

CprE 2810: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Multiplexers

CprE 2810: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- HW 6 is due on Monday Oct 13 @ 10pm
- HW 7 is due on Monday Oct 20 @ 10pm

Next week: Lab 6 + TTL2

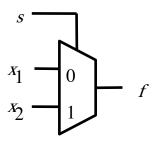
Midterm progress report grades are due next week

2-to-1 Multiplexer

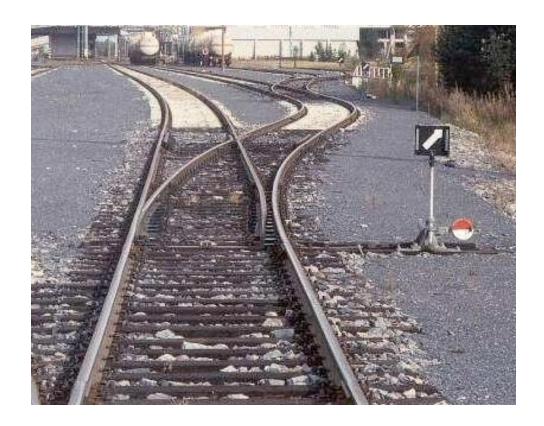
2-to-1 Multiplexer (Definition)

- Has two inputs: x₁ and x₂
- Also has another input line s
- If s=0, then the output is equal to x₁
- If s=1, then the output is equal to x₂

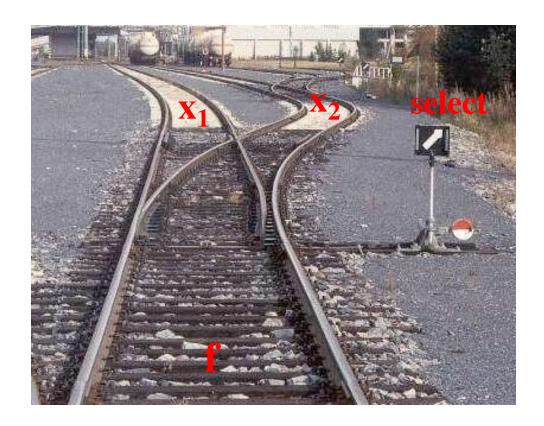
Graphical Symbol for a 2-to-1 Multiplexer



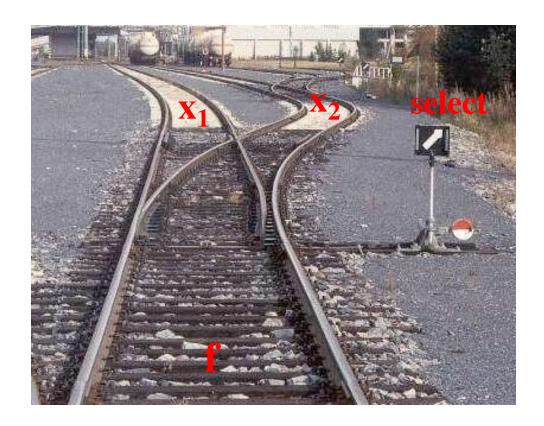
Analogy: Railroad Switch



Analogy: Railroad Switch



Analogy: Railroad Switch



This is not a perfect analogy because the trains can go in either direction, while the multiplexer would only allow them to go from top to bottom.

Truth Table for a 2-to-1 Multiplexer

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s,x_1,x_2)$
	J (0,01,02)
0 0 0	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

Where should we put the negation signs?

$$s x_1 x_2$$

$$s x_1 x_2$$

$$s x_1 x_2$$

$$s x_1 x_2$$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
0 0 1	0	
010	1	$\overline{s} x_1 \overline{x}_2$
0 1 1	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
0 1 1	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x}_2 + \overline{s} x_1 x_2 + s \overline{x}_1 x_2 + s x_1 x_2$$

Let's simplify this expression

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x}_2 + \overline{s} x_1 x_2 + s \overline{x}_1 x_2 + s x_1 x_2$$

Let's simplify this expression

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x}_2 + \overline{s} x_1 x_2 + s \overline{x}_1 x_2 + s x_1 x_2$$

$$f(s, x_1, x_2) = \overline{s} x_1 (\overline{x}_2 + x_2) + s (\overline{x}_1 + x_1) x_2$$

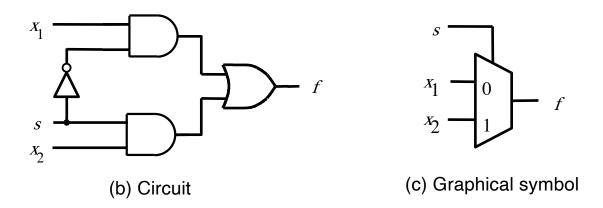
Let's simplify this expression

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x_2} + \overline{s} x_1 x_2 + s \overline{x_1} x_2 + s x_1 x_2$$

$$f(s, x_1, x_2) = \overline{s} x_1 (\overline{x}_2 + x_2) + s (\overline{x}_1 + x_1) x_2$$

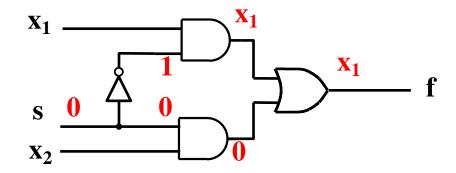
$$f(s, x_1, x_2) = \overline{s} x_1 + s x_2$$

Circuit for 2-1 Multiplexer

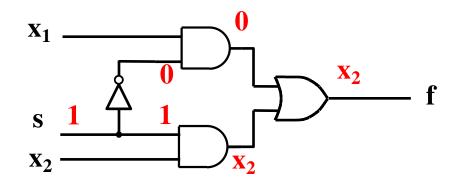


$$f(s, x_1, x_2) = \overline{s} x_1 + s x_2$$

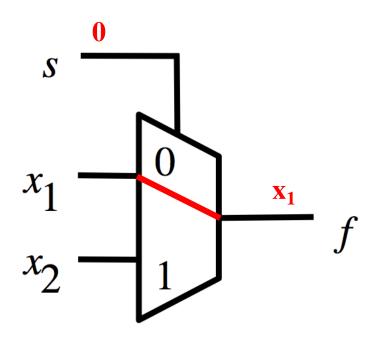
Analysis of the 2-to-1 Multiplexer (when the input s=0)



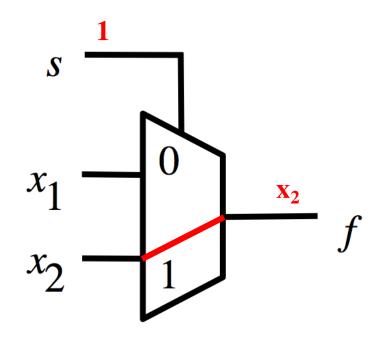
Analysis of the 2-to-1 Multiplexer (when the input s=1)



Analysis of the 2-to-1 Multiplexer (when the input s=0)



Analysis of the 2-to-1 Multiplexer (when the input s=1)



More Compact Truth-Table Representation

$s x_1 x_2$	$f(s, x_1, x_2)$
0 0 0	0
0 0 1	0
0 1 0	1
0 1 1	1
100	0
101	1
1 1 0	0
1 1 1	1

(a)Truth table

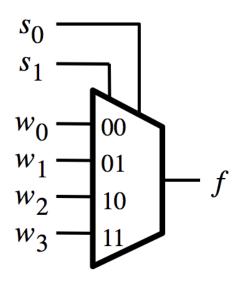
S	$f(s, x_1, x_2)$
0	x_1
1	x_2

4-to-1 Multiplexer

4-to-1 Multiplexer (Definition)

- Has four inputs: w₀, w₁, w₂, w₃
- Also has two select lines: s₁ and s₀
- If $s_1=0$ and $s_0=0$, then the output f is equal to w_0
- If $s_1=0$ and $s_0=1$, then the output f is equal to w_1
- If $s_1=1$ and $s_0=0$, then the output f is equal to w_2
- If $s_1=1$ and $s_0=1$, then the output f is equal to w_3

Graphical Symbol and Truth Table



(a)	Grap	hic	svm	bol

s_1	s_0	f
0	0	w_0
0	1	w_1°
1	0	w_2
1	1	w_3

(b) Truth table

S_1S_0	I ₃ I ₂ I ₁ I ₀ I	F S ₁ S ₀	I ₃ I ₂ I ₁ I ₀ F	S ₁ S ₀ I ₃ I ₂ I ₁ I ₀	F S ₁ S ₀ I ₃ I ₂ I ₁ I ₀ F
0 0	0 0 0 0	0 0 1	0 0 0 0	1 0 0 0 0 0	0 1 1 0 0 0 0 0
	0 0 0 1	1	0 0 0 1 0	0 0 0 1	0 0 0 1 0
	0 0 1 0	0	0 0 1 0 1	0 0 1 0	0 0 1 0 0
	0 0 1 1	1	0 0 1 1 1	0 0 1 1	0 0 1 1 0
	0 1 0 0	0	0 1 0 0 0	0 1 0 0	1 0 1 0 0 0
	0 1 0 1	1	0 1 0 1 0	0 1 0 1	1 0 1 0 1 0
	0 1 1 0	0	0 1 1 0 1	0 1 1 0	1 0 1 1 0 0
	0 1 1 1	1	0 1 1 1 1	0 1 1 1	1 0 1 1 1 0
	1 0 0 0	0	1 0 0 0 0	1 0 0 0	0 1 0 0 0 1
	1 0 0 1	1	1 0 0 1 0	1 0 0 1	0 1 0 0 1 1
	1 0 1 0	0	1 0 1 0 1	1 0 1 0	0 1 0 1 0 1
	1 0 1 1	1	1 0 1 1 1	1 0 1 1	0 1 0 1 1 1
	1 1 0 0	0	1 1 0 0 0	1 1 0 0	1 1 0 0 1
	1 1 0 1	1	1 1 0 1 0	1 1 0 1	1 1 0 1 1
	1 1 1 0	0	1 1 1 0 1	1 1 1 0	1 1 1 0 1
	1 1 1 1	1	1 1 1 1 1	1 1 1 1	1 1 1 1 1

[http://www.absoluteastronomy.com/topics/Multiplexer]

$S_1 S_0$	I ₃ I ₂ I ₁ I ₀	F S ₁ S ₀	I ₃ I ₂ I ₁ I ₀ F	S ₁ S ₀ I ₃ I ₂ I ₁ I ₀ F	S ₁ S ₀ I ₃ I ₂ I ₁ I ₀ F
0 0	0 0 0 0	0 0 1	0 0 0 0 0	1 0 0 0 0 0 0	1 1 0 0 0 0 0
	0 0 0 1	1	0 0 0 1 0	0 0 0 1 0	0 0 0 1 0
	0 0 1 0	0	0 0 1 0 1	0 0 1 0 0	0 0 1 0 0
	0 0 1 1	1	0 0 1 1 1	0 0 1 1 0	0 0 1 1 0
	0 1 0 0	0	0 1 0 0 0	0 1 0 0 1	0 1 0 0 0
	0 1 0 1	1	0 1 0 1 0	0 1 0 1 1	0 1 0 1 0
	0 1 1 0	0	0 1 1 0 1	0 1 1 0 1	0 1 1 0 0
	0 1 1 1	1	0 1 1 1 1	0 1 1 1 1	0 1 1 1 0
	1 0 0 0	0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 1
	1 0 0 1	1	1 0 0 1 0	1 0 0 1 0	1 0 0 1 1
	1 0 1 0	0	1 0 1 0 1	1 0 1 0 0	1 0 1 0 1
	1 0 1 1	1	1 0 1 1 1	1 0 1 1 0	1 0 1 1 1
	1 1 0 0	0	1 1 0 0 0	1 1 0 0 1	1 1 0 0 1
	1 1 0 1	1	1 1 0 1 0	1 1 0 1 1	1 1 0 1 1
	1 1 1 0	0	1 1 1 0 1	1 1 1 0 1	1 1 1 0 1
	1 1 1 1	1	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1

identical

S_1S_0 I_3 I_2 I_1 I_0 F	S ₁ S ₀ I ₃ I ₂	I ₁ I ₀	F S ₁ S ₀	I ₃ I ₂ I ₁ I ₀	F S ₁ S ₀	I ₃ I ₂ I ₁ I ₀ F
0 0 0 0 0 0	0 1 0 0	0 0	0 1 0	0 0 0 0	0 1 1	0 0 0 0 0
0 0 0 1 1	0 0	0 1	0	0 0 0 1	0	0 0 0 1 0
0 0 1 0 0	0 0	1 0	1	0 0 1 0	0	0 0 1 0 0
0 0 1 1 1	0 0	1 1	1	0 0 1 1	0	0 0 1 1 0
0 1 0 0 0	0 1	0 0	0	0 1 0 0	1	0 1 0 0 0
0 1 0 1 1	0 1	0 1	0	0 1 0 1	1	0 1 0 1 0
0 1 1 0 0	0 1	1 0	1	0 1 1 0	1	0 1 1 0 0
0 1 1 1 1	0 1	1 1	1	0 1 1 1	1	0 1 1 1 0
1 0 0 0 0	1 0	0 0	0	1 0 0 0	0	1 0 0 0 1
1 0 0 1 1	1 0	0 1	0	1 0 0 1	0	1 0 0 1 1
1 0 1 0 0	1 0	1 0	1	1 0 1 0	0	1 0 1 0 1
1 0 1 1 1	1 0	1 1	1	1 0 1 1	0	1 0 1 1 1
1 1 0 0 0	1 1	0 0	0	1 1 0 0	1	1 1 0 0 1
1 1 0 1 1	1 1	0 1	0	1 1 0 1	1	1 1 0 1 1
1 1 1 0 0	1 1	1 0	1	1 1 1 0	1	1 1 1 0 1
1 1 1 1 1	1 1	1 1	1	1 1 1 1	1	1 1 1 1 1

identical

[http://www.absoluteastronomy.com/topics/Multiplexer]

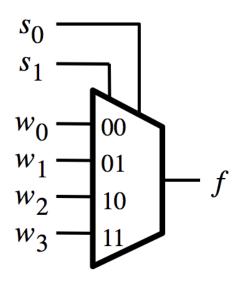
S ₁ S ₀ I ₃ I ₂	I ₁ I ₀	F	S_1S_0	I_3	I ₂	I_1	I_0	F	S_1S_0	I_3	I_2	$I_1\ I_0$	F	S_1S_0	I_3	I_2	I_1	I_0	F
0 0 0 0	0 0	0	0 1	0	0	0	0	0	1 0	0	0	0 0	0	1 1	0	0	0	0	0
0 0	0 1	1		0	0	0	1	0		0	0	0 1	0		0	0	0	1	0
0 0	1 0	0		0	0	1	0	1		0	0	1 0	0		0	0	1	0	0
0 0	1 1	1		0	0	1	1	1		0	0	1 1	0		0	0	1	1	0
0 1	0 0	0		0	1	0	0	0		0	1	0 0	1		0	1	0	0	0
0 1	0 1	1		0	1	0	1	0		0	1	0 1	1		0	1	0	1	0
0 1	1 0	0		0	1	1	0	1		0	1	1 0	1		0	1	1	0	0
0 1	1 1	1		0	1	1	1	1		0	1	1 1	1		0	1	1	1	0
1 0	0 0	0		1	0	0	0	0		1	0	0 0	0		1	0	0	0	1
1 0	0 1	1		1	0	0	1	0		1	0	0 1	0		1	0	0	1	1
1 0	1 0	0		1	0	1	0	1		1	0	1 0	0		1	0	1	0	1
1 0	1 1	1		1	0	1	1	1		1	0	1 1	0		1	0	1	1	1
1 1	0 0	0		1	1	0	0	0		1	1	0 0	1		1	1	0	0	1
1 1	0 1	1		1	1	0	1	0		1	1	0 1	1		1	1	0	1	1
1 1	1 0	0		1	1	1	0	1		1	1	1 0	1		1	1	1	0	1
1 1	1 1	1		1	1	1	1	1		1	1	ı ı entic	1		1	1	1	1	1

Identical [http://www.absoluteastronomy.com/topics/Multiplexer]

S_1S_0	I ₃ I ₂	2 I ₁	Io	F	$S_1 S_0$	I_3	I ₂	I_1	I_0	F	S	S ₁ S ₀	I_3	I_2	I_1	I_0	F	S_1	S_0	I_3	I_2	I_1	I_0	F
0 0	0 0	0	0	0	0 1	0	0	0	0	0	_	. 0	0	0	0	0	0	1	1	0	0	0	0	0
	0 0	0	1	1		0	0	0	1	0			0	0	0	1	0			0	0	0	1	0
	0 0	1	0	0		0	0	1	0	1			0	$_{0}$	1	0	0			0	0	1	0	0
	0 0	1	1	1		0	0	1	1	1			0	0	1	1	0			0	0	1	1	0
	0 1	0	0	0		0	1	0	0	0			0	1	0	0	1			0	1	0	0	0
	0 1	0	1	1		0	1	0	1	0			0	1	0	1	1			0	1	0	1	0
	0 1	1	0	0		0	1	1	0	1			0	1	1	0	1			0	1	1	0	0
	0 1	-1	1	1		0	1	1	1	1			0	1	1	1	1			0	1	1	1	0
	1 0	0	0	0		1	0	0	0	0			1	0	0	0	0			1.	0	0	0	1
	1 0	0	1	1		1	0	0	1	0			1	0	0	1	0			1	0	0	1	1
	1 0	1	0	0		1	0	1	0	1			1	0	1	0	0			1	0	1	0	1
	1 0	1	1	1		1	0	1	1	1			1	0	1	1	0			1	0	1	1	1
	1 1	0	0	0		1	1	0	0	0			1	1	0	0	1			1.	1	0	0	1
	1 1	0	1	1		1	1	0	1	0			1	1	0	1	1			1	1	0	1	1
	1 1	1	0	0		1	1	1	0	1			1	1	1	0	1			1	1	1	0	1
	1 1	1	1	1		1	1	1	1	1			1	1	1	1	1			10	1	1 ofi	ı ca	1

[http://www.absoluteastronomy.com/topics/Multiplexer]

Graphical Symbol and Truth Table

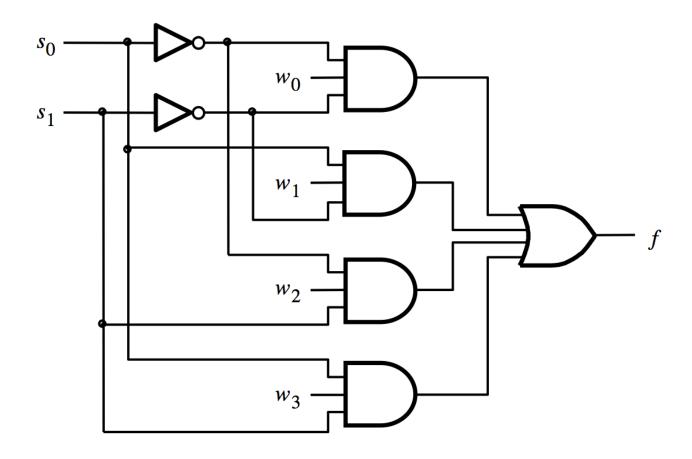


(a)	Grap	hic	svm	bol

s_1	s_0	f
0	0	w_0
0	1	w_1°
1	0	w_2
1	1	w_3

(b) Truth table

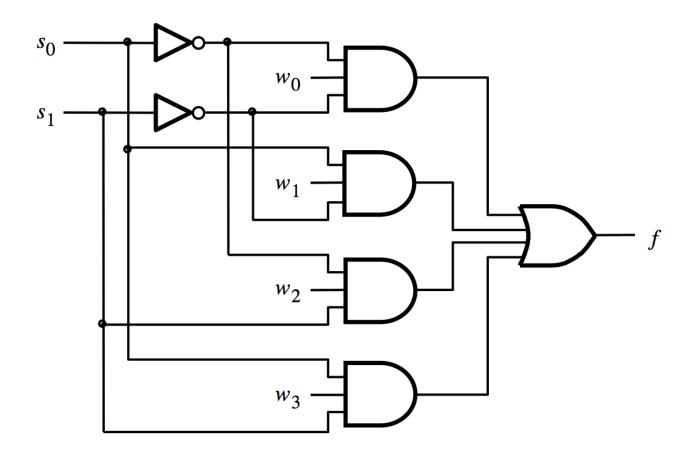
4-to-1 Multiplexer (SOP circuit)



$$f = \overline{s_1} \, \overline{s_0} \, w_0 + \overline{s_1} \, s_0 \, w_1 + s_1 \, \overline{s_0} \, w_2 + s_1 \, s_0 \, w_3$$

[Figure 4.2c from the textbook]

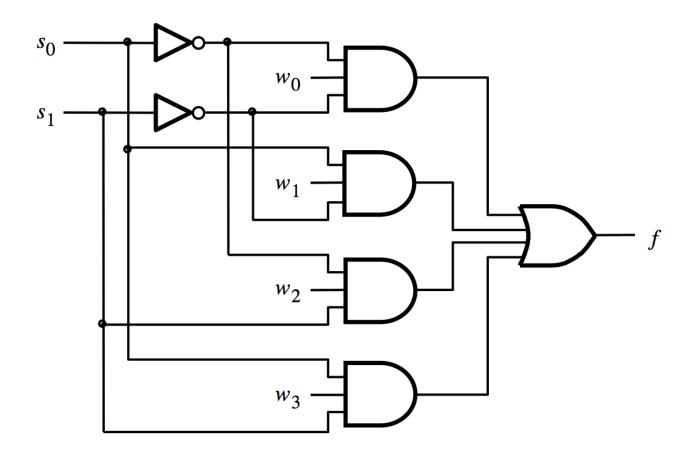
4-to-1 Multiplexer (SOP circuit)



$$f = \overline{s_1} \, \overline{s_0} w_0 + \overline{s_1} \, s_0 w_1 + \overline{s_1} \, \overline{s_0} w_2 + \overline{s_1} \, s_0 w_3$$

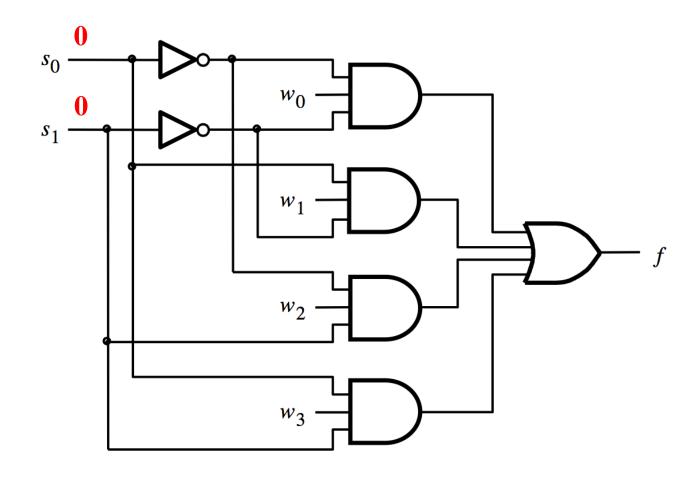
these are the four minterms in terms of s_1 and s_2

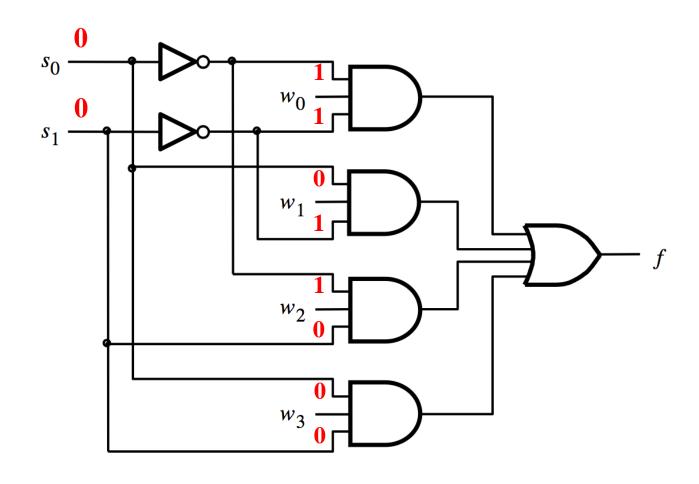
4-to-1 Multiplexer (SOP circuit)

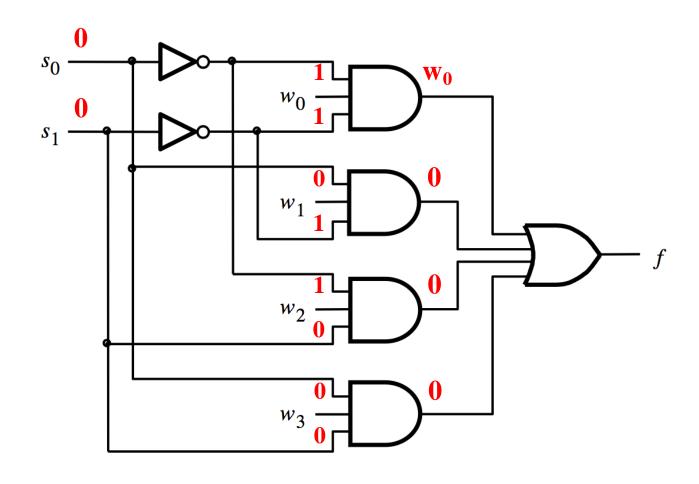


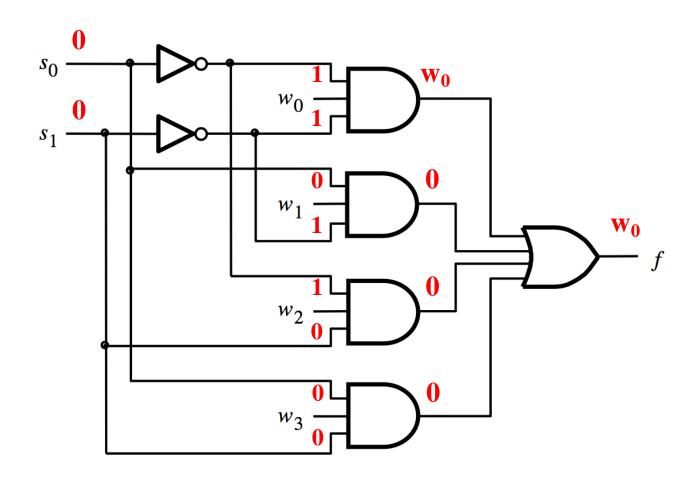
$$f = \overline{s_1} \, \overline{s_0} \, w_0 + \overline{s_1} \, s_0 \, w_1 + s_1 \, \overline{s_0} \, w_2 + s_1 \, s_0 \, w_3$$

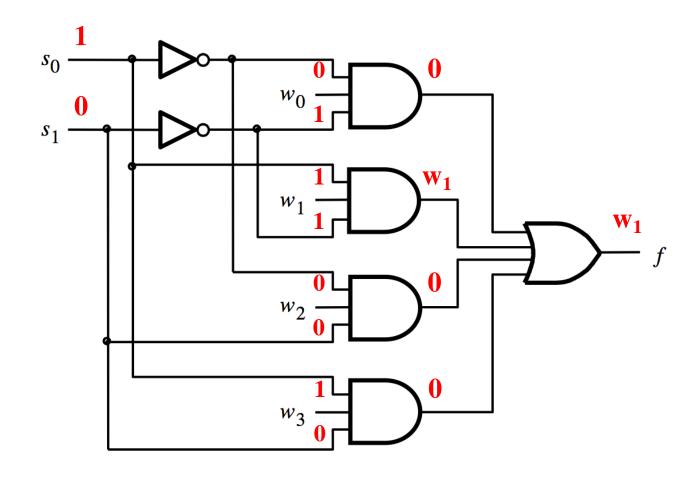
these are the four w inputs to the 4-to-1 MUX

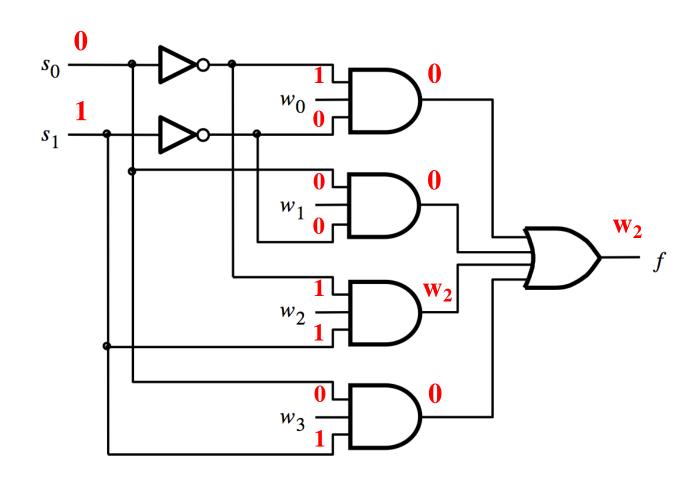


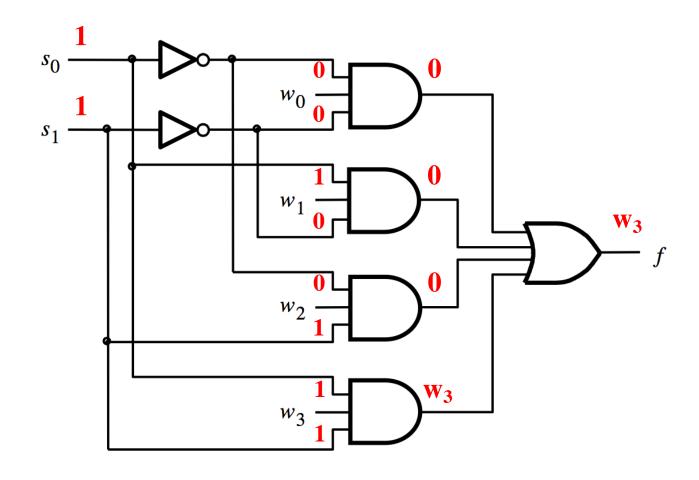


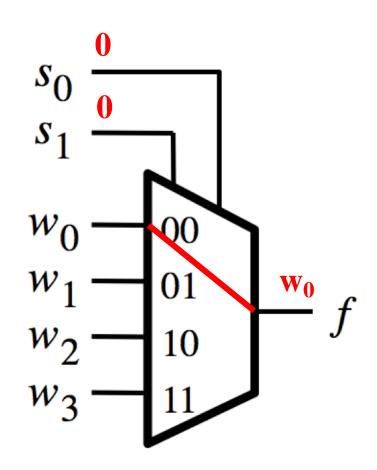


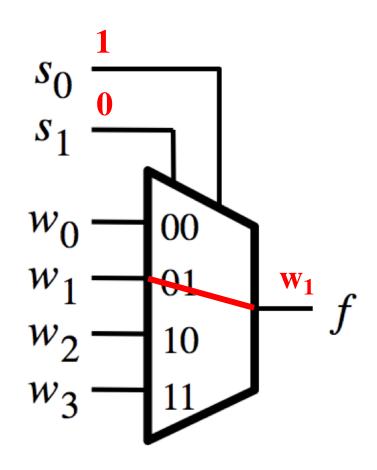


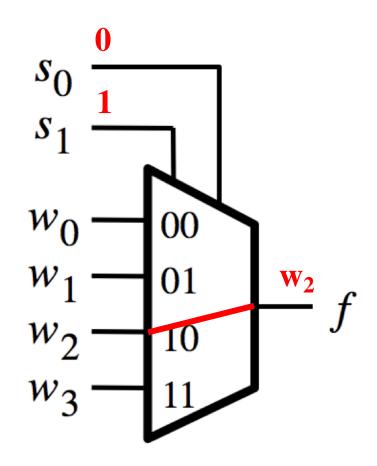


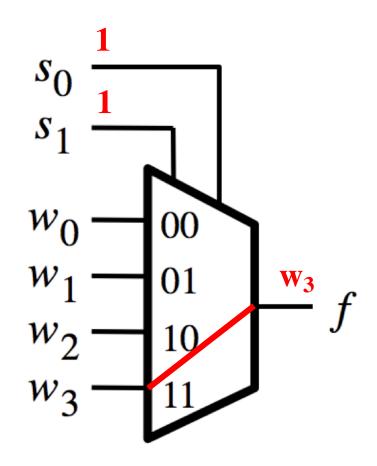


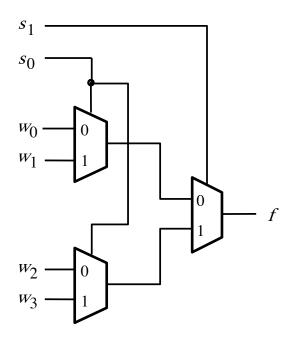








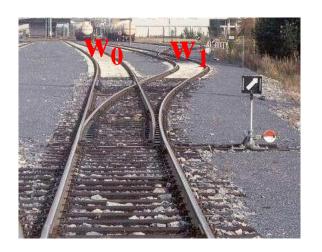


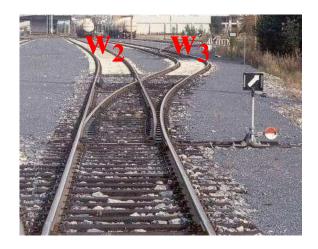


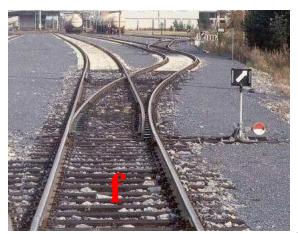
Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switches



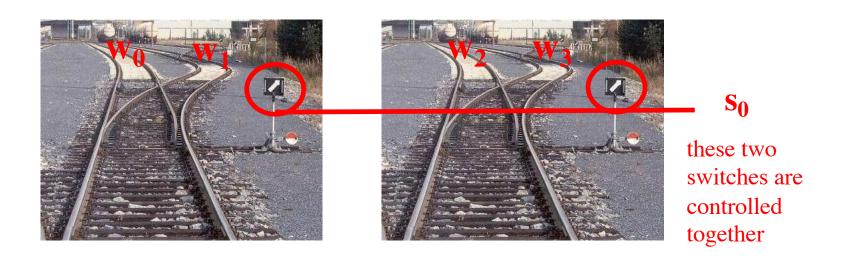


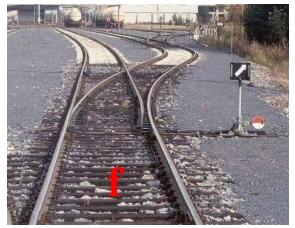


 $\mathbf{S}_{\mathbf{1}}$

http://en.wikipedia.org/wiki/Railroad_switch]

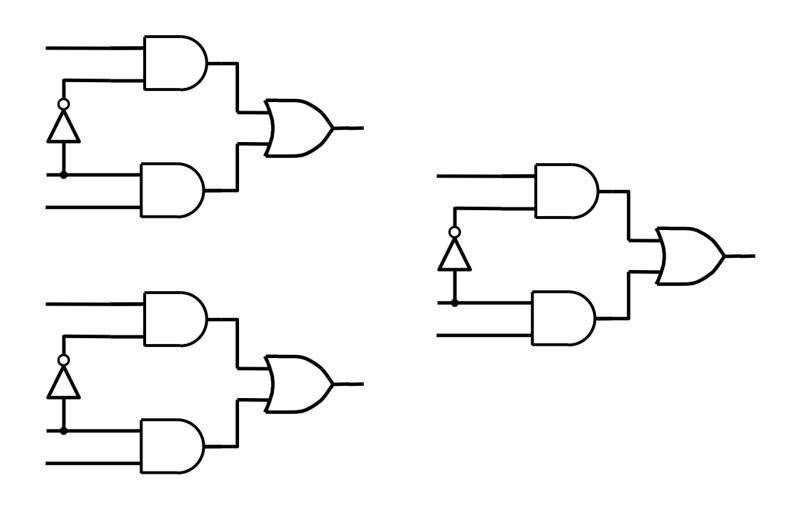
Analogy: Railroad Switches

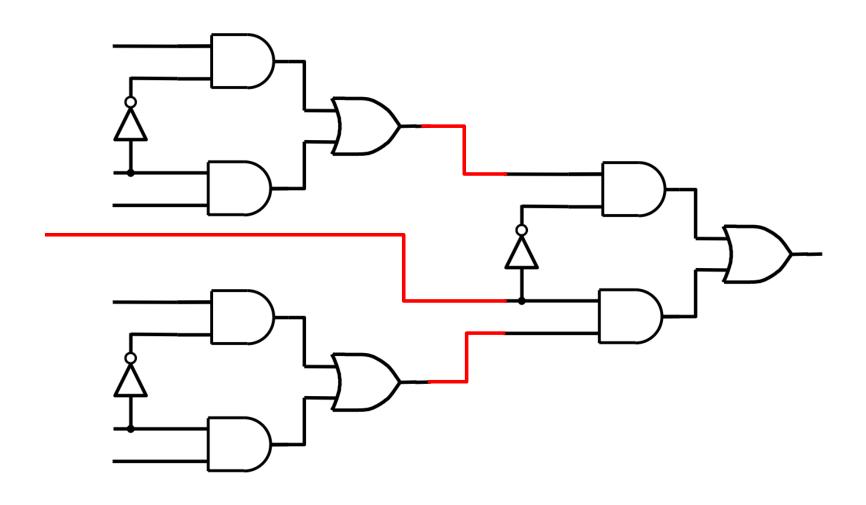


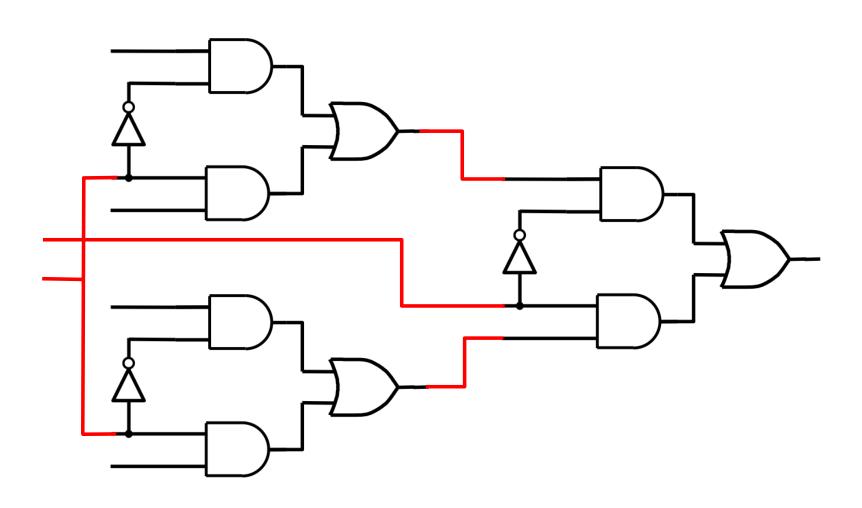


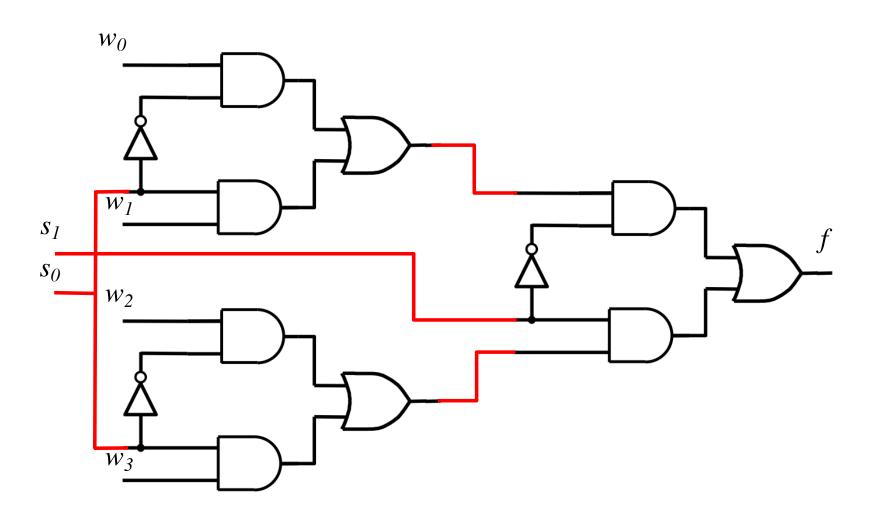
 $\mathbf{S}_{\mathbf{1}}$

http://en.wikipedia.org/wiki/Railroad_switch]

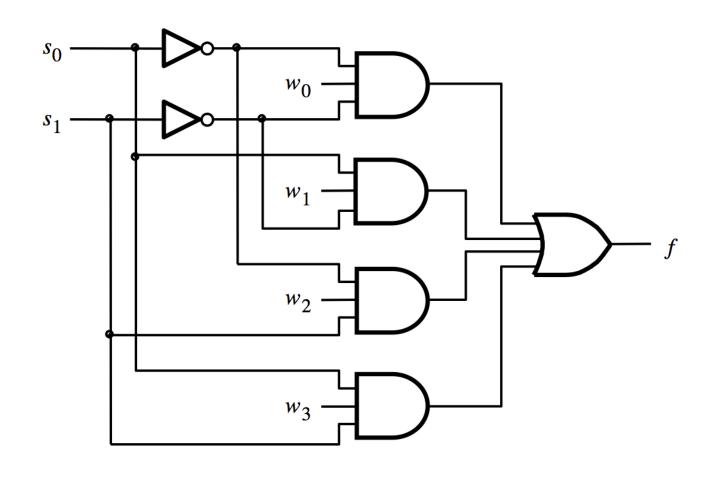




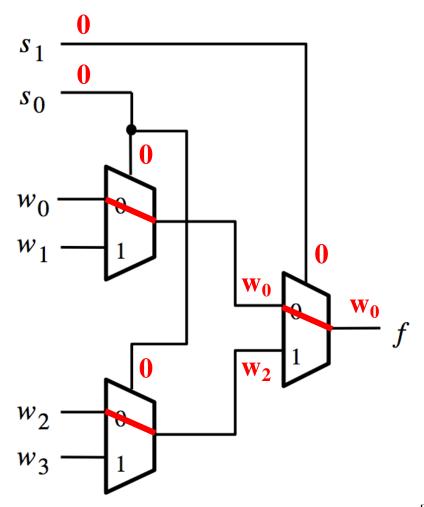




That is different from the SOP form of the 4-to-1 multiplexer shown below, which uses fewer gates

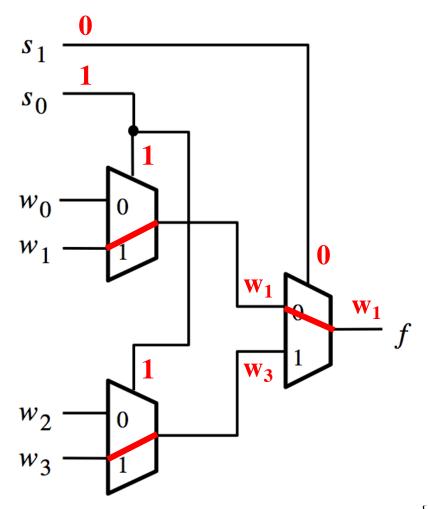


Analysis of the Hierarchical Implementation $(s_1=0 \text{ and } s_0=0)$



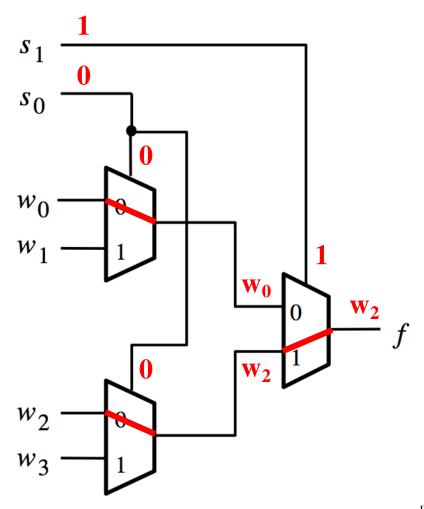
[Figure 4.3 from the textbook]

Analysis of the Hierarchical Implementation $(s_1=0 \text{ and } s_0=1)$



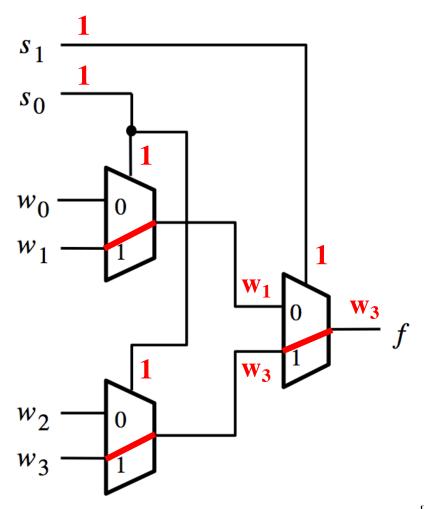
[Figure 4.3 from the textbook]

Analysis of the Hierarchical Implementation $(s_1=1 \text{ and } s_0=0)$

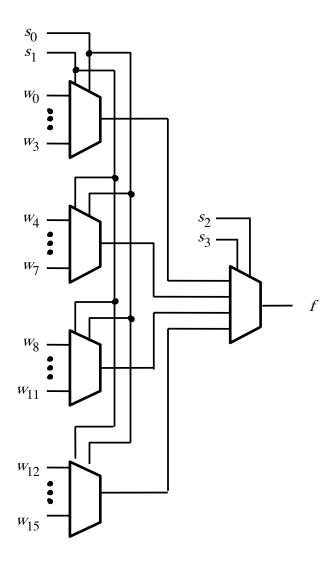


[Figure 4.3 from the textbook]

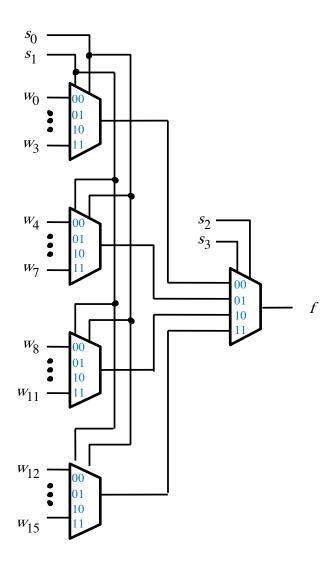
Analysis of the Hierarchical Implementation $(s_1=1 \text{ and } s_0=1)$



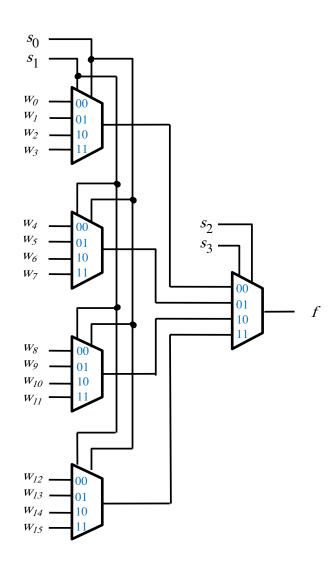
[Figure 4.3 from the textbook]

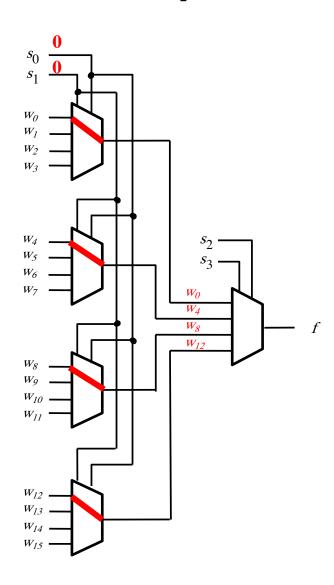


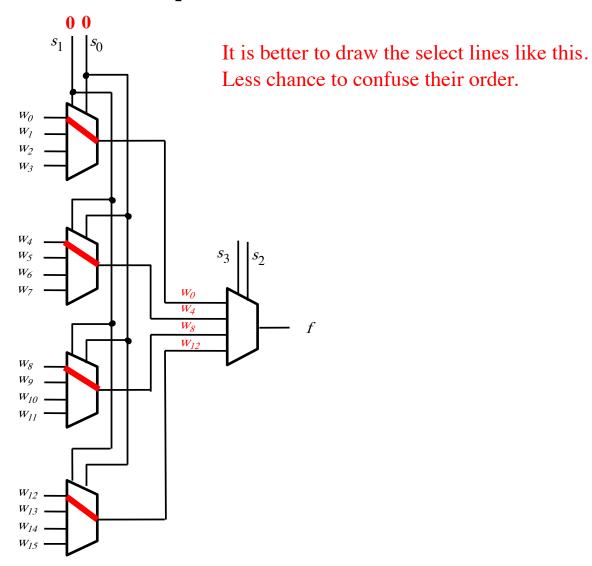
[Figure 4.4 from the textbook]

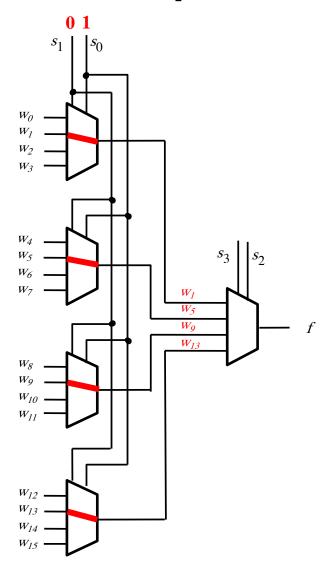


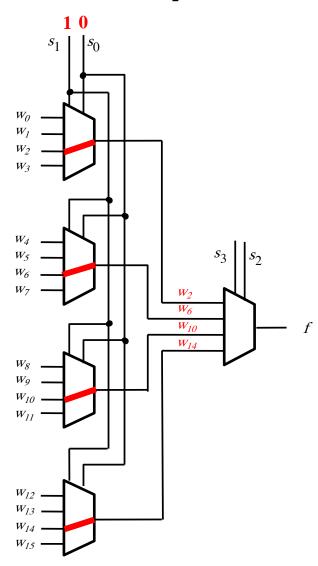
[Figure 4.4 from the textbook]

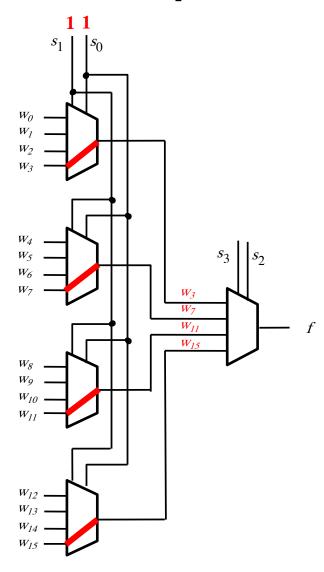




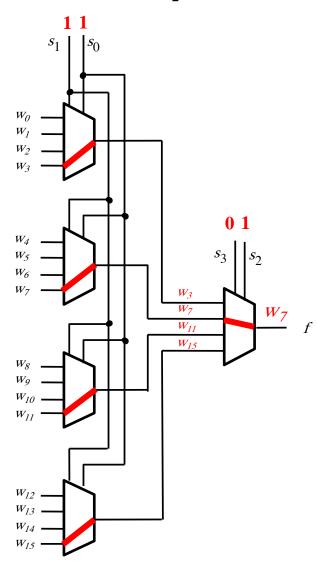




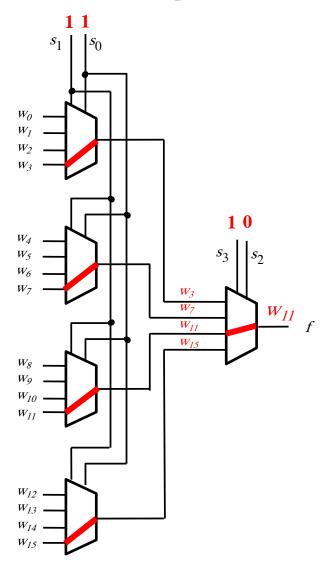




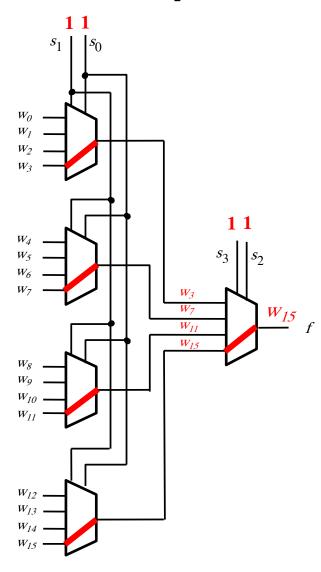


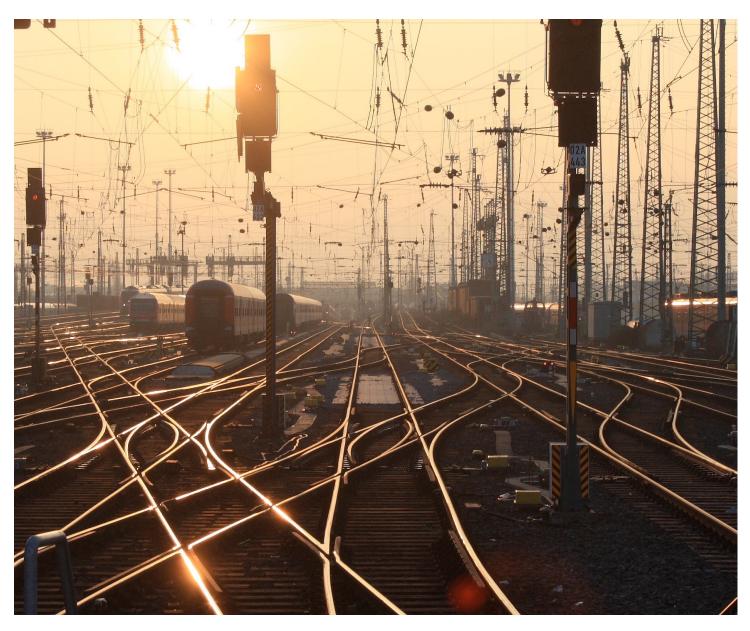


16-1 Multiplexer



16-1 Multiplexer

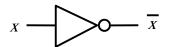




[http://upload.wikimedia.org/wikipedia/commons/2/26/SunsetTracksCrop.JPG]

Multiplexers Are Special

The Three Basic Logic Gates



$$\begin{array}{c|c} x_1 & \hline \\ x_2 & \hline \end{array}$$

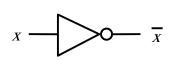
$$x_1$$
 x_2 $x_1 + x_2$

NOT gate

AND gate

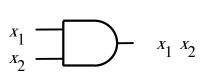
OR gate

Truth Table for NOT



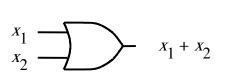
<i>X</i>	$\overline{\mathcal{X}}$
0	1
1	0

Truth Table for AND

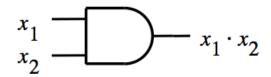


x_1	x_2	$x_1 \cdot x_2$
0	0	0
1	0	0
1	1	1

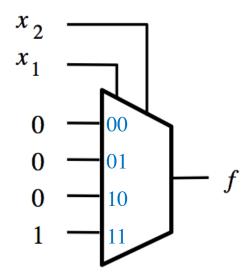
Truth Table for OR

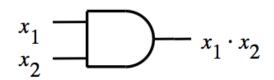


x_1	x_2	$x_1 + x_2$
0	0	0
0	1	1
1	0	1
1	1	1

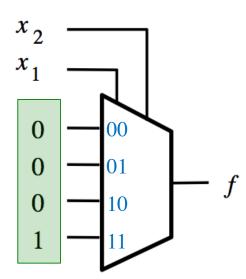


x_1	x_2	$x_1 \cdot x_2$
0	0	0
0	1	0
1	0	0
1	1	1

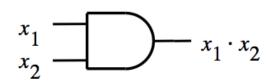




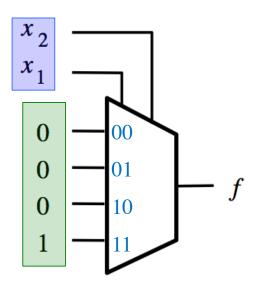
x_1	x_2	$x_1 \cdot x_2$
0	0	0
0	1	0
1	0	0
1	1	1



These two are the same.

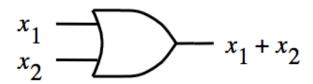


x_1	x_2	$x_1 \cdot x_2$	
0	0	0	_
0	1	0	
1	0	0	

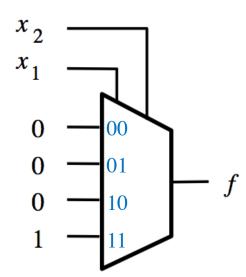


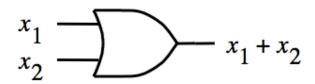
These two are the same.

And so are these two.

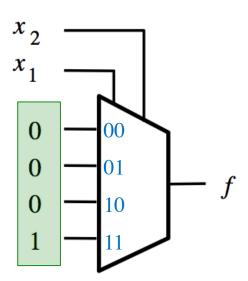


x_2	$x_1 + x_2$
0	0
1	1
0	1
1	1
	x_2 0 1 0 1

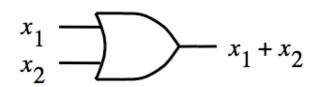




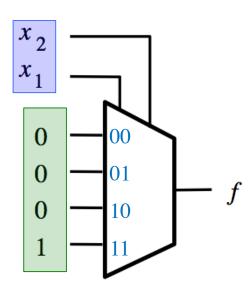
x_1	x_2	$x_1 + x_2$
0	0	0
0	1	1
1	0	1
1	1	1



These two are the same.

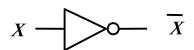


x_1	x_2	$x_1 + x_2$	2
0	0	0	
0	1	1	
1	0	1	
1	1	1	

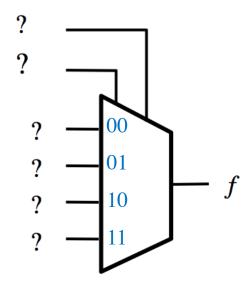


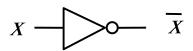
These two are the same.

And so are these two.

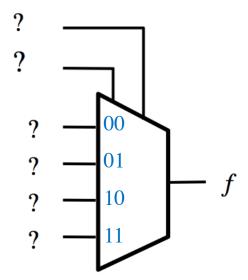


\mathcal{X}	$\overline{\mathcal{X}}$
0	1
1	0

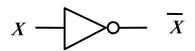




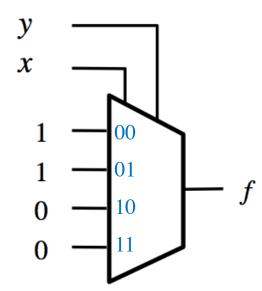
\mathcal{X}	\mathcal{Y}	f
0	0	1
0	1	1
1	0	0
1	1	0

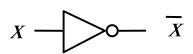


Introduce a dummy variable y.

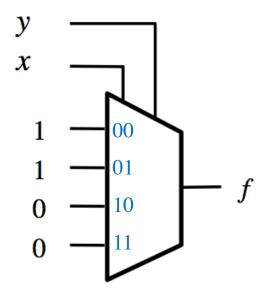


\mathcal{X}	\mathcal{Y}	f
0	0	1
0	1	1
1	0	0
1	1	0

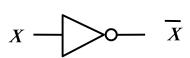




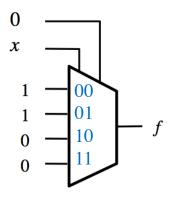
$\boldsymbol{\mathcal{X}}$	y	f
0	0	1
0	1	1
1	0	0
1	1	0

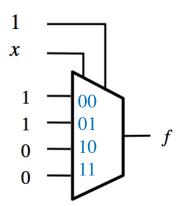


Now set y to either 0 or 1 (both will work). Why?



\mathcal{X}	$\overline{\mathcal{X}}$
0	1
1	0

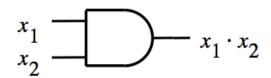




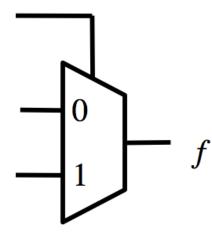
Two alternative solutions.

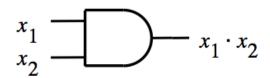
Implications

Any Boolean function can be implemented using only 4-to-1 multiplexers!

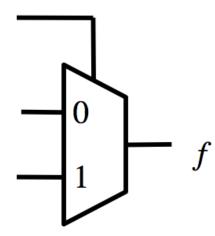


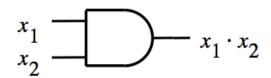
x_1	x_2	$x_1 \cdot x_2$
0	0	0
0	1	0
1	0	0
1	1	1



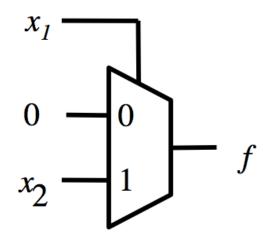


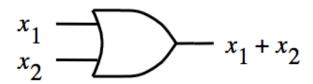
x_1	x_2	$x_1 \cdot x_2$
0	0	0
0	1	0
1	0	0
1	1	1



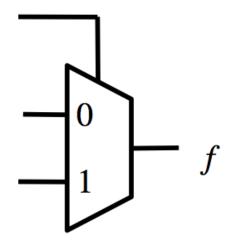


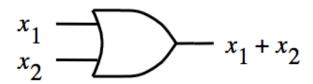
x_1	x_2	2 a	$x_1 \cdot x_2$	2
0	0		$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	- 0
1 1	0 1		$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	- x ₂

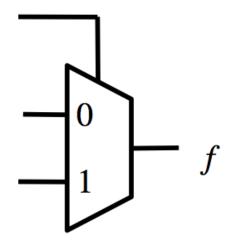


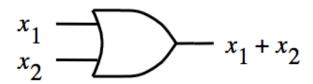


x_1	x_2	$x_1 + x_2$
0	0	0
0 1	$\frac{1}{0}$	1 1
1	1	1

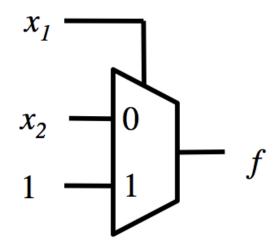


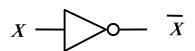




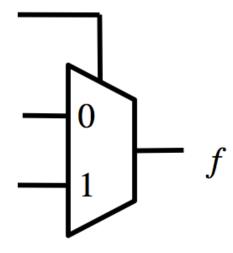


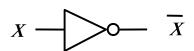
x_1	x_2	$x_1 + x_2$
0	0	0 X_2
$\frac{0}{1}$	$\begin{array}{c c} 1 \\ 0 \end{array}$	1]
1	1	1



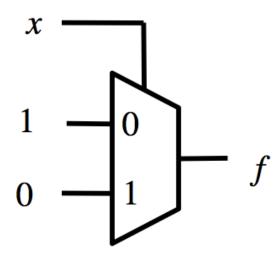


\mathcal{X}	\overline{x}
0	1
1	0



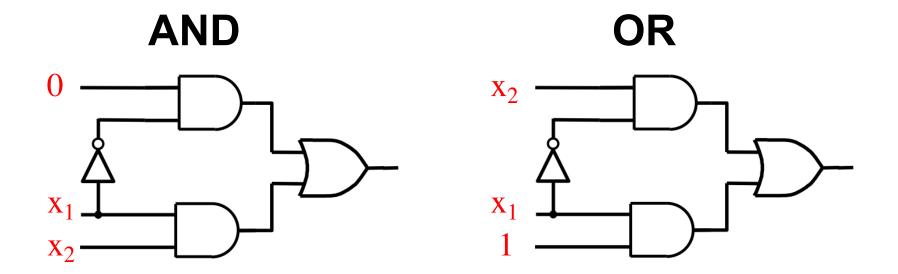


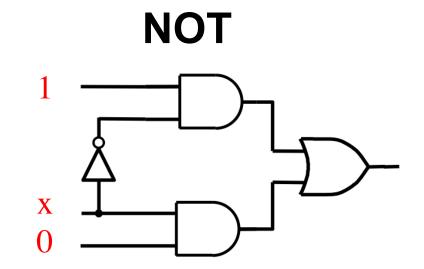
<i>X</i>	\overline{X}
0	1
1	0

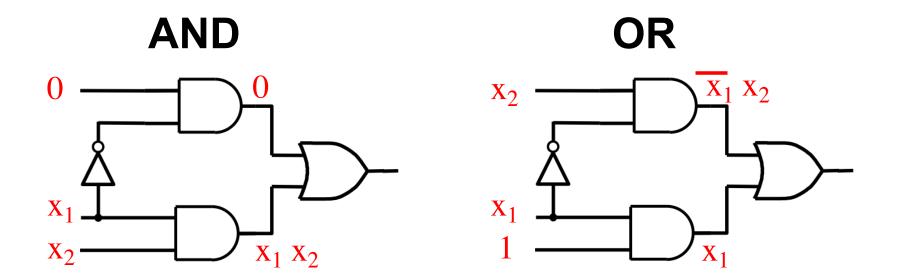


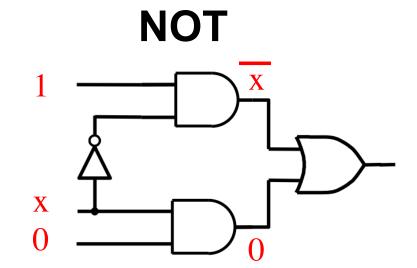
Implications

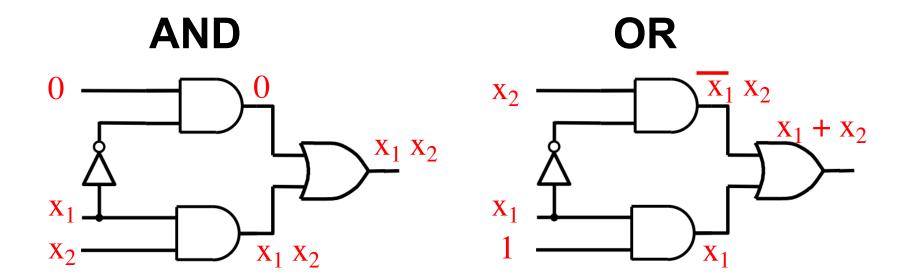
Any Boolean function can be implemented using only 2-to-1 multiplexers!

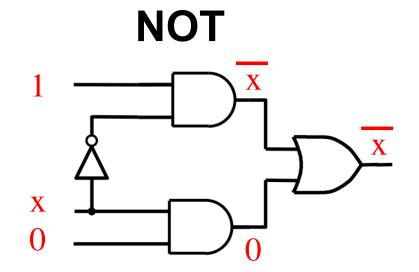






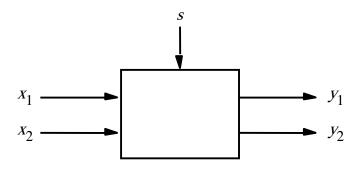




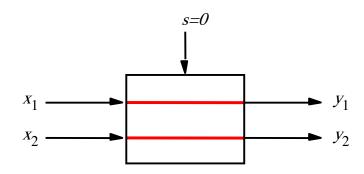


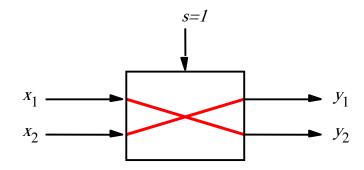
Switch Circuit

2 x 2 Crossbar switch

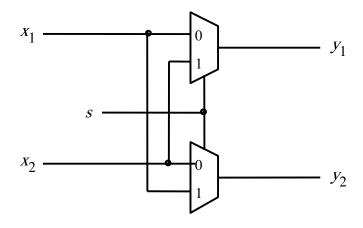


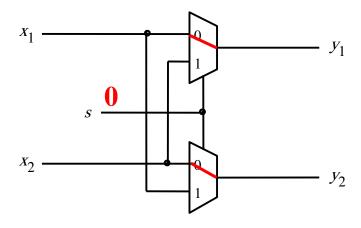
2 x 2 Crossbar switch

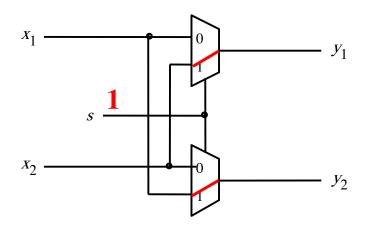


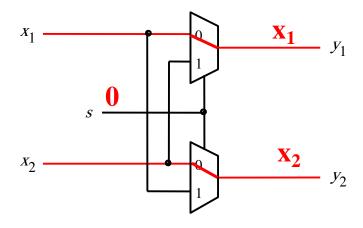


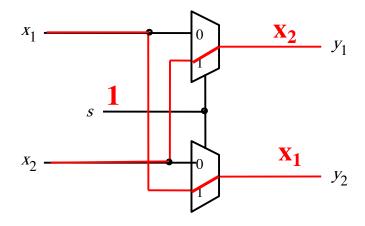
Implementation of a 2 x 2 crossbar switch with multiplexers

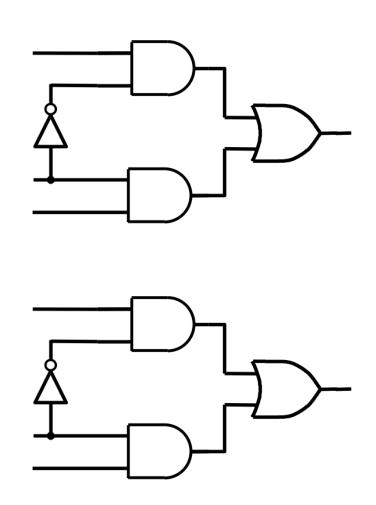


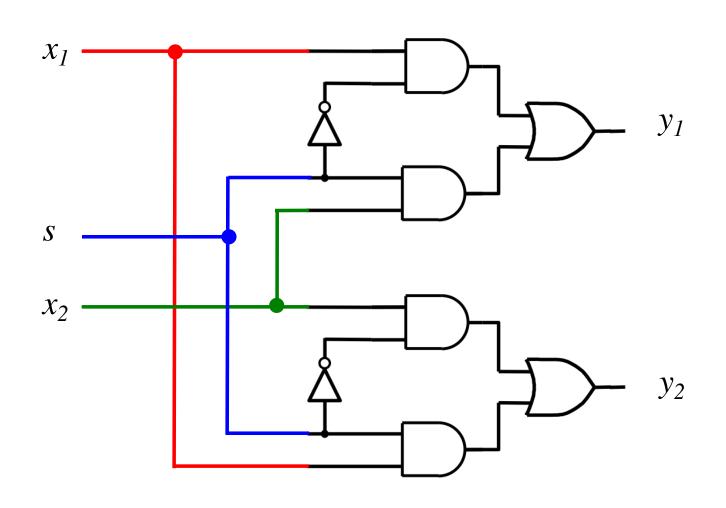










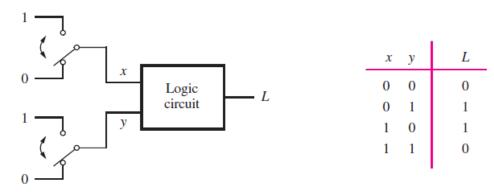


Synthesis of Logic Circuits Using Multiplexers

Synthesis of Logic Circuits Using Multiplexers

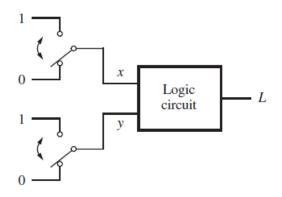
Note: This method is NOT the same as simply replacing each logic gate with a multiplexer! It is a lot more efficient.

The XOR Logic Gate



(b) Truth table

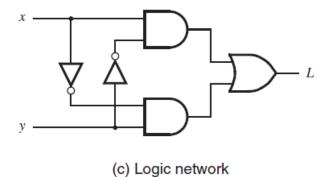
The XOR Logic Gate

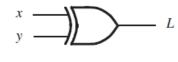


x	y	L
0	0	0
0	1	1
1	0	1
1	1	0

(a) Two switches that control a light

(b) Truth table

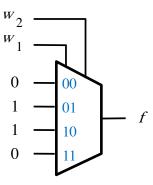




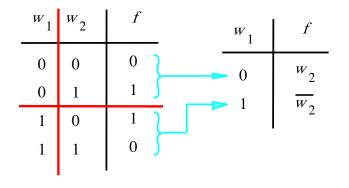
(d) XOR gate symbol

Implementation of a logic function with a 4-to-1 multiplexer

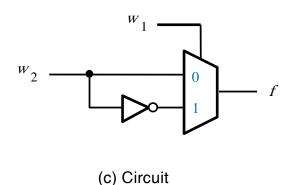
_	w_1	w_2	f
-	0	0	0
	0	1	1
	1	0	1
	1	1	0



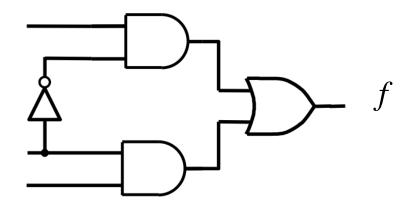
Implementation of the same logic function with a 2-to-1 multiplexer



(b) Modified truth table



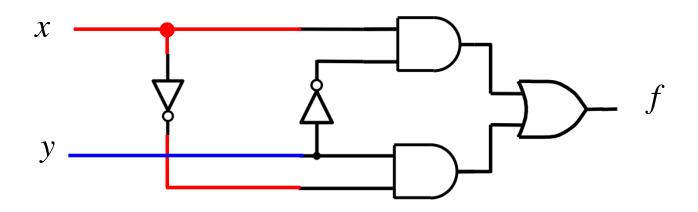
Implementation of the XOR Logic Gate with a 2-to-1 multiplexer and one NOT



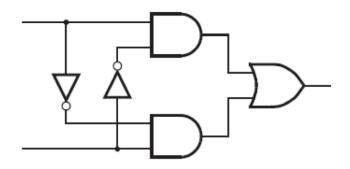
Implementation of the XOR Logic Gate with a 2-to-1 multiplexer and one NOT



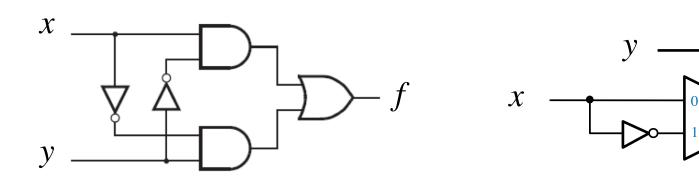
Implementation of the XOR Logic Gate with a 2-to-1 multiplexer and one NOT

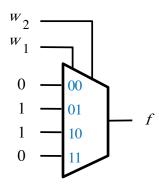


These two circuits are equivalent (the wires of the bottom AND gate are flipped)



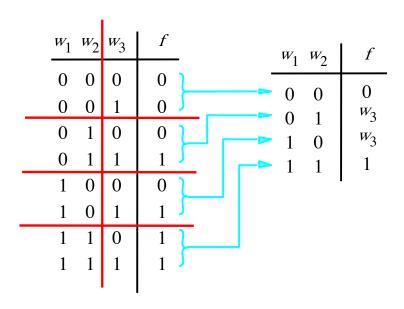
In other words, all four of these are equivalent!

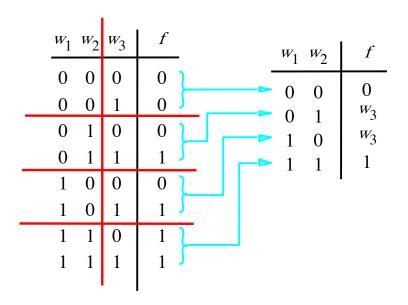


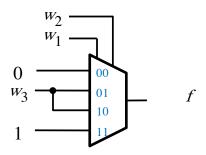


w_1	w_2	w_3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

w_1	w_2	w_3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1



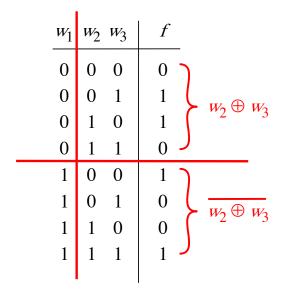


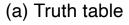


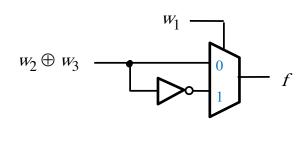
Another Example (3-input XOR)

w_1	W_2	W_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

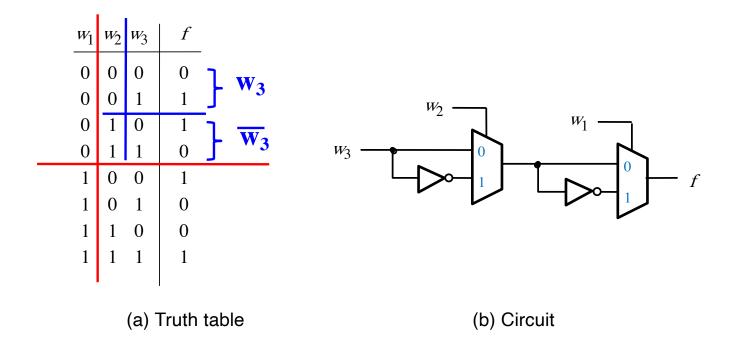
w_1	$w_2 \ w_3$	f
0 0 0 0	0 0 0 1 1 0 1 1	$ \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} w_2 \oplus w_3 $
1 1 1 1	0 0 0 1 1 0 1 1	







(b) Circuit



w_1	w_2	w_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

_	w_1	w_2	w_3	f	
_	0	0	0	0	
	0	0	1	1	
	0	1	0	1	
	0	1	1	0	
Ī	1	0	0	1	
	1	0	1	0	
Ī	1	1	0	0	
	1	1	1	1	
			l		

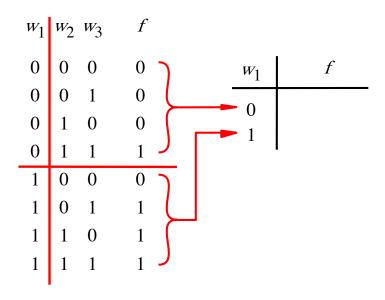
w_1	w_2	w_3	f	_	
0	0	0	0	_ }	117
0	0	1	1	5	W_3
0	1	0	1	l	
0	1	1	0	S	<i>w</i> 3
1	0	0	1	ļ	\overline{W}_3
1	0	1	0	J	''3
1	1	0	0	1	W_3
1	1	1	1	J	'' 3
		•			

$w_1 \ w_2$	w_3	f		
0 0	0	0		
0 0	1	1 $\begin{cases} w_3 \end{cases}$	W_2	
0 1	0	1] —	W_1	
0 1	1	0 w_3	W_3	
1 0	0	$\left\{\begin{array}{c}1\\ \end{array}\right\}\overline{w_3}$	01	f
1 0	1	$0 \int_{0}^{\infty}$		
1 1	0	0		
1 1	1	$\begin{cases} v_3 \end{cases}$		
(a)	Trut	th table	(b) Circuit	

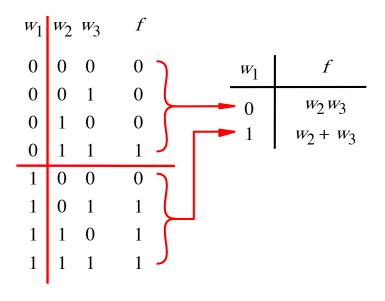
Circuit Synthesis with Multiplexers Using Shannon's Expansion

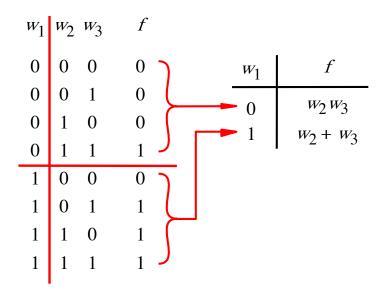
SOP expression for f:

$$f = \overline{w}_1 w_2 w_3 + w_1 \overline{w}_2 w_3 + w_1 w_2 \overline{w}_3 + w_1 w_2 w_3$$

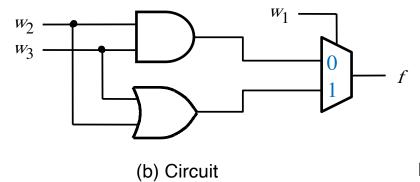


Divide-and-conquer method (a.k.a., Shannon's expansion)

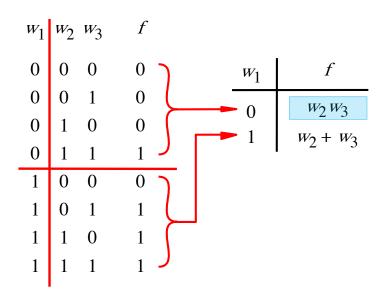




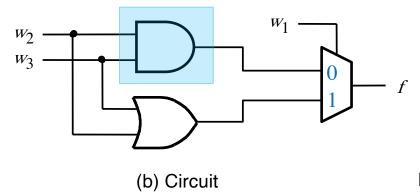
(b) Truth table



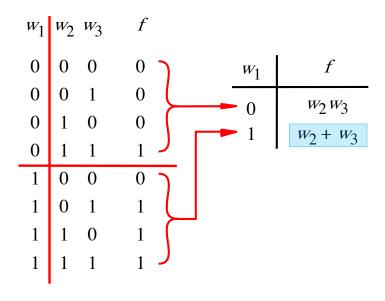
[Figure 4.10a from the textbook]



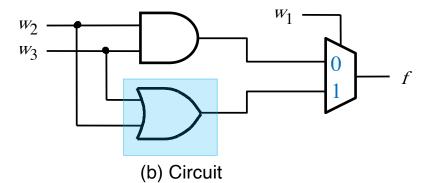
(b) Truth table



[Figure 4.10a from the textbook]



(b) Truth table

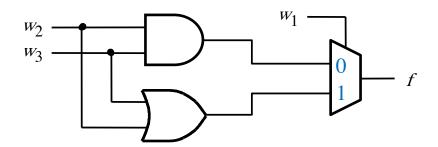


[Figure 4.10a from the textbook]

$$f = \overline{w}_1 w_2 w_3 + w_1 \overline{w}_2 w_3 + w_1 w_2 \overline{w}_3 + w_1 w_2 w_3$$

$$f = \overline{w}_1(w_2w_3) + w_1(\overline{w}_2w_3 + w_2\overline{w}_3 + w_2w_3)$$

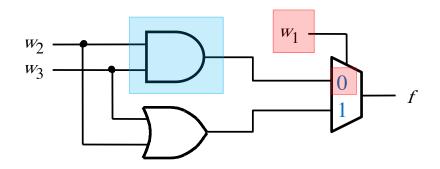
= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$



$$f = \overline{w}_1 w_2 w_3 + w_1 \overline{w}_2 w_3 + w_1 w_2 \overline{w}_3 + w_1 w_2 w_3$$

$$f = \overline{w}_1(w_2w_3) + w_1(\overline{w}_2w_3 + w_2\overline{w}_3 + w_2w_3)$$

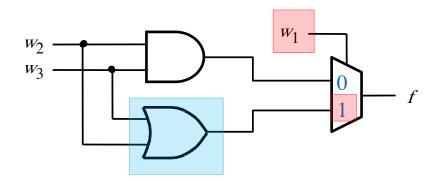
= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$



$$f = \overline{w}_1 w_2 w_3 + w_1 \overline{w}_2 w_3 + w_1 w_2 \overline{w}_3 + w_1 w_2 w_3$$

$$f = \overline{w}_1(w_2w_3) + w_1(\overline{w}_2w_3 + w_2\overline{w}_3 + w_2w_3)$$

= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$



Any Boolean function $f(w_1, \ldots, w_n)$ can be rewritten in the form:

$$f(w_1, w_2, \dots, w_n) = \overline{w}_1 \cdot f(0, w_2, \dots, w_n) + w_1 \cdot f(1, w_2, \dots, w_n)$$

Any Boolean function $f(w_1, \ldots, w_n)$ can be rewritten in the form:

$$f(w_1, w_2, \dots, w_n) = \overline{w}_1 \cdot f(0, w_2, \dots, w_n) + w_1 \cdot f(1, w_2, \dots, w_n)$$

$$f = \overline{w}_1 f_{\overline{w}_1} + w_1 f_{w_1}$$

Any Boolean function $f(w_1, \ldots, w_n)$ can be rewritten in the form:

$$f(w_1, w_2, \dots, w_n) = \overline{w}_1 \cdot f(0, w_2, \dots, w_n) + w_1 \cdot f(1, w_2, \dots, w_n)$$

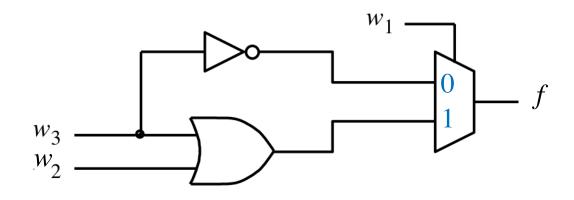
$$f = \overline{w}_1 f_{\overline{w}_1} + w_1 f_{w_1}$$
cofactor cofactor

Shannon's Expansion Theorem (example with only one select variable) (used for 2-to-1 mux implementation)

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

$$f = \overline{w}_1 f_{\overline{w}_1} + w_1 f_{w_1}$$
$$= \overline{w}_1 (\overline{w}_3) + w_1 (w_2 + w_3)$$



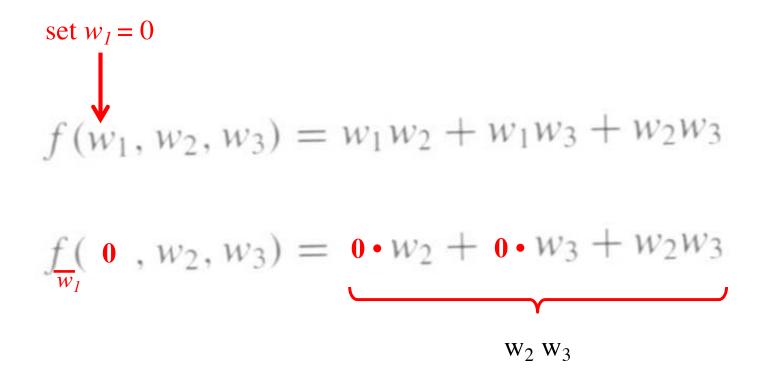
$$f = \overline{w}_1 f_{\overline{w}_1} + w_1 f_{w_1}$$
$$= \overline{w}_1 (\overline{w}_3) + w_1 (w_2 + w_3)$$

Another Example

$$f(w_1, w_2, w_3) = w_1w_2 + w_1w_3 + w_2w_3$$

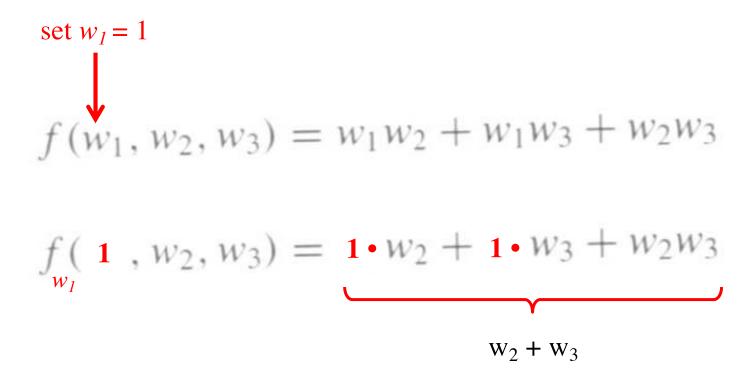
set
$$w_1 = 0$$

$$f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3$$



set
$$w_1 = 1$$

$$f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3$$



started with this

$$f(w_1, w_2, w_3) = w_1w_2 + w_1w_3 + w_2w_3$$

$$f(w_1, w_2, w_3) = w_1w_2 + w_1w_3 + w_2w_3$$

$$f = \overline{w}_1(0 \cdot w_2 + 0 \cdot w_3 + w_2w_3) + w_1(1 \cdot w_2 + 1 \cdot w_3 + w_2w_3)$$

= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$ factored it in this form

$$f(w_1, w_2, w_3) = w_1w_2 + w_1w_3 + w_2w_3$$

$$f = \overline{w}_1(0 \cdot w_2 + 0 \cdot w_3 + w_2w_3) + w_1(1 \cdot w_2 + 1 \cdot w_3 + w_2w_3)$$

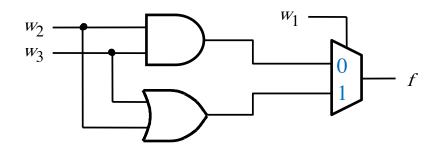
= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$

$$f = \overline{w}_1 f_{\overline{w}_1} + w_1 f_{w_1}$$

which fits the general formula

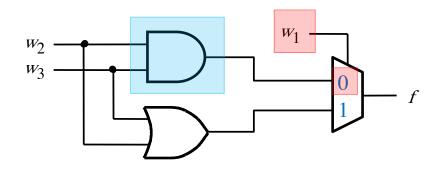
$$f = \overline{w}_1(0 \cdot w_2 + 0 \cdot w_3 + w_2w_3) + w_1(1 \cdot w_2 + 1 \cdot w_3 + w_2w_3)$$

= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$



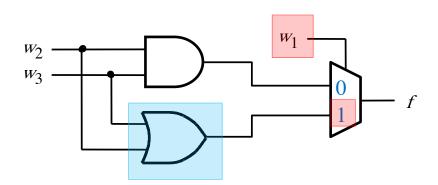
$$f = \overline{w}_1(0 \cdot w_2 + 0 \cdot w_3 + w_2w_3) + w_1(1 \cdot w_2 + 1 \cdot w_3 + w_2w_3)$$

= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$

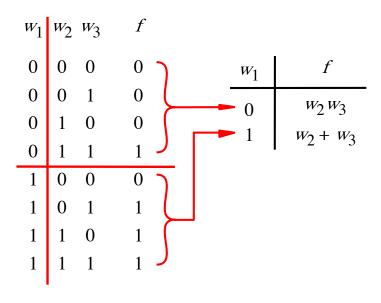


$$f = \overline{w}_1(0 \cdot w_2 + 0 \cdot w_3 + w_2 w_3) + w_1(1 \cdot w_2 + 1 \cdot w_3 + w_2 w_3)$$

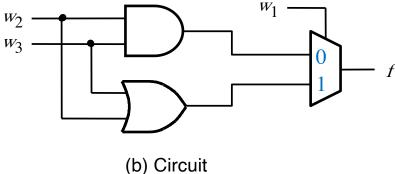
= $\overline{w}_1(w_2 w_3) + w_1(w_2 + w_3)$



Earlier we derived the same result from the truth table using the divide-and-conquer method (a.k.a., Shannon's theorem)



(b) Truth table



[Figure 4.10a from the textbook]

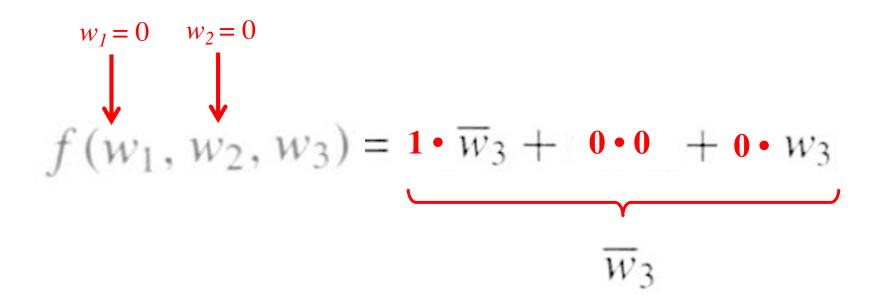
Shannon's Expansion Theorem (example with two select variables) (used for 4-to-1 mux implementation)

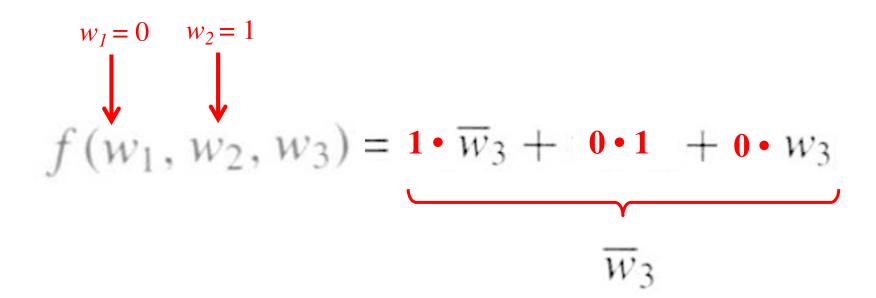
Shannon's Expansion Theorem (In terms of more than one variable)

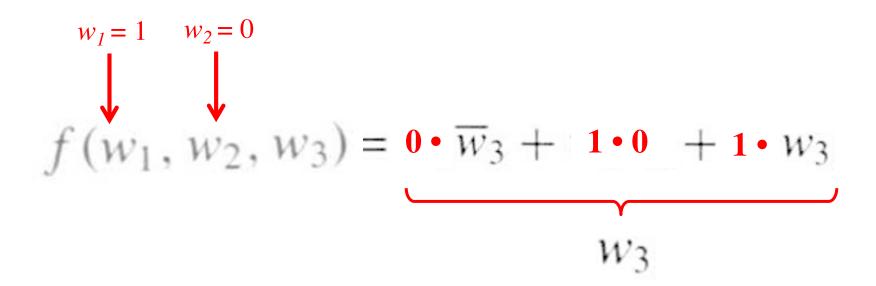
$$f(w_1, \dots, w_n) = \overline{w}_1 \overline{w}_2 \cdot f(0, 0, w_3, \dots, w_n) + \overline{w}_1 w_2 \cdot f(0, 1, w_3, \dots, w_n) + w_1 \overline{w}_2 \cdot f(1, 0, w_3, \dots, w_n) + w_1 w_2 \cdot f(1, 1, w_3, \dots, w_n)$$

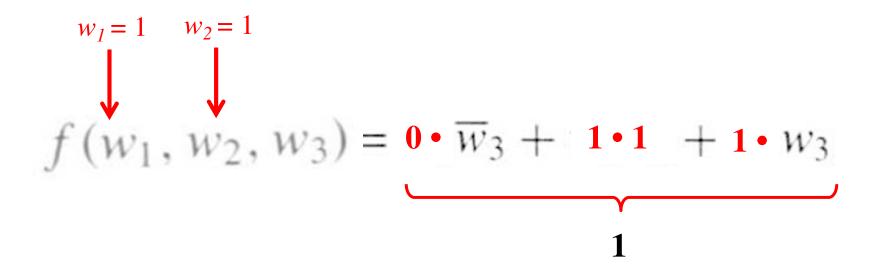
This form is suitable for implementation with a 4x1 multiplexer.

$$f(w_1, w_2, w_3) = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$









$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

$$f = \overline{w}_1 \overline{w}_2 f_{\overline{w}_1 \overline{w}_2} + \overline{w}_1 w_2 f_{\overline{w}_1 w_2} + w_1 \overline{w}_2 f_{w_1 \overline{w}_2} + w_1 w_2 f_{w_1 w_2}$$
$$= \overline{w}_1 \overline{w}_2 (\overline{w}_3) + \overline{w}_1 w_2 (\overline{w}_3) + w_1 \overline{w}_2 (w_3) + w_1 w_2 (1)$$

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

$$f = \overline{w}_1 \overline{w}_2 f_{\overline{w}_1 \overline{w}_2} + \overline{w}_1 w_2 f_{\overline{w}_1 w_2} + w_1 \overline{w}_2 f_{w_1 \overline{w}_2} + w_1 w_2 f_{w_1 w_2}$$
$$= \overline{w}_1 \overline{w}_2 (\overline{w}_3) + \overline{w}_1 w_2 (\overline{w}_3) + \overline{w}_1 \overline{w}_2 (w_3) + \overline{w}_1 w_2 (1)$$

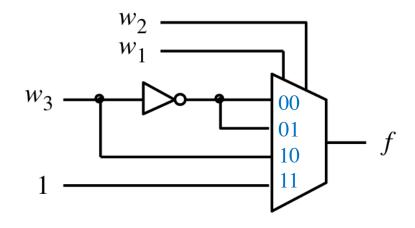
these are the 4 minterms in terms of w_1 and w_2

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

$$f = \overline{w}_1 \overline{w}_2 f_{\overline{w}_1 \overline{w}_2} + \overline{w}_1 w_2 f_{\overline{w}_1 w_2} + w_1 \overline{w}_2 f_{w_1 \overline{w}_2} + w_1 w_2 f_{w_1 w_2}$$

$$= \overline{w}_1 \overline{w}_2 (\overline{w}_3) + \overline{w}_1 w_2 (\overline{w}_3) + w_1 \overline{w}_2 (w_3) + w_1 w_2 (1)$$

these are the 4 cofactors



$$f = \overline{w}_1 \overline{w}_2 f_{\overline{w}_1 \overline{w}_2} + \overline{w}_1 w_2 f_{\overline{w}_1 w_2} + w_1 \overline{w}_2 f_{w_1 \overline{w}_2} + w_1 w_2 f_{w_1 w_2}$$
$$= \overline{w}_1 \overline{w}_2 (\overline{w}_3) + \overline{w}_1 w_2 (\overline{w}_3) + w_1 \overline{w}_2 (w_3) + w_1 w_2 (1)$$

Alternative Derivation for the same Problem (using Boolean Algebra to derive the cofactors)

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

= $\overline{w}_1 (\overline{w}_2 + \overline{w}_2) \overline{w}_3 + w_1 w_2 + w_1 (\overline{w}_2 + \overline{w}_2) w_3$

$$f = \overline{w_1} \overline{w_3} + w_1 w_2 + w_1 w_3$$

$$= \overline{w_1} (\overline{w_2} + w_2) \overline{w_3} + w_1 w_2 + w_1 (\overline{w_2} + w_2) w_3$$

$$= \overline{w_1} \overline{w_2} \overline{w_3} + \overline{w_1} w_2 \overline{w_3} + w_1 w_2 + w_1 \overline{w_2} w_3 + w_1 w_2 w_3$$

$$= \overline{w_1} \overline{w_2} \overline{w_3} + \overline{w_1} w_2 \overline{w_3} + w_1 \overline{w_2} w_3 + w_1 w_2 (1 + w_3)$$

$$= \overline{w_1} \overline{w_2} (\overline{w_3}) + \overline{w_1} w_2 (\overline{w_3}) + w_1 \overline{w_2} (w_3) + w_1 w_2 (1)$$

$$f = \overline{w_1} \overline{w_3} + w_1 w_2 + w_1 w_3$$

$$= \overline{w_1} (\overline{w_2} + w_2) \overline{w_3} + w_1 w_2 + w_1 (\overline{w_2} + w_2) w_3$$

$$= \overline{w_1} \overline{w_2} \overline{w_3} + \overline{w_1} w_2 \overline{w_3} + w_1 w_2 + w_1 \overline{w_2} w_3 + w_1 w_2 w_3$$

$$= \overline{w_1} \overline{w_2} \overline{w_3} + \overline{w_1} w_2 \overline{w_3} + w_1 \overline{w_2} w_3 + w_1 w_2 (1 + w_3)$$

$$= \overline{w_1} \overline{w_2} (\overline{w_3}) + \overline{w_1} w_2 (\overline{w_3}) + \overline{w_1} \overline{w_2} (w_3) + \overline{w_1} w_2 (1)$$

these are the 4 minterms in terms of w_1 and w_2

$$f = \overline{w_1} \overline{w_3} + w_1 w_2 + w_1 w_3$$

$$= \overline{w_1} (\overline{w_2} + w_2) \overline{w_3} + w_1 w_2 + w_1 (\overline{w_2} + w_2) w_3$$

$$= \overline{w_1} \overline{w_2} \overline{w_3} + \overline{w_1} w_2 \overline{w_3} + w_1 w_2 + w_1 \overline{w_2} w_3 + w_1 w_2 w_3$$

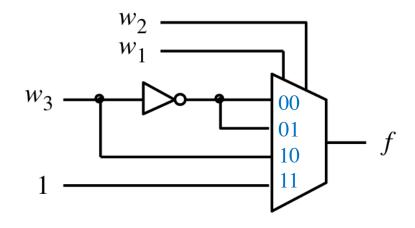
$$= \overline{w_1} \overline{w_2} \overline{w_3} + \overline{w_1} w_2 \overline{w_3} + w_1 \overline{w_2} w_3 + w_1 w_2 (1 + w_3)$$

$$= \overline{w_1} \overline{w_2} (\overline{w_3}) + \overline{w_1} w_2 (\overline{w_3}) + w_1 \overline{w_2} (w_3) + w_1 w_2 (1)$$

these are the 4 cofactors

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

$$f = \overline{w}_1 \overline{w}_2 f_{\overline{w}_1 \overline{w}_2} + \overline{w}_1 w_2 f_{\overline{w}_1 w_2} + w_1 \overline{w}_2 f_{w_1 \overline{w}_2} + w_1 w_2 f_{w_1 w_2}$$
$$= \overline{w}_1 \overline{w}_2 (\overline{w}_3) + \overline{w}_1 w_2 (\overline{w}_3) + w_1 \overline{w}_2 (w_3) + w_1 w_2 (1)$$



$$f = \overline{w}_1 \overline{w}_2 f_{\overline{w}_1 \overline{w}_2} + \overline{w}_1 w_2 f_{\overline{w}_1 w_2} + w_1 \overline{w}_2 f_{w_1 \overline{w}_2} + w_1 w_2 f_{w_1 w_2}$$
$$= \overline{w}_1 \overline{w}_2 (\overline{w}_3) + \overline{w}_1 w_2 (\overline{w}_3) + w_1 \overline{w}_2 (w_3) + w_1 w_2 (1)$$

Yet Another Example (with hierarchical structure)

$$f = w_1 w_2 + w_1 w_3 + w_2 w_3$$

$$f = w_1 w_2 + w_1 w_3 + w_2 w_3$$

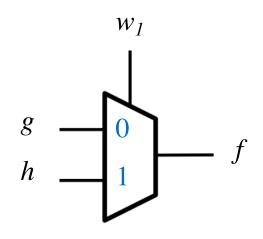
$$f = \overline{w}_1(w_2w_3) + w_1(w_2 + w_3 + w_2w_3)$$

= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$

$$f = w_1 w_2 + w_1 w_3 + w_2 w_3$$

$$f = \overline{w}_1(w_2w_3) + w_1(w_2 + w_3 + w_2w_3)$$

= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$
$$g = w_2w_3 \qquad h = w_2 + w_3$$

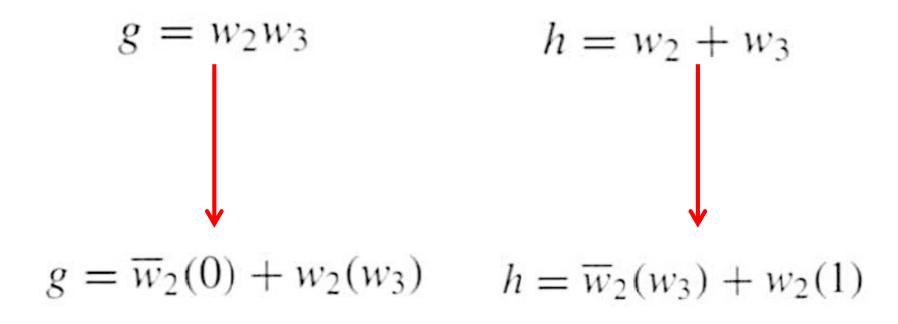


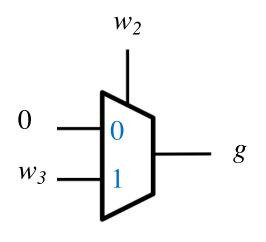
$$f = \overline{w}_1(w_2w_3) + w_1(w_2 + w_3 + w_2w_3)$$

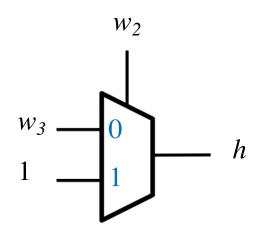
= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$
$$g = w_2w_3 \qquad h = w_2 + w_3$$

$$g = w_2w_3$$

$$h = w_2 + w_3$$

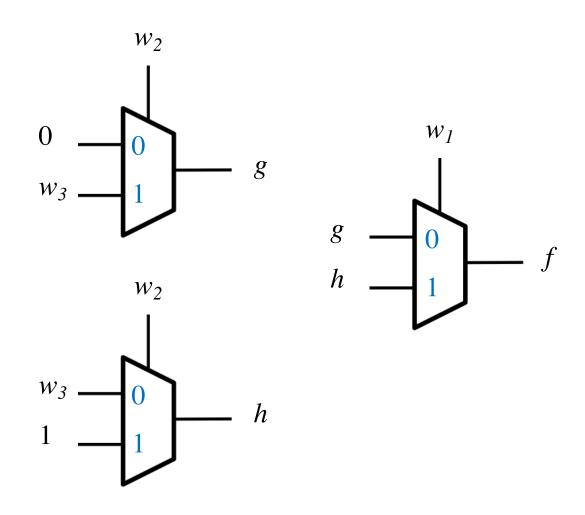




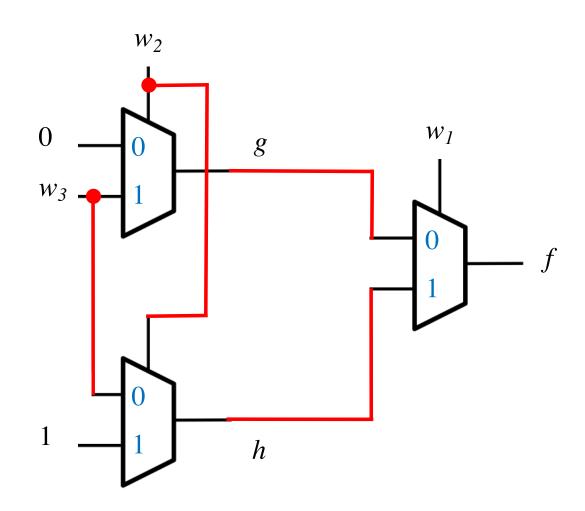


$$g = \overline{w}_2(0) + w_2(w_3)$$
 $h = \overline{w}_2(w_3) + w_2(1)$

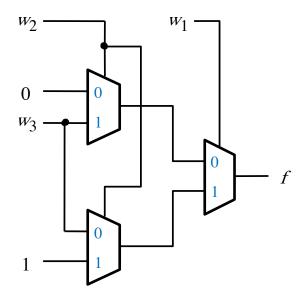
Finally, we are ready to draw the circuit



Finally, we are ready to draw the circuit



Finally, we are ready to draw the circuit



Questions?

