
Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

CprE 2810:
Digital Logic

Multiplexers

CprE 2810: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff
• HW 6 is due on Monday Oct 13 @ 10pm

• HW 7 is due on Monday Oct 20 @ 10pm

• Next week: Lab 6 + TTL2

• Midterm progress report grades are due next week

2-to-1 Multiplexer

2-to-1 Multiplexer (Definition)

• Has two inputs: x1 and x2

• Also has another input line s

• If s=0, then the output is equal to x1

• If s=1, then the output is equal to x2

Graphical Symbol for a 2-to-1 Multiplexer

f

s

x 1
x 2

0

1

[Figure 2.33c from the textbook]

Analogy: Railroad Switch

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switch

http://en.wikipedia.org/wiki/Railroad_switch]

selectx1 x2

f

Analogy: Railroad Switch

http://en.wikipedia.org/wiki/Railroad_switch]

selectx1 x2

f

This is not a perfect analogy because the trains can go in either direction,
while the multiplexer would only allow them to go from top to bottom.

Truth Table for a 2-to-1 Multiplexer

[Figure 2.33a from the textbook]

Let’s Derive the SOP form

Let’s Derive the SOP form

Let’s Derive the SOP form

s x1 x2

s x1 x2

s x1 x2

s x1 x2

Where should we
put the negation signs?

Let’s Derive the SOP form

s x1 x2

s x1 x2

s x1 x2

s x1 x2

Let’s Derive the SOP form

s x1 x2

s x1 x2

s x1 x2

s x1 x2

f (s, x1, x2) = s x1 x2 s x1 x2 s x1 x2 s x1 x2+ + +

Let’s simplify this expression

f (s, x1, x2) = s x1 x2 s x1 x2 s x1 x2 s x1 x2+ + +

Let’s simplify this expression

f (s, x1, x2) = s x1 x2 s x1 x2 s x1 x2 s x1 x2+ + +

f (s, x1, x2) = s x1 (x2 + x2) s (x1 +x1)x2+ +

Let’s simplify this expression

f (s, x1, x2) = s x1 x2 s x1 x2 s x1 x2 s x1 x2+ + +

f (s, x1, x2) = s x1 (x2 + x2) s (x1 +x1)x2+ +

f (s, x1, x2) = s x1 s x2+

Circuit for 2-1 Multiplexer

f

x 1

x 2

s
f

s

x 1
x 2

0

1

(c) Graphical symbol(b) Circuit

[Figure 2.33b-c from the textbook]

f (s, x1, x2) = s x1 s x2+

Analysis of the 2-to-1 Multiplexer
(when the input s=0)

1
0

0

x1
x1

x1

x2
s

f
0

Analysis of the 2-to-1 Multiplexer
(when the input s=1)

1
0
1

x2

0

x2

x1

x2
s

f

Analysis of the 2-to-1 Multiplexer
(when the input s=0)

x1

0

Analysis of the 2-to-1 Multiplexer
(when the input s=1)

x2

1

More Compact Truth-Table Representation

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

(a) Truth table

s x1 x2 f (s, x1, x2)

[Figure 2.33 from the textbook]

0

1

f (s, x1, x2)s
x1
x2

4-to-1 Multiplexer

4-to-1 Multiplexer (Definition)

• Has four inputs: w0 , w1, w2, w3

• Also has two select lines: s1 and s0

• If s1=0 and s0=0, then the output f is equal to w0

• If s1=0 and s0=1, then the output f is equal to w1

• If s1=1 and s0=0, then the output f is equal to w2

• If s1=1 and s0=1, then the output f is equal to w3

Graphical Symbol and Truth Table

[Figure 4.2a-b from the textbook]

The long-form truth table

The long-form truth table

[http://www.absoluteastronomy.com/topics/Multiplexer]

The long-form truth table

[http://www.absoluteastronomy.com/topics/Multiplexer]identical

The long-form truth table

[http://www.absoluteastronomy.com/topics/Multiplexer]identical

The long-form truth table

[http://www.absoluteastronomy.com/topics/Multiplexer]
identical

The long-form truth table

[http://www.absoluteastronomy.com/topics/Multiplexer]
identical

Graphical Symbol and Truth Table

[Figure 4.2a-b from the textbook]

4-to-1 Multiplexer (SOP circuit)

[Figure 4.2c from the textbook]

f = s1 s0 w0 + s1 s0 w1 + s1 s0 w2 + s1 s0 w3

4-to-1 Multiplexer (SOP circuit)

f = s1 s0 w0 + s1 s0 w1 + s1 s0 w2 + s1 s0 w3
these are the four minterms in terms of s1 and s2

4-to-1 Multiplexer (SOP circuit)

f = s1 s0 w0 + s1 s0 w1 + s1 s0 w2 + s1 s0 w3
these are the four w inputs to the 4-to-1 MUX

Analysis of the 4-to-1 Multiplexer
(s1=0 and s0=0)

0

0

Analysis of the 4-to-1 Multiplexer
(s1=0 and s0=0)

0

0
1

1

0

1

1

0

0

0

Analysis of the 4-to-1 Multiplexer
(s1=0 and s0=0)

0

0
w0

0

0

0

1

1

0

1

1

0

0

0

Analysis of the 4-to-1 Multiplexer
(s1=0 and s0=0)

0

0
w0

0

0

0

w0

1

1

0

1

1

0

0

0

Analysis of the 4-to-1 Multiplexer
(s1=0 and s0=1)

0

1
0

w1

0

0

w1

0

1

1

1

0

0

1

0

Analysis of the 4-to-1 Multiplexer
(s1=1 and s0=0)

1

0
0

0

w2

0

w2

1

0

0

0

1

1

0

1

Analysis of the 4-to-1 Multiplexer
(s1=1 and s0=1)

1

1
0

0

0

w3

w3

0

0

1

0

0

1

1

1

Analysis of the 4-to-1 Multiplexer
(s1=0 and s0=0)

w0

0

0

Analysis of the 4-to-1 Multiplexer
(s1=0 and s0=1)

w1

1

0

Analysis of the 4-to-1 Multiplexer
(s1=1 and s0=0)

w2

0

1

Analysis of the 4-to-1 Multiplexer
(s1=1 and s0=1)

w3

1

1

0

w 0
w 1

0

1

w 2
w 3

0

1

f
0

1

s 1

s

Using three 2-to-1 multiplexers
to build one 4-to-1 multiplexer

[Figure 4.3 from the textbook]

Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]

s1

w0

f

w1 w2 w3

Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]

s1

w0

f

w1 w2 w3

these two
switches are
controlled
together

s0

Using three 2-to-1 multiplexers
to build one 4-to-1 multiplexer

Using three 2-to-1 multiplexers
to build one 4-to-1 multiplexer

Using three 2-to-1 multiplexers
to build one 4-to-1 multiplexer

Using three 2-to-1 multiplexers
to build one 4-to-1 multiplexer

fs1
s0

w0

w1

w2

w3

That is different from the SOP form of the 4-to-1
multiplexer shown below, which uses fewer gates

Analysis of the Hierarchical Implementation
(s1=0 and s0=0)

[Figure 4.3 from the textbook]

0

0

0

0

0

w0
w0

w2

Analysis of the Hierarchical Implementation
(s1=0 and s0=1)

[Figure 4.3 from the textbook]

1

0

0

1

1

w1
w1

w3

Analysis of the Hierarchical Implementation
(s1=1 and s0=0)

[Figure 4.3 from the textbook]

0

1

1

0

0

w2
w0

w2

Analysis of the Hierarchical Implementation
(s1=1 and s0=1)

[Figure 4.3 from the textbook]

1

1

1

1

1

w3
w1

w3

16-to-1 Multiplexer

w 8

w 11

s 1

w 0

s 0

w 3

w 4

w 7

w 12

w 15

s 3

s 2

f

16-1 Multiplexer

[Figure 4.4 from the textbook]

w 8

w 11

s 1

w 0

s 0

w 3

w 4

w 7

w 12

w 15

s 3

s 2

f

16-1 Multiplexer

[Figure 4.4 from the textbook]

00
01
10
11

00
01
10
11

00
01
10
11

00
01
10
11

00
01
10
11

16-1 Multiplexer

s 1

w0
w1
w2
w3

s 0

s 3

s 2

f

w4
w5
w6
w7

w8
w9
w10
w11

w12
w13
w14
w15

00
01
10
11

00
01
10
11

00
01
10
11

00
01
10
11

00
01
10
11

16-1 Multiplexer

s 1

w0
w1
w2
w3

s 0

s 3

s 2

f

w4
w5
w6
w7

w8
w9
w10
w11

w12
w13
w14
w15

0
0

w0
w4
w8
w12

16-1 Multiplexer
s 1

w0
w1
w2
w3

s 0

s 3 s 2

f

w4
w5
w6
w7

w8
w9
w10
w11

w12
w13
w14
w15

0 0

w0
w4
w8
w12

It is better to draw the select lines like this.
Less chance to confuse their order.

16-1 Multiplexer
s 1

w0
w1
w2
w3

s 0

s 3 s 2

f

w4
w5
w6
w7

w8
w9
w10
w11

w12
w13
w14
w15

0 1

w1
w5
w9
w13

16-1 Multiplexer
s 1

w0
w1
w2
w3

s 0

s 3 s 2

f

w4
w5
w6
w7

w8
w9
w10
w11

w12
w13
w14
w15

1 0

w2
w6
w10
w14

16-1 Multiplexer
s 1

w0
w1
w2
w3

s 0

s 3 s 2

f

w4
w5
w6
w7

w8
w9
w10
w11

w12
w13
w14
w15

1 1

w3
w7
w11
w15

16-1 Multiplexer
s 1

w0
w1
w2
w3

s 0

s 3 s 2

f

w4
w5
w6
w7

w8
w9
w10
w11

w12
w13
w14
w15

1 1

w3
w7
w11
w15

0 0

w3

16-1 Multiplexer
s 1

w0
w1
w2
w3

s 0

s 3 s 2

f

w4
w5
w6
w7

w8
w9
w10
w11

w12
w13
w14
w15

1 1

w3
w7
w11
w15

0 1

w7

16-1 Multiplexer
s 1

w0
w1
w2
w3

s 0

s 3 s 2

f

w4
w5
w6
w7

w8
w9
w10
w11

w12
w13
w14
w15

1 1

w3
w7
w11
w15

1 0

w11

16-1 Multiplexer
s 1

w0
w1
w2
w3

s 0

s 3 s 2

f

w4
w5
w6
w7

w8
w9
w10
w11

w12
w13
w14
w15

1 1

w3
w7
w11
w15

1 1

w15

[http://upload.wikimedia.org/wikipedia/commons/2/26/SunsetTracksCrop.JPG]

Multiplexers Are Special

x 1
x 2

x 1 x 2 +

AND gate

x x
x 1
x 2

x 1 x 2

The Three Basic Logic Gates

[Figure 2.8 from the textbook]

OR gate NOT gate

Truth Table for NOT

x x

x x

0
1

1
0

x 1
x 2

x 1 x 2

Truth Table for AND

Truth Table for OR

x 1
x 2

x 1 x 2 +

Building an AND Gate with 4-to-1 Mux

00

01

10

11

Building an AND Gate with 4-to-1 Mux

These two are the same.

00

01

10

11

Building an AND Gate with 4-to-1 Mux

These two are the same.
And so are these two.

00

01

10

11

Building an OR Gate with 4-to-1 Mux

00

01

10

11

Building an OR Gate with 4-to-1 Mux

These two are the same.

00

01

10

11

Building an OR Gate with 4-to-1 Mux

These two are the same.
And so are these two.

00

01

10

11

Building a NOT Gate with 4-to-1 Mux

x x

0
1

1
0

x x

00

01

10

11

Building a NOT Gate with 4-to-1 Mux

x x

x y f
0 0 1
0 1 1
1 0 0
1 1 0

Introduce a dummy variable y.

00

01

10

11

Building a NOT Gate with 4-to-1 Mux

x x

x y f
0 0 1
0 1 1
1 0 0
1 1 0

00

01

10

11

Building a NOT Gate with 4-to-1 Mux

x x

x y f
0 0 1
0 1 1
1 0 0
1 1 0

Now set y to either 0 or 1 (both will work). Why?

00

01

10

11

Building a NOT Gate with 4-to-1 Mux

x x

0
1

1
0

x x

Two alternative solutions.

00
01
10
11

00
01
10
11

Implications

Any Boolean function can be implemented
using only 4-to-1 multiplexers!

Building an AND Gate with 2-to-1 Mux

Building an AND Gate with 2-to-1 Mux

Building an AND Gate with 2-to-1 Mux

0

x2

Building an OR Gate with 2-to-1 Mux

Building an OR Gate with 2-to-1 Mux

Building an OR Gate with 2-to-1 Mux

1

x2

Building a NOT Gate with 2-to-1 Mux

x x

0
1

1
0

x x

Building a NOT Gate with 2-to-1 Mux

x x

0
1

1
0

x x

Implications

Any Boolean function can be implemented
using only 2-to-1 multiplexers!

AND
0

x1
x2

x1
1

x2

x

1

0

OR

NOT

AND
0

x1
x2

x1
1

x2

x

1

0

OR

NOT

0

x1 x2 x1

x1 x2

0

x

AND
0

x1
x2

x1
1

x2

x

1

0

OR

NOT

0

x1 x2

x1 x2

x1

x1 x2
x1 + x2

0

x

x

Switch Circuit

2 x 2 Crossbar switch

x 1

x 2

y 1

y 2

s

[Figure 4.5a from the textbook]

2 x 2 Crossbar switch

x 1

x 2

y 1

y 2

s=0

x 1

x 2

y 1

y 2

s=1

x 1 0

1

x 2 0

1

s

y 1

y 2

[Figure 4.5b from the textbook]

Implementation of a 2 x 2 crossbar
switch with multiplexers

x 1 0

1

x 2 0

1

s

y 1

y 2

[Figure 4.5b from the textbook]

Implementation of a 2 x 2 crossbar
switch with multiplexers

0

x 1 0

1

x 2 0

1

s

y 1

y 2

[Figure 4.5b from the textbook]

Implementation of a 2 x 2 crossbar
switch with multiplexers

1

x 1 0

1

x 2 0

1

s

y 1

y 2

[Figure 4.5b from the textbook]

Implementation of a 2 x 2 crossbar
switch with multiplexers

0

x1

x2

x 1 0

1

x 2 0

1

s

y 1

y 2

[Figure 4.5b from the textbook]

Implementation of a 2 x 2 crossbar
switch with multiplexers

1

x2

x1

Implementation of a 2 x 2 crossbar
switch with multiplexers

Implementation of a 2 x 2 crossbar
switch with multiplexers

x1

x2

s

y1

y2

Synthesis of Logic Circuits
Using Multiplexers

Synthesis of Logic Circuits
Using Multiplexers

Note: This method is NOT the same as simply
replacing each logic gate with a multiplexer!

It is a lot more efficient.

The XOR Logic Gate

[Figure 2.11 from the textbook]

[Figure 2.11 from the textbook]

The XOR Logic Gate

Implementation of a logic function
with a 4-to-1 multiplexer

[Figure 4.6a from the textbook]

f

w 1

0
1

0

1

w 2

1
0

0

0

1

1

1

0

1

f w 1

0

w 2

1

0

00
01
10
11

Implementation of the same logic function
with a 2-to-1 multiplexer

[Figure 4.6b-c from the textbook]

(b) Modified truth table

0

1
0

0

1

1

1

0

1

f w 1

0

w 2

1

0
f

w 2

w 1
0

1

f w 1

w 2

w 2

(c) Circuit

0

1

Implementation of the XOR Logic Gate
with a 2-to-1 multiplexer and one NOT

f

x

y
f

Implementation of the XOR Logic Gate
with a 2-to-1 multiplexer and one NOT

x

y
f

These two circuits are equivalent
(the wires of the bottom AND gate are flipped)

Implementation of the XOR Logic Gate
with a 2-to-1 multiplexer and one NOT

In other words,
all four of these are equivalent!

x
y

f

x
y f

x

y

f 0

1

f

w 1

0
1

w 2

1
0

00
01
10
11

[Figure 4.7 from the textbook]

0 0
0 1
1 0
1 1

0
0
0
1

0 0
0 1
1 0
1 1

0
1
1
1

w1 w2 w3 f

0
0
0
0
1
1
1
1

Implementation of another logic function

[Figure 4.7 from the textbook]

0 0
0 1
1 0
1 1

0
0
0
1

0 0
0 1
1 0
1 1

0
1
1
1

w1 w2 w3 f

0
0
0
0
1
1
1
1

Implementation of another logic function

[Figure 4.7 from the textbook]

w3

w3
00

0
1
1

1
0
1

fw1

0

w2

1

0 0
0 1
1 0
1 1

0
0
0
1

0 0
0 1
1 0
1 1

0
1
1
1

w1 w2 w3 f

0
0
0
0
1
1
1
1

Implementation of another logic function

[Figure 4.7 from the textbook]

w3

w3
00

0
1
1

1
0
1

fw1

0

w2

1

0 0
0 1
1 0
1 1

0
0
0
1

0 0
0 1
1 0
1 1

0
1
1
1

w1 w2 w3 f

0
0
0
0
1
1
1
1

Implementation of another logic function

f

w1

0

w2

1

w3

00

01
10

11

Another Example
(3-input XOR)

[Figure 4.8a from the textbook]

Implementation of 3-input XOR
with 2-to-1 Multiplexers

0 0
0 1
1 0
1 1

0
1
1
0

0 0
0 1
1 0
1 1

1
0
0
1

w1 w2 w3 f

0
0
0
0
1
1
1
1

[Figure 4.8a from the textbook]

Implementation of 3-input XOR
with 2-to-1 Multiplexers

0 0
0 1
1 0
1 1

0
1
1
0

0 0
0 1
1 0
1 1

1
0
0
1

w1 w2 w3 f

0
0
0
0
1
1
1
1

w2 w3Å

w2 w3Å

[Figure 4.8 from the textbook]

Implementation of 3-input XOR
with 2-to-1 Multiplexers

(a) Truth table

0 0
0 1
1 0
1 1

0
1
1
0

0 0
0 1
1 0
1 1

1
0
0
1

w1 w2 w3 f

0
0
0
0
1
1
1
1

f

w1

(b) Circuit

w2 w3Å

w2 w3Å

w2 w3Å 0

1

[Figure 4.8 from the textbook]

Implementation of 3-input XOR
with 2-to-1 Multiplexers

(a) Truth table

0 0
0 1
1 0
1 1

0
1
1
0

0 0
0 1
1 0
1 1

1
0
0
1

w1 w2 w3 f

0
0
0
0
1
1
1
1

f

w3

w1

(b) Circuit

w2

w3

w3
0

1

0

1

0 0
0 1
1 0
1 1

0
1
1
0

0 0
0 1
1 0
1 1

1
0
0
1

w 1 w 2 w 3 f

0
0
0
0
1
1
1
1

Implementation of 3-input XOR
with a 4-to-1 Multiplexer

[Figure 4.9a from the textbook]

0 0
0 1
1 0
1 1

0
1
1
0

0 0
0 1
1 0
1 1

1
0
0
1

w 1 w 2 w 3 f

0
0
0
0
1
1
1
1

Implementation of 3-input XOR
with a 4-to-1 Multiplexer

[Figure 4.9a from the textbook]

0 0
0 1
1 0
1 1

0
1
1
0

0 0
0 1
1 0
1 1

1
0
0
1

w 1 w 2 w 3 f

0
0
0
0
1
1
1
1

w 3

w 3

w 3

w 3

Implementation of 3-input XOR
with a 4-to-1 Multiplexer

[Figure 4.9a from the textbook]

f

w 1

w 2

(a) Truth table (b) Circuit

0 0
0 1
1 0
1 1

0
1
1
0

0 0
0 1
1 0
1 1

1
0
0
1

w 1 w 2 w 3 f

0
0
0
0
1
1
1
1

w 3

Implementation of 3-input XOR
with a 4-to-1 Multiplexer

[Figure 4.9 from the textbook]

w 3

w 3

w 3

w 3

00

01
10

11

Circuit Synthesis with Multiplexers
Using Shannon’s Expansion

0 0
0 1
1 0
1 1

0
0
0
1

0 0
0 1
1 0
1 1

0
1
1
1

w 1 w 2 w 3 f

0
0
0
0
1
1
1
1

Three-input majority function

[Figure 4.10a from the textbook]

0 0
0 1
1 0
1 1

0
0
0
1

0 0
0 1
1 0
1 1

0
1
1
1

w 1 w 2 w 3 f

0
0
0
0
1
1
1
1

Three-input majority function

[Figure 4.10a from the textbook]

SOP expression for f :

0 0
0 1
1 0
1 1

0
0
0
1

0 0
0 1
1 0
1 1

0
1
1
1

w 1 w 2 w 3 f

0
0
0
0
1
1
1
1

0
1

f w 1

Three-input majority function

[Figure 4.10a from the textbook]

Divide-and-conquer method (a.k.a., Shannon’s expansion)

0 0
0 1
1 0
1 1

0
0
0
1

0 0
0 1
1 0
1 1

0
1
1
1

w 1 w 2 w 3 f

0
0
0
0
1
1
1
1

0
1

f w 1

Three-input majority function

[Figure 4.10a from the textbook]

w 2 w 3
w 2 w 3 +

0 0
0 1
1 0
1 1

0
0
0
1

0 0
0 1
1 0
1 1

0
1
1
1

w 1 w 2 w 3 f

0
0
0
0
1
1
1
1

0
1

f w 1

Three-input majority function

[Figure 4.10a from the textbook]

w 2 w 3
w 2 w 3 +

(b) Circuit

(b) Truth table

f
w 3

w 1 w 2

0
1

0 0
0 1
1 0
1 1

0
0
0
1

0 0
0 1
1 0
1 1

0
1
1
1

w 1 w 2 w 3 f

0
0
0
0
1
1
1
1

0
1

f w 1

Three-input majority function

[Figure 4.10a from the textbook]

w 2 w 3
w 2 w 3 +

(b) Circuit

(b) Truth table

f
w 3

w 1 w 2

0
1

0 0
0 1
1 0
1 1

0
0
0
1

0 0
0 1
1 0
1 1

0
1
1
1

w 1 w 2 w 3 f

0
0
0
0
1
1
1
1

0
1

f w 1

Three-input majority function

[Figure 4.10a from the textbook]

w 2 w 3
w 2 w 3 +

(b) Circuit

(b) Truth table

f
w 3

w 1 w 2

0
1

Three-input majority function

f
w 3

w 1 w 2

0
1

Three-input majority function

f
w 3

w 1 w 2

0
1

Three-input majority function

f
w 3

w 1 w 2

0
1

Shannon’s Expansion Theorem

Shannon’s Expansion Theorem

Any Boolean function can be rewritten in the form:

Shannon’s Expansion Theorem

Any Boolean function can be rewritten in the form:

Shannon’s Expansion Theorem

Any Boolean function can be rewritten in the form:

cofactor cofactor

Shannon’s Expansion Theorem
(example with only one select variable)
(used for 2-to-1 mux implementation)

Factor and implement the following
function with a 2-to-1 multiplexer

Factor and implement the following
function with a 2-to-1 multiplexer

Factor and implement the following
function with a 2-to-1 multiplexer

[Figure 4.11a from the textbook]

w

f0
1

Another Example

Shannon’s Expansion Theorem Example

set w1 = 0

Shannon’s Expansion Theorem Example

set w1 = 0

0 • 0 •0
w1

w2 w3

Shannon’s Expansion Theorem Example

set w1 = 1

Shannon’s Expansion Theorem Example

set w1 = 1

1 • 1 •1
w1

w2 + w3

Shannon’s Expansion Theorem Example

Shannon’s Expansion Theorem Example
started with this

Shannon’s Expansion Theorem Example

factored it in this form

Shannon’s Expansion Theorem Example

which fits the general formula

f
w 3

w 1 w 2

0
1

Shannon’s Expansion Theorem Example

f
w 3

w 1 w 2

0
1

Shannon’s Expansion Theorem Example

f
w 3

w 1 w 2

0
1

Shannon’s Expansion Theorem Example

0 0
0 1
1 0
1 1

0
0
0
1

0 0
0 1
1 0
1 1

0
1
1
1

w 1 w 2 w 3 f

0
0
0
0
1
1
1
1

0
1

f w 1

Earlier we derived the same result from the truth table
using the divide-and-conquer method (a.k.a., Shannon’s theorem)

[Figure 4.10a from the textbook]

w 2 w 3
w 2 w 3 +

(b) Circuit

(b) Truth table

f
w 3

w 1 w 2

0
1

Shannon’s Expansion Theorem
(example with two select variables)

(used for 4-to-1 mux implementation)

Shannon’s Expansion Theorem
(In terms of more than one variable)

This form is suitable for implementation with a 4x1 multiplexer.

Factor and implement the following
function with a 4-to-1 multiplexer

Factor and implement the following
function with a 4-to-1 multiplexer

w1 = 0 w2 = 0

0 • 0 0 • 1 •

Factor and implement the following
function with a 4-to-1 multiplexer

w1 = 0 w2 = 1

0 • 1 0 • 1 •

Factor and implement the following
function with a 4-to-1 multiplexer

w1 = 1 w2 = 0

1 • 0 1 • 0 •

Factor and implement the following
function with a 4-to-1 multiplexer

w1 = 1 w2 = 1

1 • 1 1 • 0 •

1

Factor and implement the following
function with a 4-to-1 multiplexer

Factor and implement the following
function with a 4-to-1 multiplexer

these are the 4 minterms in terms of w1 and w2

Factor and implement the following
function with a 4-to-1 multiplexer

these are the 4 cofactors

Factor and implement the following
function with a 4-to-1 multiplexer

[Figure 4.11b from the textbook]

00
01
10
11

Alternative Derivation for the same Problem
(using Boolean Algebra to derive the cofactors)

Factor and implement the following
function with a 4-to-1 multiplexer

Factor and implement the following
function with a 4-to-1 multiplexer

= w1 (w2 + w2) w3 + w1 w2 + w1 (w2 + w2) w3

Factor and implement the following
function with a 4-to-1 multiplexer

= w1 (w2 + w2) w3 + w1 w2 + w1 (w2 + w2) w3

= w1 w2 w3 + w1 w2 w3 + w1 w2 + w1 w2 w3 + w1 w2 w3

= w1 w2 w3 + w1 w2 w3 + w1 w2 w3 + w1 w2 (1 + w3)

= w1 w2 (w3) + w1 w2 (w3) + w1 w2 (w3) + w1 w2 (1)

Factor and implement the following
function with a 4-to-1 multiplexer

= w1 (w2 + w2) w3 + w1 w2 + w1 (w2 + w2) w3

= w1 w2 w3 + w1 w2 w3 + w1 w2 + w1 w2 w3 + w1 w2 w3

= w1 w2 w3 + w1 w2 w3 + w1 w2 w3 + w1 w2 (1 + w3)

= w1 w2 (w3) + w1 w2 (w3) + w1 w2 (w3) + w1 w2 (1)

these are the 4 minterms in terms of w1 and w2

Factor and implement the following
function with a 4-to-1 multiplexer

= w1 (w2 + w2) w3 + w1 w2 + w1 (w2 + w2) w3

= w1 w2 w3 + w1 w2 w3 + w1 w2 + w1 w2 w3 + w1 w2 w3

= w1 w2 w3 + w1 w2 w3 + w1 w2 w3 + w1 w2 (1 + w3)

= w1 w2 (w3) + w1 w2 (w3) + w1 w2 (w3) + w1 w2 (1)

these are the 4 cofactors

Factor and implement the following
function with a 4-to-1 multiplexer

Factor and implement the following
function with a 4-to-1 multiplexer

[Figure 4.11b from the textbook]

00
01
10
11

Yet Another Example
(with hierarchical structure)

Factor and implement the following
function using only 2-to-1 multiplexers

Factor and implement the following
function using only 2-to-1 multiplexers

Factor and implement the following
function using only 2-to-1 multiplexers

Factor and implement the following
function using only 2-to-1 multiplexers

f
g

h

w1

0

1

Factor and implement the following
function using only 2-to-1 multiplexers

Factor and implement the following
function using only 2-to-1 multiplexers

Factor and implement the following
function using only 2-to-1 multiplexers

g
0

w3

w2

h
w3

1

w2

0

1

0

1

Finally, we are ready to draw the circuit

g
0

w3

w2

h
w3

1

w2

f
g

h

w10

1

0

1

0

1

Finally, we are ready to draw the circuit

g0

w3

w2

h1

f

w10

1

0

1

0

1

Finally, we are ready to draw the circuit

w 2

0
w 3

1

f

w 1

[Figure 4.12 from the textbook]

0

1

0

1

0

1

Questions?

THE END

