

CprE 2810: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Multiplication

CprE 2810: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- No HW is due today
- HW 6 is due on Monday Oct. 13 @ 10 pm.
- Posted on the class web page.

Administrative Stuff

- Labs this week
- Mini-Project
- This is worth 3% of your grade (x2 labs)
- https://www.ece.iastate.edu/~alexs/classes/ 2025_Fall_2810/labs/Project-Mini/

Multiplication and division by 10 in the decimal system

Decimal Multiplication by 10

What happens when we multiply a number by 10?

$$4 \times 10 = ?$$

$$542 \times 10 = ?$$

$$1245 \times 10 = ?$$

Decimal Multiplication by 10

What happens when we multiply a number by 10?

$$4 \times 10 = 40$$

$$542 \times 10 = 5420$$

$$1245 \times 10 = 12450$$

Decimal Multiplication by 10

What happens when we multiply a number by 10?

$$4 \times 10 = 40$$

$$542 \times 10 = 5420$$

$$1245 \times 10 = 12450$$

You simply add a zero as the rightmost number

Decimal Division by 10

What happens when we divide a number by 10?

Decimal Division by 10

What happens when we divide a number by 10?

You simply delete the rightmost number

Multiplication and division by 2 in the binary system

What happens when we multiply a number by 2?

011 times 2 = ?

101 times 2 = ?

110011 times 2 = ?

What happens when we multiply a number by 2?

011 times 2 = 0110

101 times 2 = 1010

110011 times 2 = 1100110

You simply add a zero as the rightmost number

What happens when we multiply a number by 4?

011 times 4 = ?

101 times 4 = ?

110011 times 4 = ?

What happens when we multiply a number by 4?

011 times 4 = 01100

101 times 4 = 10100

110011 times 4 = 11001100

add two zeros in the last two bits and shift everything else to the left

Binary Multiplication by 2^N

What happens when we multiply a number by 2^N?

```
011 times 2^{N} = 01100...0 // add N zeros
```

```
101 times 4 = 10100...0 // add N zeros
```

110011 times 4 = 11001100...0 // add N zeros

Binary Division by 2

What happens when we divide a number by 2?

0110 divided by 2 = ?

1010 divides by 2 = ?

110011 divides by 2 = ?

Binary Division by 2

What happens when we divide a number by 2?

0110 divided by 2 = 011

1010 divides by 2 = 101

110011 divides by 2 = 11001

You simply delete the rightmost number

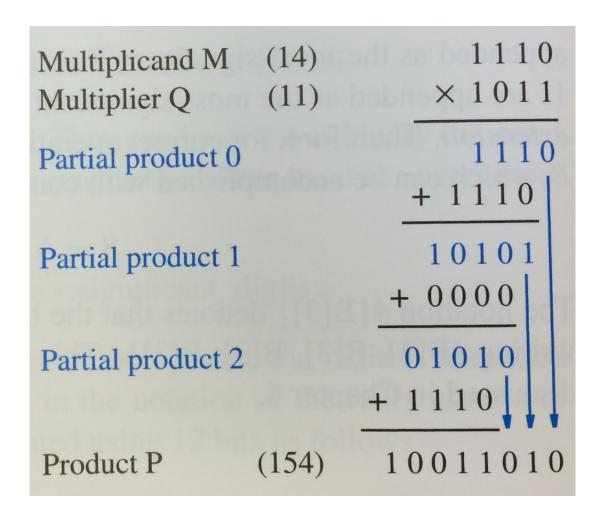
Multiplication of two unsigned binary numbers

Decimal Multiplication By Hand

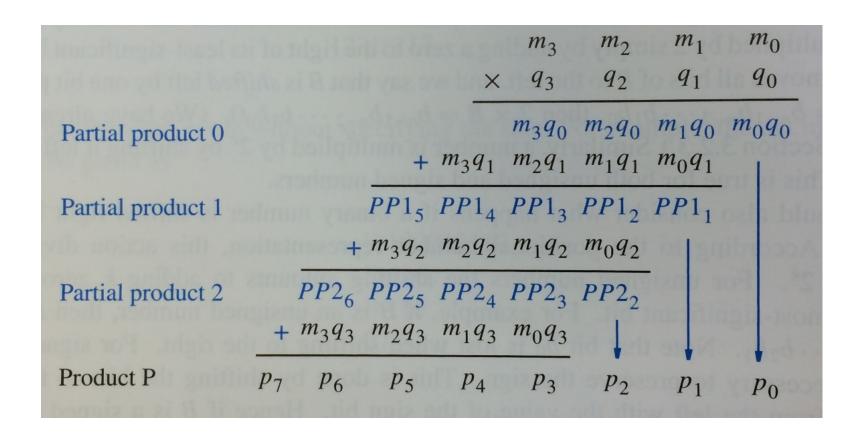
Binary Multiplication By Hand

Multiplicand M	(14)	1110	
Multiplier Q	(11)	X 1011	
		1110	
		1 1 1 0	
	0000		
		1 1 1 0	
Product P	(154)	10011010	

Binary Multiplication By Hand



Binary Multiplication By Hand



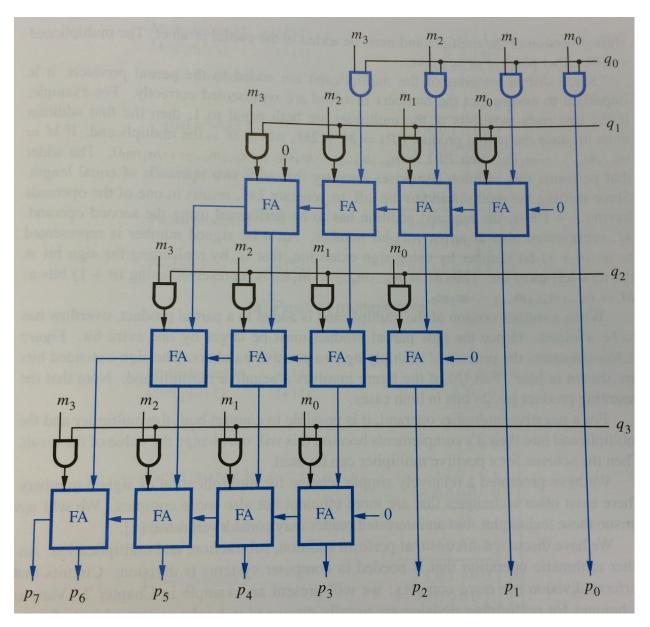


Figure 3.35. A 4x4 multiplier circuit.

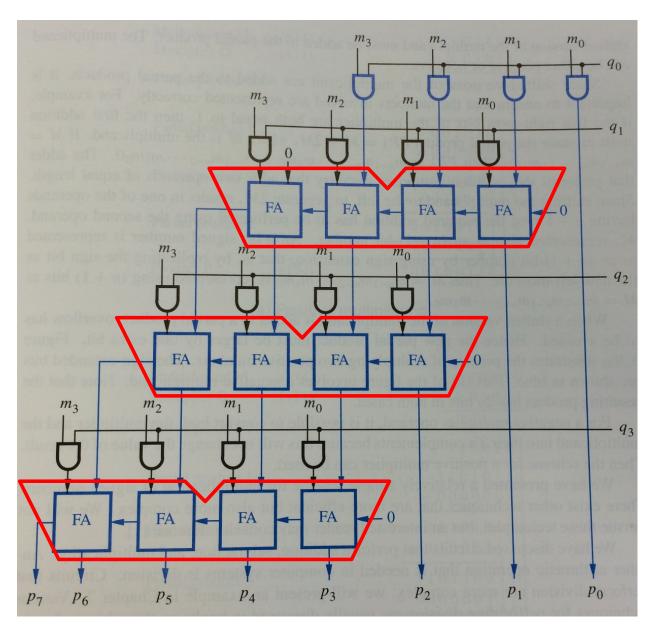


Figure 3.35. A 4x4 multiplier circuit.

Sign Extension

Sign extension for positive numbers

 If we want to represent the same positive number with more bits, we simply pad it on the left with zeros.

For example:

```
0110 (+6 with 4-bits)
00110 (+6 with 5-bits)
000110 (+6 with 6-bits)
```

Sign extension for negative numbers

 If we want to represent the same negative number with more bits, we simply pad it on the left with ones.

For example:

```
1011 (-5 with 4-bits)
11011 (-5 with 5-bits)
111011 (-5 with 6-bits)
```

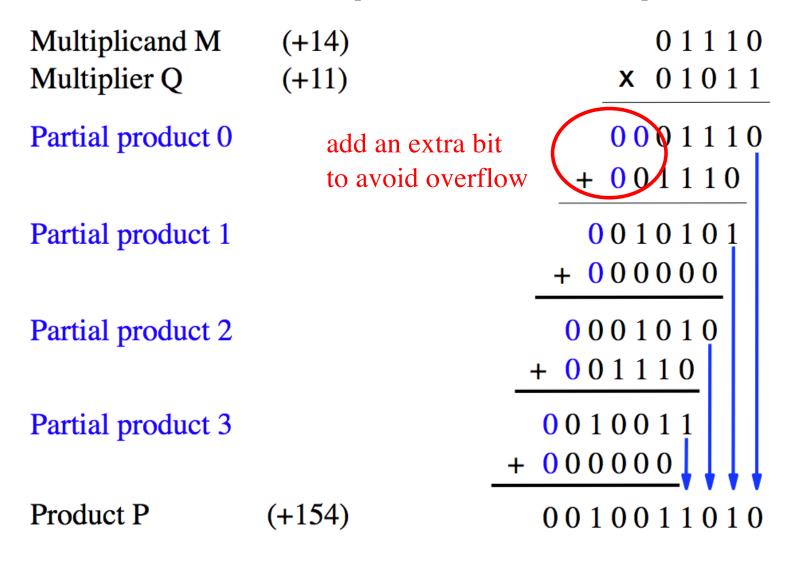
Multiplication of two signed binary numbers

Positive Multiplicand Example

Multiplicand M Multiplier Q	(+14) (+11)	0 1 1 1 0 x 0 1 0 1 1
Partial product 0		0001110
		+ 001110
Partial product 1		0010101
		+ 000000
Partial product 2		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Partial product 3		0010011
rartial product 3		+ 000000
Product P	(+154)	0010011010

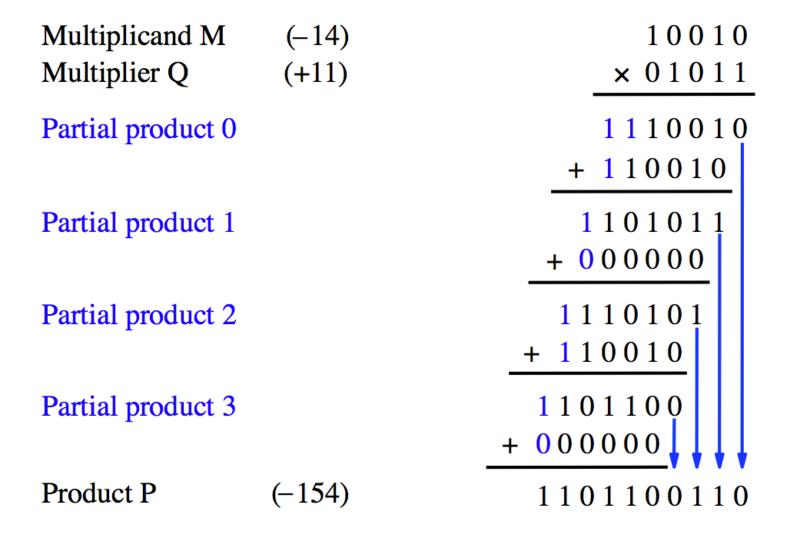
[Figure 3.36a in the textbook]

Positive Multiplicand Example



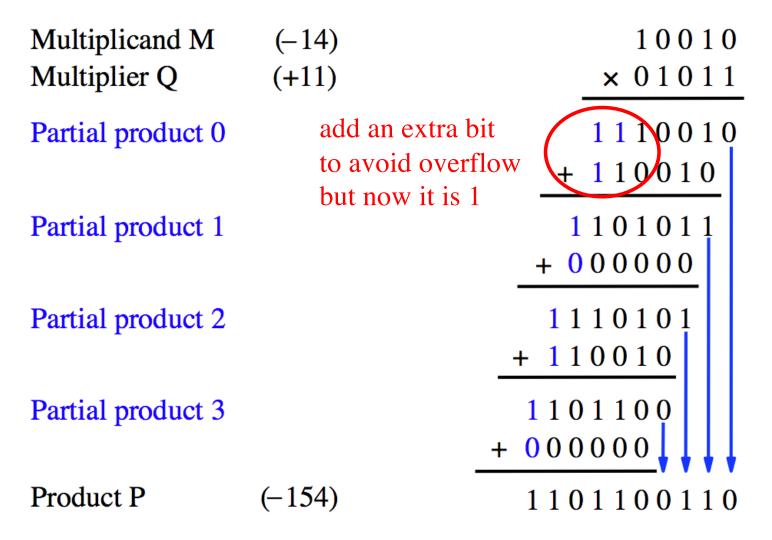
[Figure 3.36a in the textbook]

Negative Multiplicand Example



[Figure 3.36b in the textbook]

Negative Multiplicand Example



[Figure 3.36b in the textbook]

What if the Multiplier is Negative?

- Negate both numbers.
- This will make the multiplier positive.
- Then proceed as normal.
- This will not affect the result.
- Example: 5*(-4) = (-5)*(4) = -20

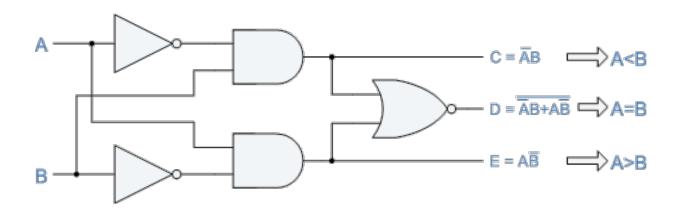
Arithmetic Comparison Circuits

Truth table for a one-bit digital comparator

Inputs		Outputs			
\overline{A}	B	A > B	A = B	A < B	
0	0	0	1	0	
0	1	0	0	1	
1	0	1	0	0	
1	1	0	1	0	

A one-bit digital comparator circuit

Inputs		Outputs				
\overline{A}	B	A > B	A = B	A < B		
0	0	0	1	0		
0	1	0	0	1		
1	0	1	0	0		
1	1	0	1	0		

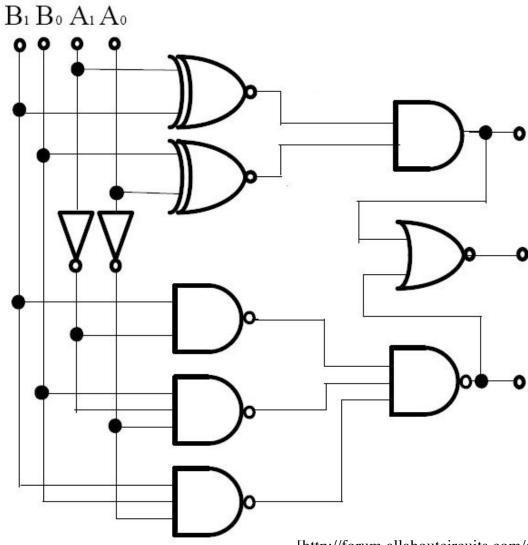


Truth table for a two-bit digital comparator

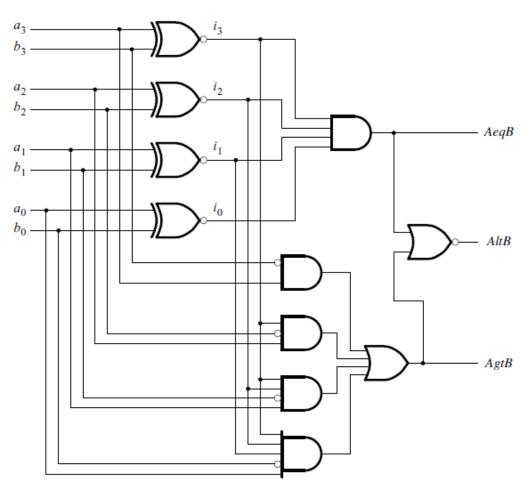
Inputs				Outputs			
A_1	A_0	B_1	B_0	A < B	A = B	A > B	
0	0	0	0	0	1	0	
0	0	0	1	1	0	0	
0	0	1	0	1	0	0	
0	0	1	1	1	0	0	
0	1	0	0	0	0	1	
0	1	0	1	0	1	0	
0	1	1	0	1	0	0	
0	1	1	1	1	0	0	
1	0	0	0	0	0	1	
1	0	0	1	0	0	1	
1	0	1	0	0	1	0	
1	0	1	1	1	0	0	
1	1	0	0	0	0	1	
1	1	0	1	0	0	1	
1	1	1	0	0	0	1	
1	1	1	1	0	1	0	

[http://en.wikipedia.org/wiki/Digital_comparator]

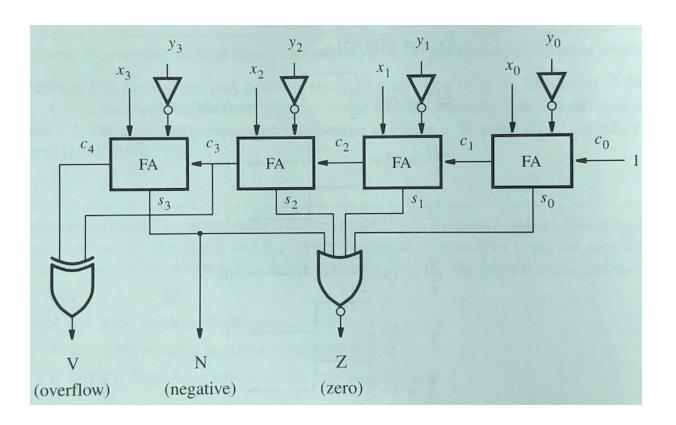
A two-bit digital comparator circuit

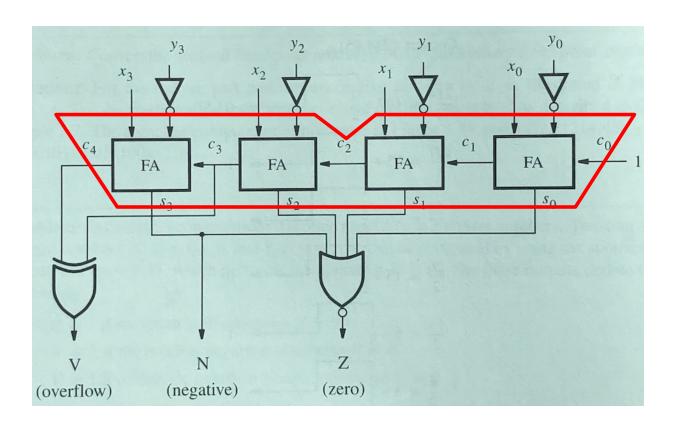


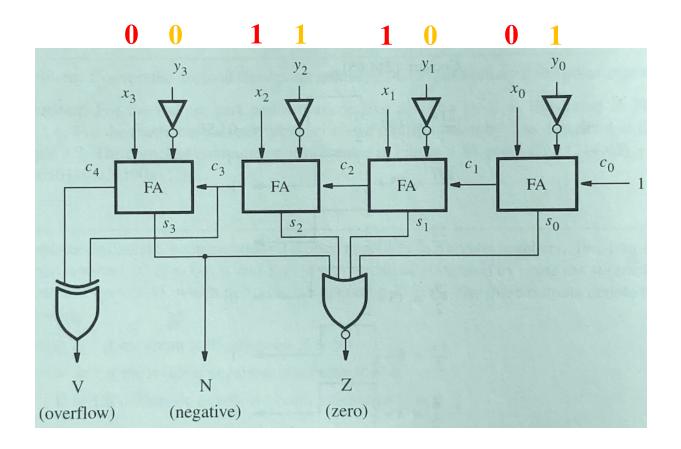
[http://forum.allaboutcircuits.com/showthread.php?t=10561]



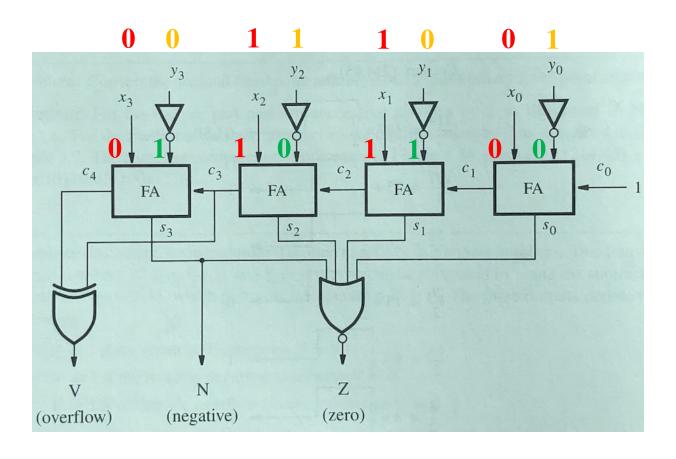
[Figure 4.22 from the textbook]

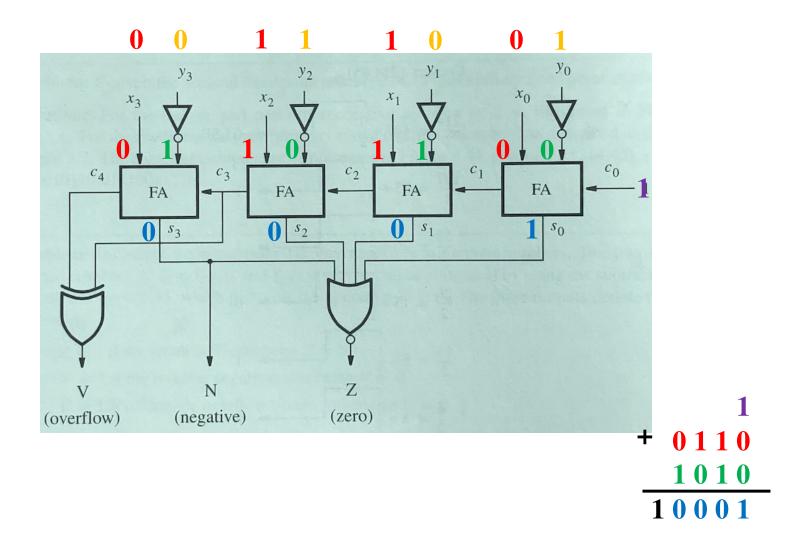


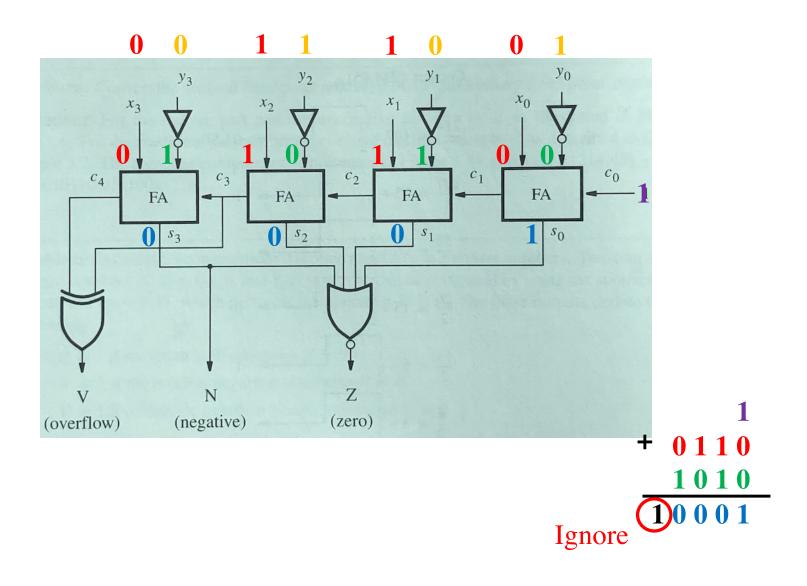


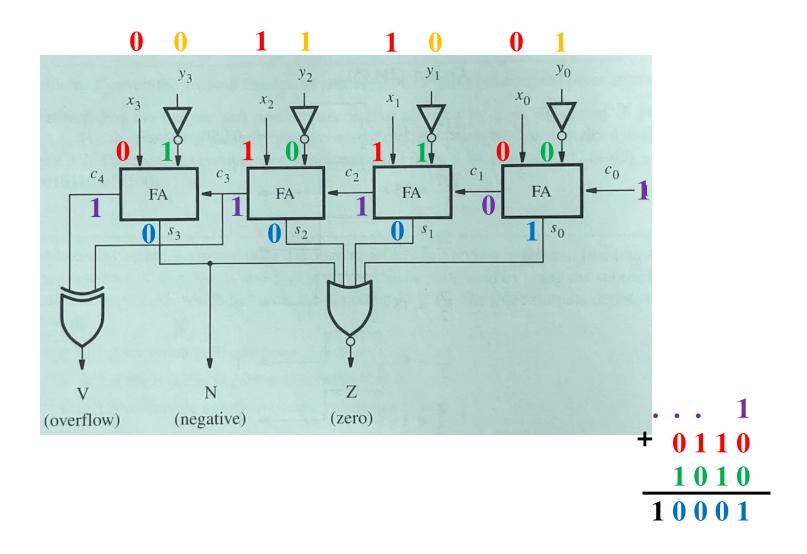


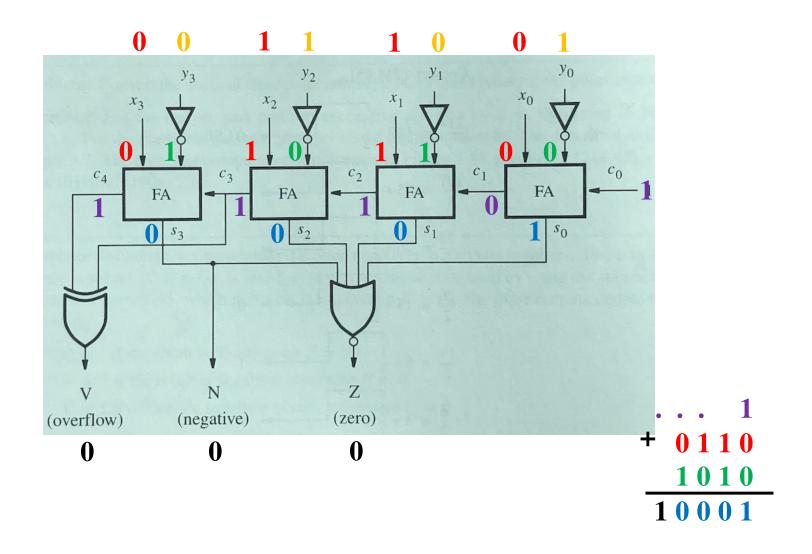
Compare 6 with 5 by subtraction (6-5).









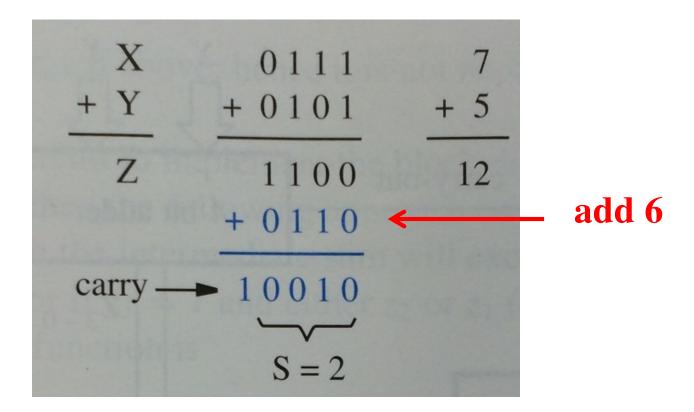


Binary Coded Decimal (BCD)

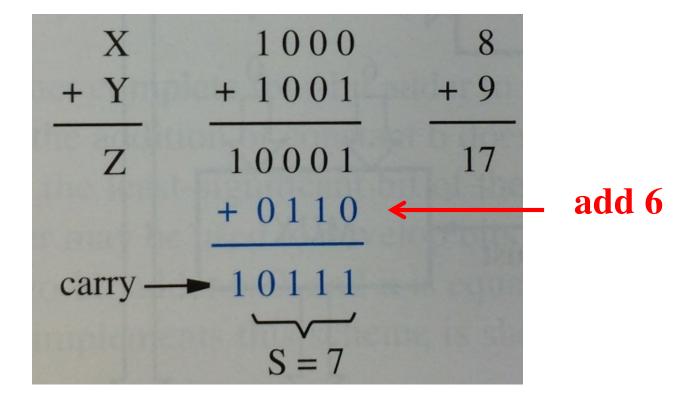
Table of Binary-Coded Decimal Digits

Decimal digit	BCD code
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

The result is greater than 9, which is not a valid BCD number



The result is 1, but it should be 7



Why add 6?

Think of BCD addition as a mod 16 operation

Decimal addition is mod 10 operation

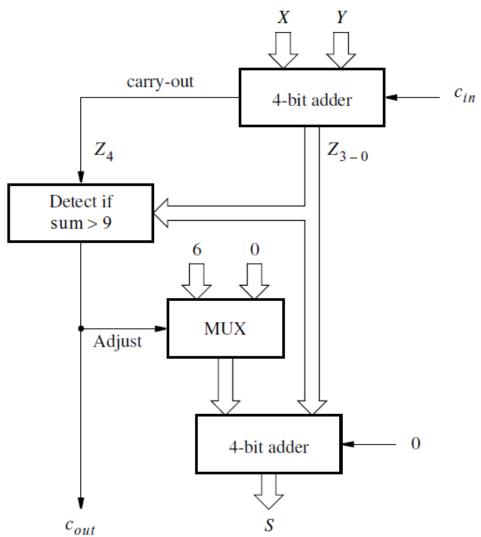
BCD Arithmetic Rules

$$Z = X + Y$$

If Z <= 9, then S=Z and carry-out = 0

If Z > 9, then S=Z+6 and carry-out =1

Block diagram for a one-digit BCD adder



[Figure 3.39 in the textbook]

```
7 - 0111
```

8 - 1000

9 - 1001

10 - 1010

11 - 1011

12 - 1100

13 - 1101

14 - 1110

15 - 1111

A four-variable Karnaugh map

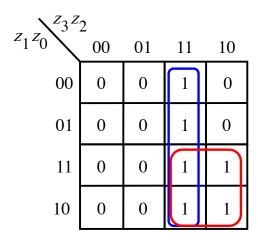
x1	x2	x 3	x4		
0	0	0	0	m0	0
0	0	0	1	m1	0
0	0	1	0	m2	0
0	0	1	1	m3	0
0	1	0	0	m4	0
0	1	0	1	m5	0
0	1	1	0	m6	0
0	1	1	1	m7	0
1	0	0	0	m8	0
1	0	0	1	m9	0
1	0	1	0	m10	1
1	0	1	1	m11	1
1	1	0	0	m12	1
1	1	0	1	m13	1
1	1	1	0	m14	1
1	1	1	1	m15	1



z3	z 2	z1	z0		
0	0	0	0	m0	0
0	0	0	1	m1	0
0	0	1	0	m2	0
0	0	1	1	m3	0
0	1	0	0	m4	0
0	1	0	1	m5	0
0	1	1	0	m6	0
0	1	1	1	m7	0
1	0	0	0	m8	0
1	0	0	1	m9	0
1	0	1	0	m10	1
1	0	1	1	m11	1
1	1	0	0	m12	1
1	1	0	1	m13	1
1	1	1	0	m14	1
1	1	1	1	m15	1

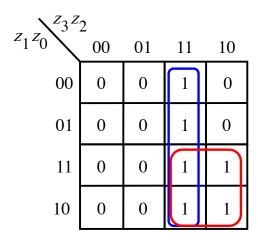
$Z_3^{Z_3}$	2			
$z_1 z_0$	00	01	11	10
00	0	0	1	0
01	0	0	1	0
11	0	0	1	1
10	0	0	1	1

z3	z 2	z1	z0		
0	0	0	0	m0	0
0	0	0	1	m1	0
0	0	1	0	m2	0
0	0	1	1	m3	0
0	1	0	0	m4	0
0	1	0	1	m5	0
0	1	1	0	m6	0
0	1	1	1	m7	0
1	0	0	0	m8	0
1	0	0	1	m9	0
1	0	1	0	m10	1
1	0	1	1	m11	1
1	1	0	0	m12	1
1	1	0	1	m13	1
1	1	1	0	m14	1
1	1	1	1	m15	1



$$f = \mathbf{z}_3 \mathbf{z}_2 + \mathbf{z}_3 \mathbf{z}_1$$

z3	z2	z1	z0		
0	0	0	0	m0	0
0	0	0	1	m1	0
0	0	1	0	m2	0
0	0	1	1	m3	0
0	1	0	0	m4	0
0	1	0	1	m5	0
0	1	1	0	m6	0
0	1	1	1	m7	0
1	0	0	0	m8	0
1	0	0	1	m9	0
1	0	1	0	m10	1
1	0	1	1	m11	1
1	1	0	0	m12	1
1	1	0	1	m13	1
1	1	1	0	m14	1
1	1	1	1	m15	1



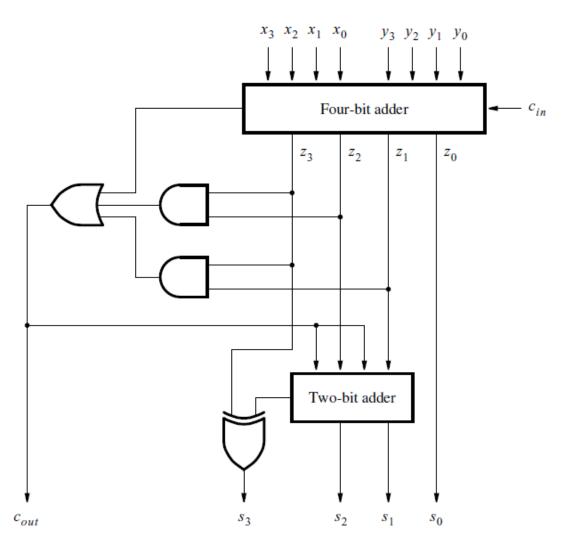
$$f = \mathbf{z}_3 \mathbf{z}_2 + \mathbf{z}_3 \mathbf{z}_1$$

In addition, also check if there was a carry

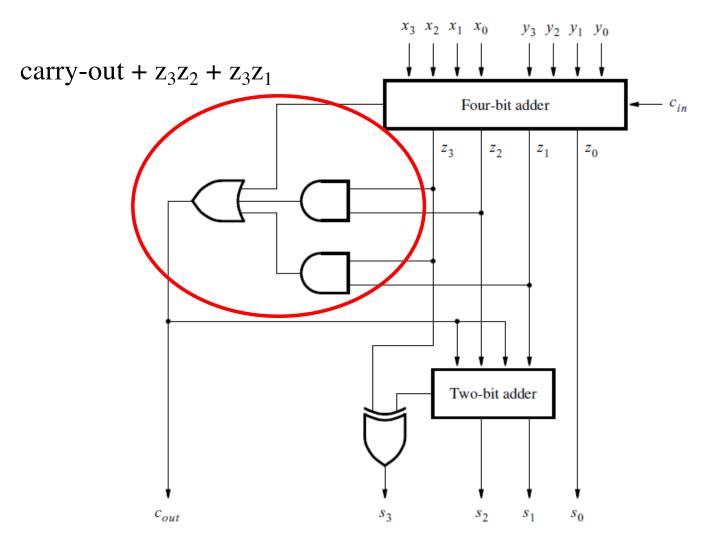
$$f = carry-out + z_3z_2 + z_3z_1$$

Verilog code for a one-digit BCD adder

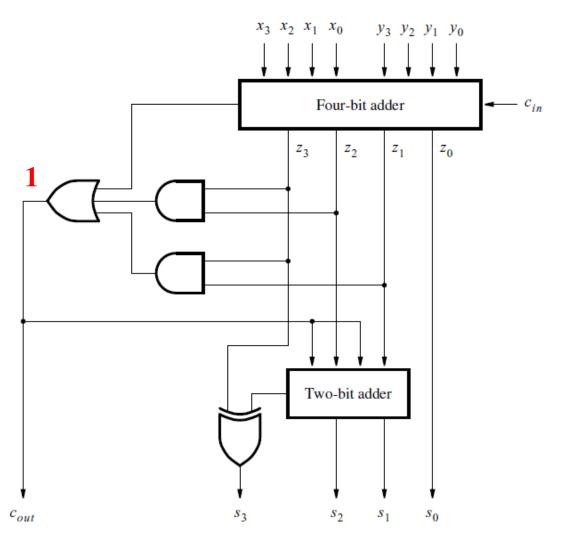
```
module bcdadd(Cin, X, Y, S, Cout);
  input Cin;
  input [3:0] X,Y;
  output reg [3:0] S;
  output reg Cout;
  reg [4:0] Z;
  always@ (X, Y, Cin)
  begin
     Z = X + Y + Cin;
     if (Z < 10)
        \{Cout, S\} = Z;
     else
        \{Cout, S\} = Z + 6;
  end
endmodule
```



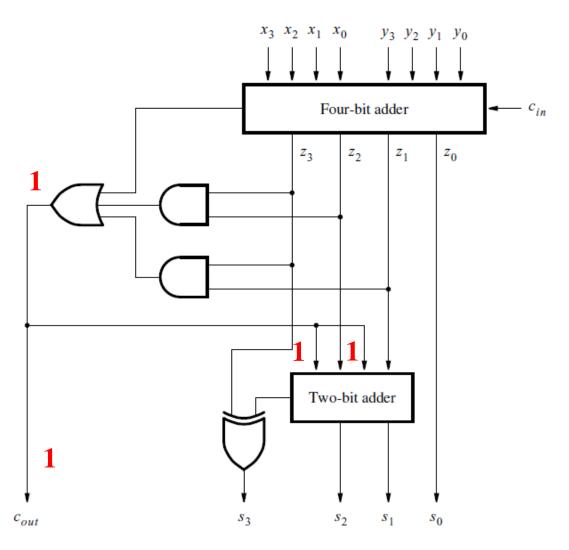
[Figure 3.41 in the textbook]



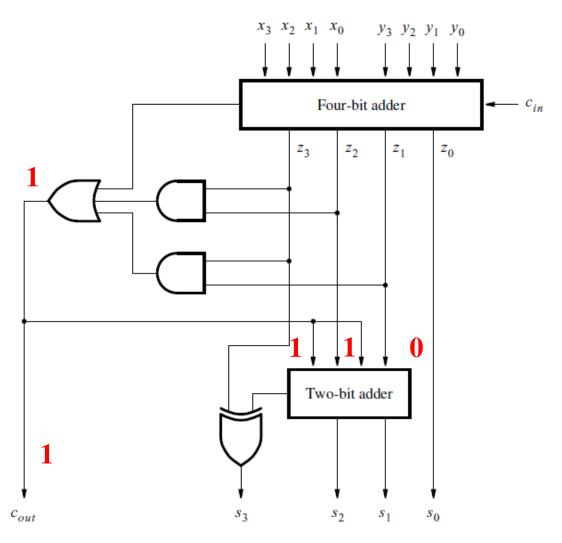
[Figure 3.41 in the textbook]



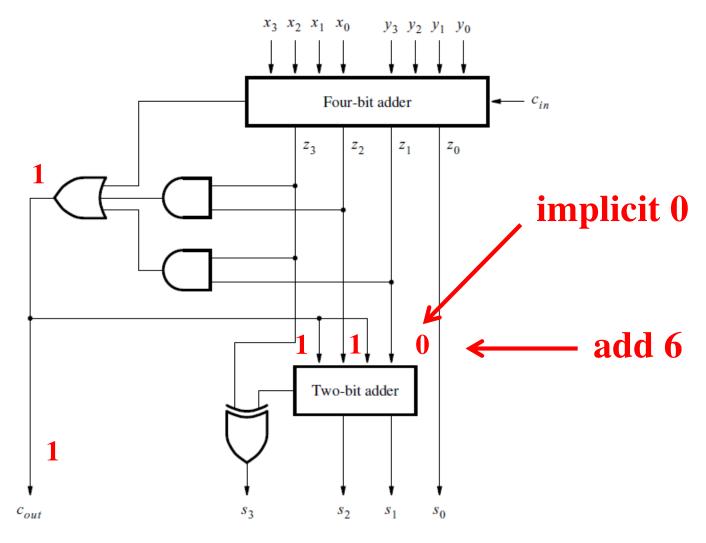
[Figure 3.41 in the textbook]



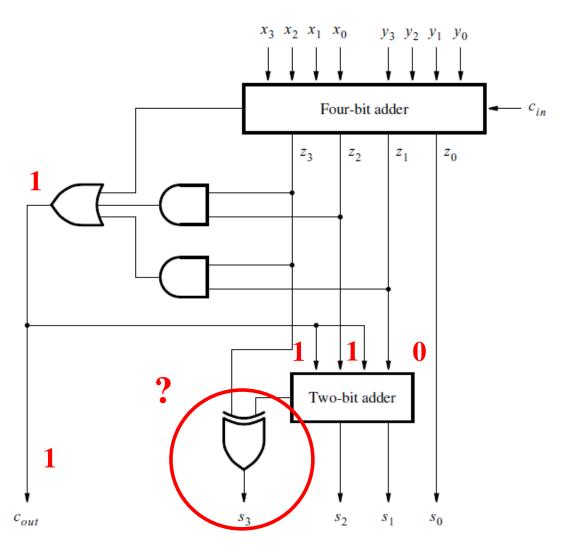
[Figure 3.41 in the textbook]



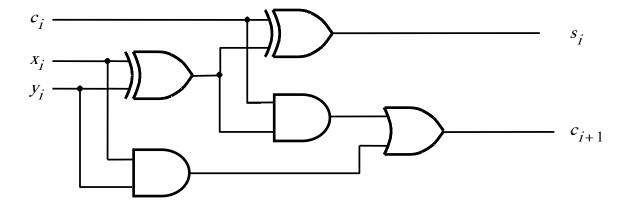
[Figure 3.41 in the textbook]

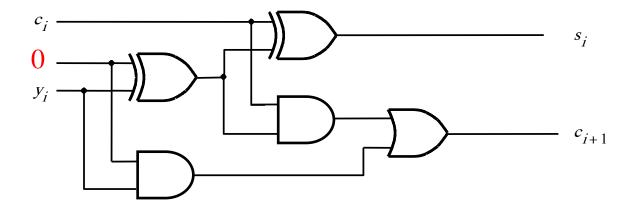


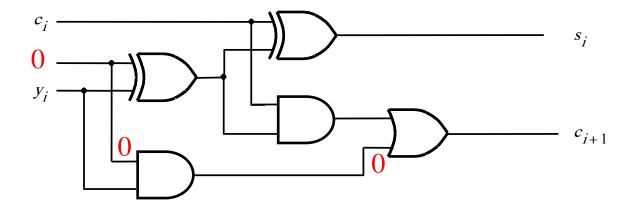
[Figure 3.41 in the textbook]

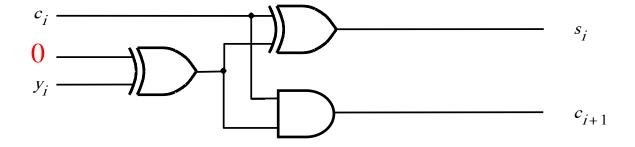


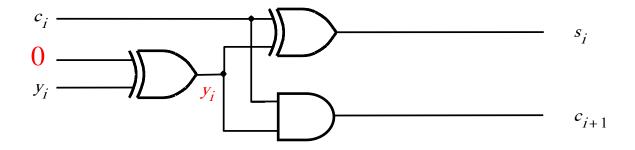
[Figure 3.41 in the textbook]

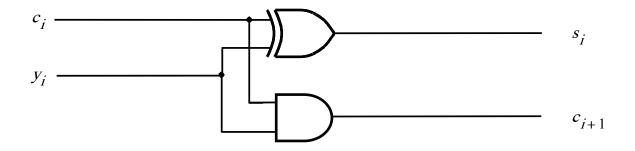


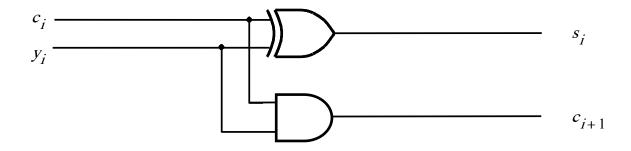




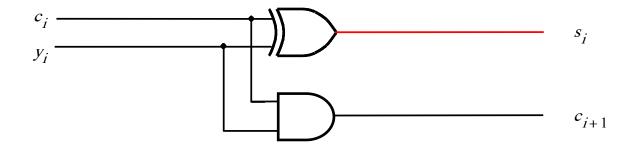






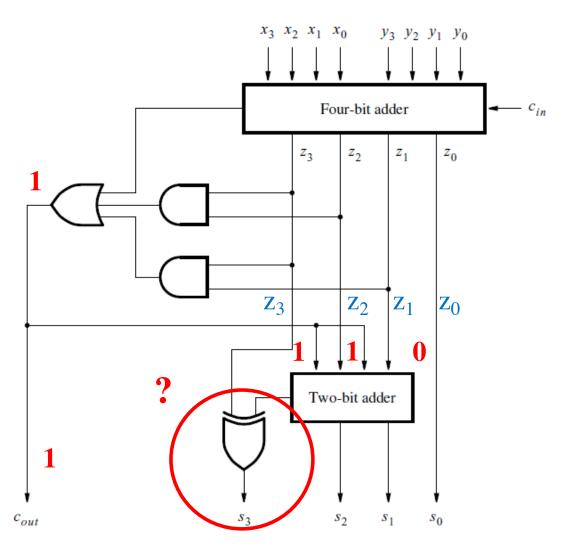


It reduces to a half-adder.

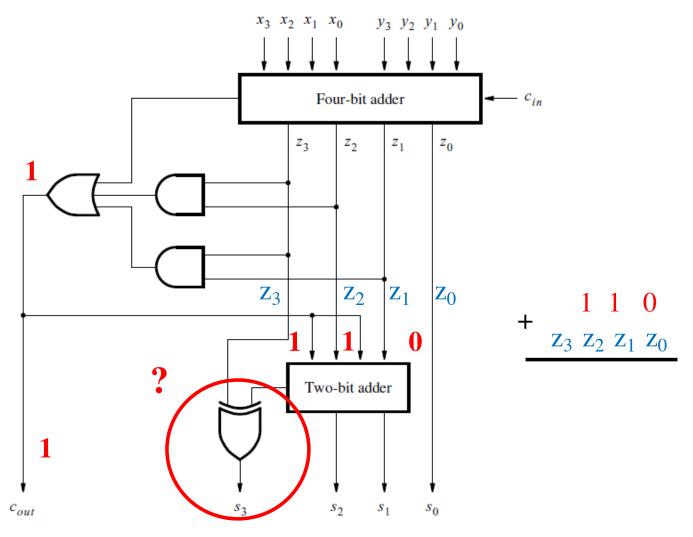


But if we only need the sum bit ...

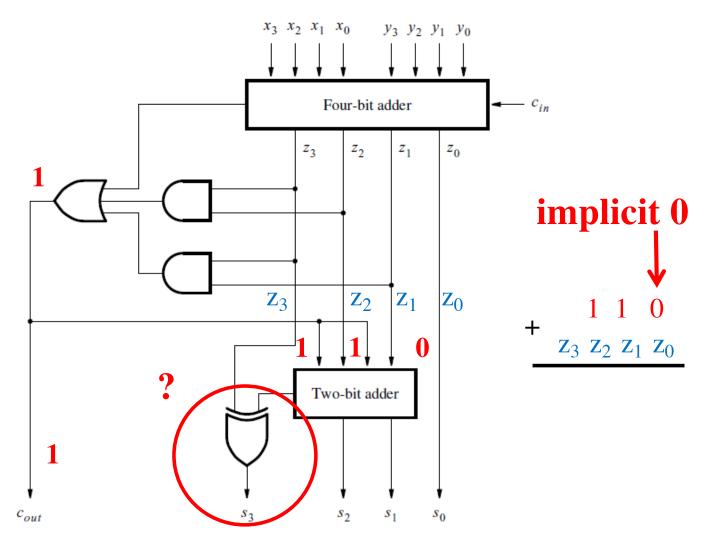
... it reduces to an XOR.



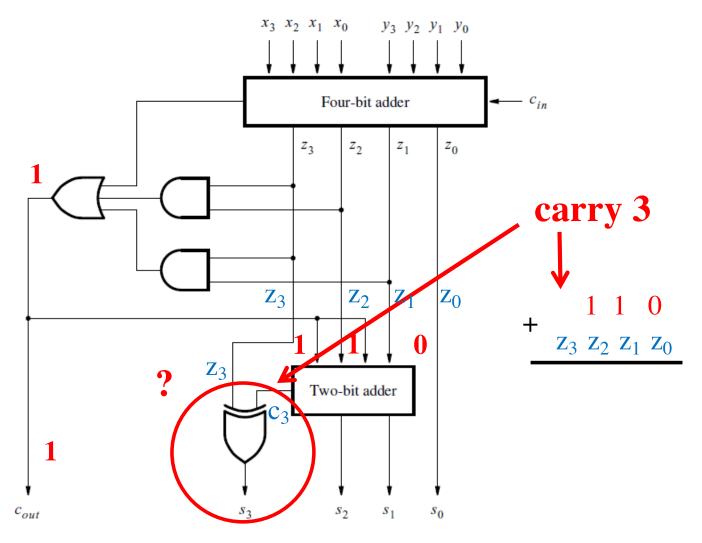
[Figure 3.41 in the textbook]



[Figure 3.41 in the textbook]

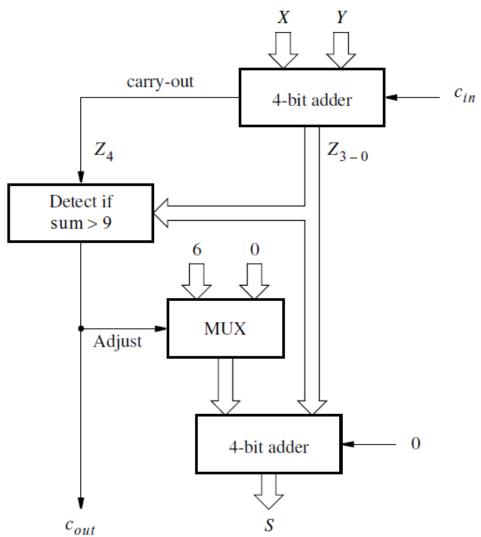


[Figure 3.41 in the textbook]



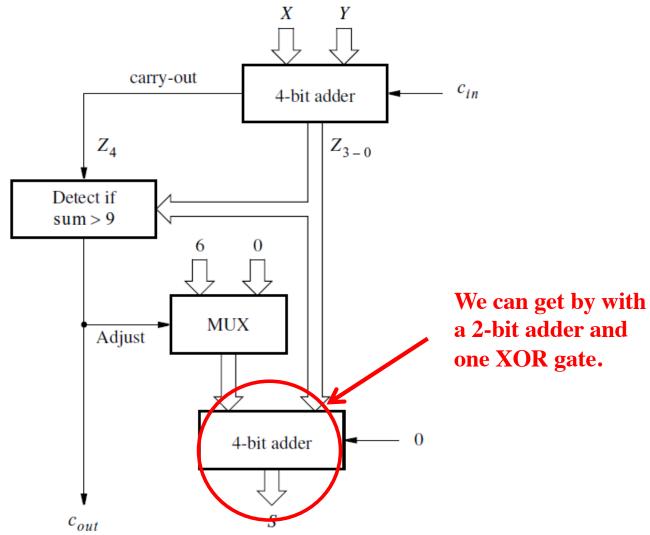
[Figure 3.41 in the textbook]

Block diagram for a one-digit BCD adder



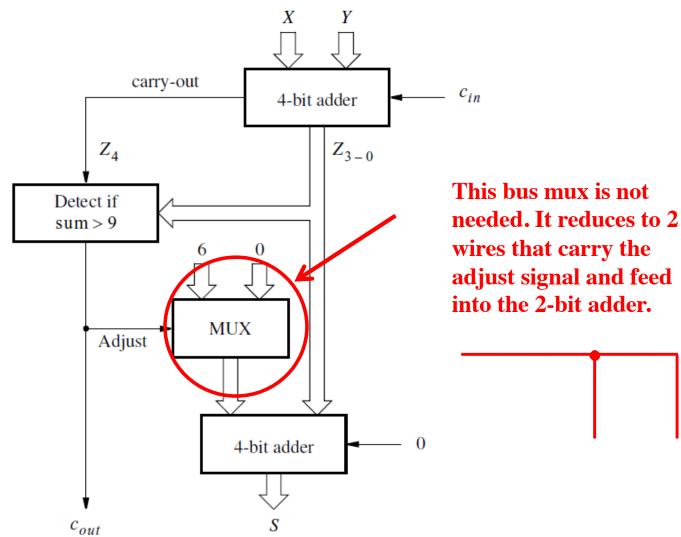
[Figure 3.39 in the textbook]

Block diagram for a one-digit BCD adder

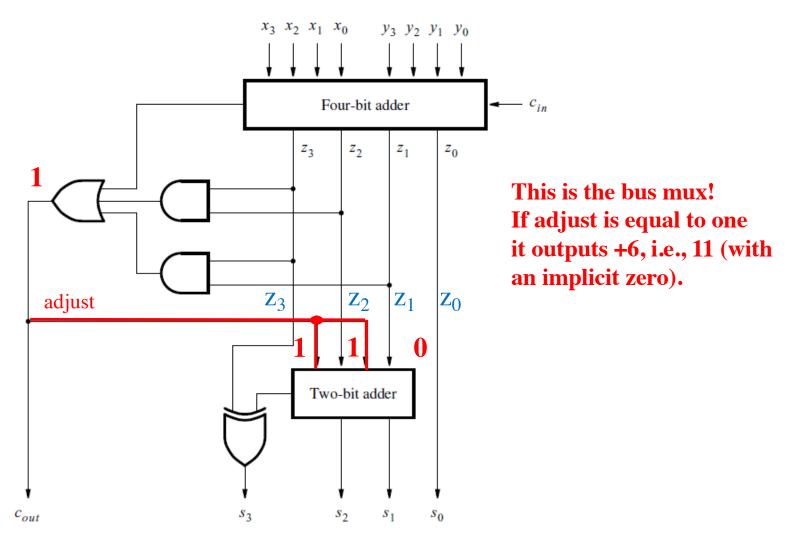


[Figure 3.39 in the textbook]

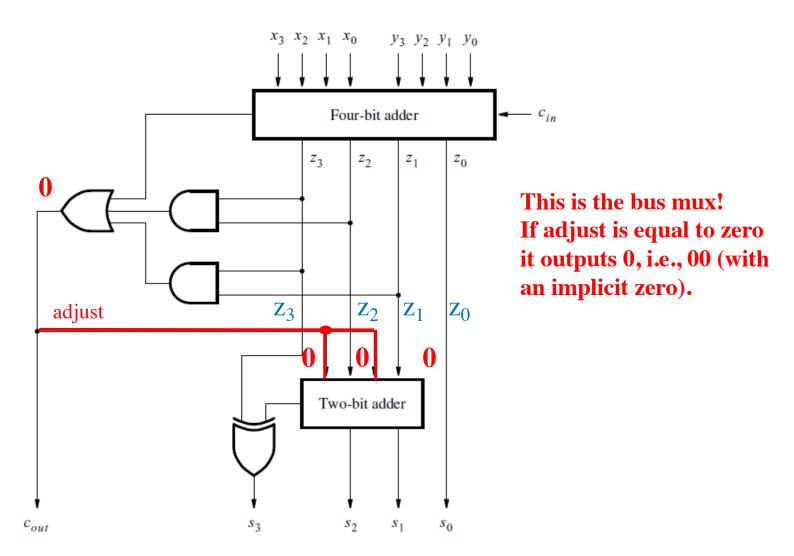
Block diagram for a one-digit BCD adder



[Figure 3.39 in the textbook]



[Figure 3.41 in the textbook]



[Figure 3.41 in the textbook]

Questions?

