analysis of the 4-to-1 Multiplexer
( s1=0 and s0=0 )
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Analysis of the 4-to-1 Multiplexer
( s1=0 and s0=0 )
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Analysis of the 4-to-1 Multiplexer
( s1=0 and s0=1 )
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Analysis of the 4-to-1 Multiplexer
( s1=1 and s0=0 )
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Analysis of the 4-to-1 Multiplexer
( s1=1 and s0=1 )
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Analysis of the 4-to-1 Multiplexer
( s1=0 and s0=0 )
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Analysis of the 4-to-1 Multiplexer
( s1=0 and s0=1 )
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Analysis of the 4-to-1 Multiplexer
( s1=1 and s0=0 )
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Analysis of the 4-to-1 Multiplexer
( s1=1 and s0=1 )
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Using three 2-to-1 multiplexers 
to build one 4-to-1 multiplexer

[ Figure 4.3 from the textbook ]



Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]



Analogy: Railroad Switches
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Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]
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these two 
switches are 
controlled 
together

s0



Using three 2-to-1 multiplexers 
to build one 4-to-1 multiplexer



Using three 2-to-1 multiplexers 
to build one 4-to-1 multiplexer



Using three 2-to-1 multiplexers 
to build one 4-to-1 multiplexer



Using three 2-to-1 multiplexers 
to build one 4-to-1 multiplexer
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That is different from the SOP form of the 4-to-1 
multiplexer shown below, which uses fewer gates



Analysis of the Hierarchical Implementation
( s1=0 and s0=0 )

[ Figure 4.3 from the textbook ]
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Analysis of the Hierarchical Implementation
( s1=0 and s0=1 )

[ Figure 4.3 from the textbook ]
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Analysis of the Hierarchical Implementation
( s1=1 and s0=0 )

[ Figure 4.3 from the textbook ]
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Analysis of the Hierarchical Implementation
( s1=1 and s0=1 )

[ Figure 4.3 from the textbook ]
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16-to-1 Multiplexer
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16-1 Multiplexer

[ Figure 4.4 from the textbook ]
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16-1 Multiplexer

[ Figure 4.4 from the textbook ]
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16-1 Multiplexer
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16-1 Multiplexer
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16-1 Multiplexer
s 1 
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It is better to draw the select lines like this. 
Less chance to confuse their order. 



16-1 Multiplexer
s 1 

w0
w1
w2
w3 

s 0 

s 3 s 2 

f 

w4
w5
w6
w7 

w8
w9
w10
w11 

w12
w13
w14
w15 

0 1

w1
w5
w9
w13 



16-1 Multiplexer
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16-1 Multiplexer
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16-1 Multiplexer
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16-1 Multiplexer
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[http://upload.wikimedia.org/wikipedia/commons/2/26/SunsetTracksCrop.JPG]



Multiplexers Are Special
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x 1 x 2 + 

AND gate 
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The Three Basic Logic Gates

[ Figure 2.8 from the textbook ]

OR gate NOT gate 



Truth Table for NOT
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Truth Table for AND



Truth Table for OR
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Building an AND Gate with 4-to-1 Mux
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Building an AND Gate with 4-to-1 Mux

These two are the same.
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Building an AND Gate with 4-to-1 Mux

These two are the same.
And so are these two.
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Building an OR Gate with 4-to-1 Mux

00

01

10

11



Building an OR Gate with 4-to-1 Mux

These two are the same.
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Building an OR Gate with 4-to-1 Mux

These two are the same.
And so are these two.
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Building a NOT Gate with 4-to-1 Mux
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Building a NOT Gate with 4-to-1 Mux

x x 

x y f
0 0 1
0 1 1
1 0 0
1 1 0

Introduce a dummy variable y.
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Building a NOT Gate with 4-to-1 Mux
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Building a NOT Gate with 4-to-1 Mux

x x 

x y f
0 0 1
0 1 1
1 0 0
1 1 0

Now set y to either 0 or 1 (both will work). Why?
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Building a NOT Gate with 4-to-1 Mux
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Two alternative solutions.
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Implications

Any Boolean function can be implemented 
using only 4-to-1 multiplexers!



Building an AND Gate with 2-to-1 Mux



Building an AND Gate with 2-to-1 Mux



Building an AND Gate with 2-to-1 Mux
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Building an OR Gate with 2-to-1 Mux



Building an OR Gate with 2-to-1 Mux



Building an OR Gate with 2-to-1 Mux
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Building a NOT Gate with 2-to-1 Mux
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Building a NOT Gate with 2-to-1 Mux
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Implications

Any Boolean function can be implemented 
using only 2-to-1 multiplexers!
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Switch Circuit



2 x 2 Crossbar switch
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[ Figure 4.5a from the textbook ]



2 x 2 Crossbar switch
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[ Figure 4.5b from the textbook ]

Implementation of a 2 x 2 crossbar 
switch with multiplexers
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[ Figure 4.5b from the textbook ]

Implementation of a 2 x 2 crossbar 
switch with multiplexers
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[ Figure 4.5b from the textbook ]

Implementation of a 2 x 2 crossbar 
switch with multiplexers
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[ Figure 4.5b from the textbook ]

Implementation of a 2 x 2 crossbar 
switch with multiplexers
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[ Figure 4.5b from the textbook ]

Implementation of a 2 x 2 crossbar 
switch with multiplexers
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Implementation of a 2 x 2 crossbar 
switch with multiplexers



Implementation of a 2 x 2 crossbar 
switch with multiplexers
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Synthesis of Logic Circuits 
Using Multiplexers



Synthesis of Logic Circuits 
Using Multiplexers

Note: This method is NOT the same as simply 
replacing each logic gate with a multiplexer! 

It is a lot more efficient.



The XOR Logic Gate

[ Figure 2.11 from the textbook ]



[ Figure 2.11 from the textbook ]

The XOR Logic Gate



Implementation of a logic function 
with a 4-to-1 multiplexer 

[ Figure 4.6a from the textbook ]
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Implementation of the same logic function 
with a 2-to-1 multiplexer 

[ Figure 4.6b-c from the textbook ]

(b) Modified truth table 
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(c) Circuit 
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Implementation of the XOR Logic Gate 
with a 2-to-1 multiplexer and one NOT 

f



x

y
f

Implementation of the XOR Logic Gate 
with a 2-to-1 multiplexer and one NOT 



x

y
f

These two circuits are equivalent
(the wires of the bottom AND gate are flipped)

Implementation of the XOR Logic Gate 
with a 2-to-1 multiplexer and one NOT 



In other words, 
all four of these are equivalent!
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[ Figure 4.7 from the textbook ]
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Implementation of another logic function 



[ Figure 4.7 from the textbook ]
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Implementation of another logic function 



[ Figure 4.7 from the textbook ]

w3

w3
00

0
1
1

1
0
1

fw1

0

w2

1

0 0
0 1
1 0
1 1

0
0
0
1

0 0
0 1
1 0
1 1

0
1
1
1

w1 w2 w3 f

0
0
0
0
1
1
1
1

Implementation of another logic function 



[ Figure 4.7 from the textbook ]
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Another Example
(3-input XOR)



[ Figure 4.8a from the textbook ]

Implementation of 3-input XOR
with 2-to-1 Multiplexers
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[ Figure 4.8a from the textbook ]

Implementation of 3-input XOR
with 2-to-1 Multiplexers
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[ Figure 4.8 from the textbook ]

Implementation of 3-input XOR
with 2-to-1 Multiplexers

(a) Truth table
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[ Figure 4.8 from the textbook ]

Implementation of 3-input XOR
with 2-to-1 Multiplexers
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Implementation of 3-input XOR
with a 4-to-1 Multiplexer

[ Figure 4.9a from the textbook ]
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Implementation of 3-input XOR
with a 4-to-1 Multiplexer

[ Figure 4.9a from the textbook ]
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Implementation of 3-input XOR
with a 4-to-1 Multiplexer

[ Figure 4.9a from the textbook ]
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Implementation of 3-input XOR
with a 4-to-1 Multiplexer

[ Figure 4.9 from the textbook ]

w 3 

w 3 

w 3 

w 3 

00

01
10

11



Circuit Synthesis with Multiplexers 
Using Shannon’s Expansion
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[ Figure 4.10a from the textbook ]
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[ Figure 4.10a from the textbook ]

SOP expression for f :
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[ Figure 4.10a from the textbook ]

Divide-and-conquer method (a.k.a., Shannon’s expansion)
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Shannon’s Expansion Theorem

Any Boolean function                           can be rewritten in the form:

cofactor cofactor



Shannon’s Expansion Theorem
(example with only one select variable)
(used for 2-to-1 mux implementation)



Factor and implement the following 
function with a 2-to-1 multiplexer



Factor and implement the following 
function with a 2-to-1 multiplexer
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[ Figure 4.11a from the textbook ]
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Shannon’s Expansion Theorem Example
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Shannon’s Expansion Theorem Example
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Shannon’s Expansion Theorem Example

which fits the general formula
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using the divide-and-conquer method (a.k.a., Shannon’s theorem)
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Shannon’s Expansion Theorem
(example with two select variables)

(used for 4-to-1 mux implementation)



Shannon’s Expansion Theorem
(In terms of more than one variable)

This form is suitable for implementation with a 4x1 multiplexer.
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0 • 0 0 • 1 • 
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these are the 4 minterms in terms of w1 and w2
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these are the 4 cofactors



Factor and implement the following 
function with a 4-to-1 multiplexer

[ Figure 4.11b from the textbook ]
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Alternative Derivation for the same Problem 
(using Boolean Algebra to derive the cofactors)
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= w1 (w2 + w2) w3  +  w1 w2 +  w1 (w2 + w2) w3
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Yet Another Example
(with hierarchical structure)
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Finally, we are ready to draw the circuit
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Finally, we are ready to draw the circuit
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Finally, we are ready to draw the circuit
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Questions?



THE END


