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Administrative Stuff

• No HW is due next Monday

• HW 6 will is due on Monday Oct.  13 @ 10 pm.



Administrative Stuff

• Labs next week

• Mini-Project

• This is worth 3% of your grade (x2 labs)

• https://www.ece.iastate.edu/~alexs/classes/
 2025_Fall_2810/labs/Project-Mini/



Three Different Methods to 
Represent Negative Integer Numbers

• Sign and magnitude

• 1’s complement

• 2’s complement



Three Different Methods to 
Represent Negative Integer Numbers

• Sign and magnitude

• 1’s complement

• 2’s complement only this method is used 
in modern computers



[ Table 3.2 from the textbook ]

Interpretation of four-bit signed integers



[ Table 3.2 from the textbook ]

Interpretation of four-bit signed integers

Note that each table includes both positive and negative integers.



2’s complement representation (4-bit)



The number circle for 2's complement

[ Figure 3.11a from the textbook ]



Addition of two numbers stored 
in 2’s complement representation



There are four cases to consider

• (+5)  +  (+2)  

• (-5)  +  (+2)  

• (+5)  +  (-2)  

• (-5)  +  (-2)  



There are four cases to consider

• (+5)  +  (+2)  positive plus positive

• (-5)  +  (+2)  negative plus positive

• (+5)  +  (-2)  positive plus negative

• (-5)  +  (-2)  negative plus negative



Positive plus positive

[ Figure 3.9 from the textbook ]

+

0 1 1 1

0 1 0 1
0 0 1 0

5+( )
2+( )

7+( )

+



Negative plus positive

+

1 1 0 1

1 0 1 1
0 0 1 02+( )

5–( )

3–( )

+

[ Figure 3.9 from the textbook ]



Positive plus negative

+

0 0 1 1

0 1 0 1
1 1 1 0

1

ignore

5+( )

3+( )

+ 2–( )

[ Figure 3.9 from the textbook ]



Negative plus negative

+

1 0 0 1

1 0 1 1
1 1 1 0

1

ignore

5–( )

7–( )

+ 2–( )

[ Figure 3.9 from the textbook ]



Subtraction of two numbers stored 
in 2’s complement representation



There are four cases to consider

a)  positive minus positive

b)  negative minus positive

c)  positive minus negative

d)  negative minus negative



There are four cases to consider

a) (+5)  -  (+2)   

b) (-5)  -  (+2)     

c) (+5)  -  (-2)     

d) (-5)  -  (-2)



There are four cases to consider

a) (+5)  -  (+2)     =    (+5)  +  (-2)  

b) (-5)  -  (+2)     =    (-5)  +  (-2) 

c) (+5)  -  (-2)     =    (+5)  +  (+2)

d) (-5)  -  (-2)        =    (-5)  +  (+2)



There are four cases to consider

a) (+5)  -  (+2)     =    (+5)  +  (-2)  

b) (-5)  -  (+2)     =    (-5)  +  (-2) 

c) (+5)  -  (-2)     =    (+5)  +  (+2)

d) (-5)  -  (-2)        =    (-5)  +  (+2)

We can change subtraction into addition ...



There are four cases to consider

a) (+5)  -  (+2)     =    (+5)  +  (-2)  

b) (-5)  -  (+2)     =    (-5)  +  (-2) 

c) (+5)  -  (-2)     =    (+5)  +  (+2)

d) (-5)  -  (-2)        =    (-5)  +  (+2)

… if we negate the second number.



There are four cases to consider

a) (+5)  -  (+2)     =    (+5)  +  (-2)  

b) (-5)  -  (+2)     =    (-5)  +  (-2) 

c) (+5)  -  (-2)     =    (+5)  +  (+2)

d) (-5)  -  (-2)        =    (-5)  +  (+2)

These are the four addition cases
(arranged in a shuffled order)



Case a)  Start with positive minus positive

–
0 1 0 1
0 0 1 0

5+( )
2+( )

3+( )

–

[ Figure 3.10 from the textbook ]



Case a) Convert to positive plus negative

–
0 1 0 1
0 0 1 0

5+( )
2+( )

3+( )

– +
0 1 0 1
1 1 1 0

[ Figure 3.10 from the textbook ]

means negate
Notice that the operation changes to addition.



Case a) Perform the addition and ignore that extra bit

–
0 1 0 1
0 0 1 0

5+( )
2+( )

3+( )

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

[ Figure 3.10 from the textbook ]

5+( )
2–( )

3+( )

+



[ Figure 3.11 from the textbook ]

Graphical interpretation of four-bit 
2’s complement numbers



Case b) Start with negative minus positive

[ Figure 3.10 from the textbook ]

–
1 0 1 1
0 0 1 0–

5–( )

7–( )

2+( )



case b) Convert to negative plus negative

[ Figure 3.10 from the textbook ]

–
1 0 1 1
0 0 1 0

1

ignore

+

1 0 0 1

1 0 1 1
1 1 1 0–

5–( )

7–( )

2+( ) +
5–( )

7–( )

2–( )





Case c) Start with positive minus negative

–
0 1 0 1
1 1 1 0

5+( )

7+( )

– 2–( )

[ Figure 3.10 from the textbook ]



Case c) Convert to positive plus positive

–
0 1 0 1
1 1 1 0 +

0 1 1 1

0 1 0 1
0 0 1 0

5+( )

7+( )

– 2–( )

[ Figure 3.10 from the textbook ]

5+( )

7+( )

+ 2+ ( )





Case d) Start with negative minus negative

–
1 0 1 1
1 1 1 0– 2–( )

5–( )

3–( )

[ Figure 3.10 from the textbook ]



Case d) Convert to negative plus positive

–
1 0 1 1
1 1 1 0 +

1 1 0 1

1 0 1 1
0 0 1 0– 2–( )

5–( )

3–( )

[ Figure 3.10 from the textbook ]

+ 2+( )
5–( )

3–( )



Take Home Message



Take Home Message

• Subtraction can be performed by simply negating  
the second number and adding it to the first, 
regardless of the signs of the two numbers.

• Thus, the same adder circuit can be used to perform 
both addition and subtraction !!!



s 0 s 1 s n 1 – 

x 0 x 1 x n 1 – 

c n n -bit adder

y 0 y 1 y n 1 – 

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Adder / Subtractor



XOR Tricks

y

control
out



y

0
y

XOR as a repeater



y y

XOR as a repeater



y

1
y

XOR as an inverter



y

XOR as an inverter

y



s 0 s 1 s n 1 – 

x 0 x 1 x n 1 – 

c n n -bit adder

y 0 y 1 y n 1 – 

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Addition: when control = 0



s 0 s 1 s n 1 – 

x 0 x 1 x n 1 – 

c n n -bit adder

y 0 y 1 y n 1 – 

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Addition: when control = 0

0

000



s 0 s 1 s n 1 – 

x 0 x 1 x n 1 – 

c n n -bit adder

y 0 y 1 y n 1 – 

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Addition: when control = 0

0

000

yn-1 y1 y0…



s 0 s 1 s n 1 – 

x 0 x 1 x n 1 – 

c n n -bit adder

y 0 y 1 y n 1 – 

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Subtraction: when control = 1



s 0 s 1 s n 1 – 

x 0 x 1 x n 1 – 

c n n -bit adder

y 0 y 1 y n 1 – 

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Subtraction: when control = 1

1

111



s 0 s 1 s n 1 – 

x 0 x 1 x n 1 – 

c n n -bit adder

y 0 y 1 y n 1 – 

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Subtraction: when control = 1

1

111

yn-1 y1 y0…



s 0 s 1 s n 1 – 

x 0 x 1 x n 1 – 

c n n -bit adder

y 0 y 1 y n 1 – 

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Subtraction: when control = 1

1

111

yn-1 y1 y0…

1

carry for the 
first column!



Addition Examples:
 

all inputs and outputs are given in
2’s complement representation



0 1 0 1 1

x 0 

c 5 5-bit adder c 0 

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4 

S 
0 

S 
1 

S 
2 

S 
3 

S 
4 

0

0

0 0 1 1 0

0 0 1 0 1

Addition: 5 + 6 = 11



0 1 0 1 1

x 0 

c 5 5-bit adder c 0 

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4 

S 
0 

S 
1 

S 
2 

S 
3 

S 
4 

0

0

0 0 1 1 0

0 0 1 0 1

Addition: 5 + 6 = 11



0 1 0 1 1

x 0 

c 5 5-bit adder c 0 

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4 

S 
0 

S 
1 

S 
2 

S 
3 

S 
4 

0

0

0 0 1 1 0

0 0 1 0 1

Addition: 5 + 6 = 11



0 1 0 1 1

x 0 

c 5 5-bit adder c 0 

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4 

S 
0 

S 
1 

S 
2 

S 
3 

S 
4 

0

0

0 0 1 1 0

0 0 1 0 1

Addition: 5 + 6 = 11

0 0 1 1 0



0 1 0 1 1

x 0 

c 5 5-bit adder c 0 

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4 

S 
0 

S 
1 

S 
2 

S 
3 

S 
4 

0

0

0 0 1 1 0

0 0 1 0 1

Addition: 5 + 6 = 11

0 0 1 1 0

0
   0 0 1 0 1
  0 0 1 1 0
0 0 1 0 1 1

+





1 1 1 0 1

x 0 

c 5 5-bit adder c 0 

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4 

S 
0 

S 
1 

S 
2 

S 
3 

S 
4 

0

0

1 1 0 0 1

0 0 1 0 0

Addition: 4 + (-7) = -3



1 1 1 0 1

x 0 

c 5 5-bit adder c 0 

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4 

S 
0 

S 
1 

S 
2 

S 
3 

S 
4 

0

0

1 1 0 0 1

0 0 1 0 0

Addition: 4 + (-7) = -3

1 1 0 0 1



1 1 1 0 1

x 0 

c 5 5-bit adder c 0 

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4 

S 
0 

S 
1 

S 
2 

S 
3 

S 
4 

0

0

1 1 0 0 1

0 0 1 0 0

Addition: 4 + (-7) = -3

1 1 0 0 1

0
   0 0 1 0 0
  1 1 0 0 1
0 1 1 1 0 1

+



Subtraction Examples:
 

all inputs and outputs are given in
2’s complement representation



Subtraction: 7 - 3 = 4

0 0 1 0 0

x 0 

c 5 5-bit adder c 0 

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4 

S 
0 

S 
1 

S 
2 

S 
3 

S 
4 

1

1

0 0 0 1 1

0 0 1 1 1



Subtraction: 7 - 3 = 4

0 0 1 0 0

x 0 

c 5 5-bit adder c 0 

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4 

S 
0 

S 
1 

S 
2 

S 
3 

S 
4 

1

1

0 0 0 1 1

0 0 1 1 1



Subtraction: 7 - 3 = 4

0 0 1 0 0

x 0 

c 5 5-bit adder c 0 

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4 

S 
0 

S 
1 

S 
2 

S 
3 

S 
4 

1

1

0 0 0 1 1

0 0 1 1 1

1 1 1 0 0



Subtraction: 7 - 3 = 4

0 0 1 0 0

x 0 

c 5 5-bit adder c 0 

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4 

S 
0 

S 
1 

S 
2 

S 
3 

S 
4 

1

1

0 0 0 1 1

0 0 1 1 1

1 1 1 0 0

1
   0 0 1 1 1
  1 1 1 0 0
1 0 0 1 0 0

+



Subtraction: 7 - 3 = 4

0 0 1 0 0

x 0 

c 5 5-bit adder c 0 

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4 

S 
0 

S 
1 

S 
2 

S 
3 

S 
4 

1

1

0 0 0 1 1

0 0 1 1 1

1 1 1 0 0

1
   0 0 1 1 1
  1 1 1 0 0
1 0 0 1 0 0

+

Ignore

Ignore



Analogy: Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    

=  82 + 35 + 1 - 100  

=  118 - 100  

9’s complement

=  82 + 36 - 100  

=    18

// Add the first two.

// Just delete the leading 1.
// No need to subtract 100.

10’s complement





Subtraction: (–2) – (–5) = 3

0 0 0 1 1

x 0 

c 5 5-bit adder c 0 

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4 

S 
0 

S 
1 

S 
2 

S 
3 

S 
4 

1

1

1 1 0 1 1

1 1 1 1 0



Subtraction: (–2) – (–5) = 3

0 0 0 1 1

x 0 

c 5 5-bit adder c 0 

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4 

S 
0 

S 
1 

S 
2 

S 
3 

S 
4 

1

1

1 1 0 1 1

1 1 1 1 0

0 0 1 0 0



Subtraction: (–2) – (–5) = 3

0 0 0 1 1

x 0 

c 5 5-bit adder c 0 

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4 

S 
0 

S 
1 

S 
2 

S 
3 

S 
4 

1

1

1 1 0 1 1

1 1 1 1 0

0 0 1 0 0

1
   1 1 1 1 0
  0 0 1 0 0
1 0 0 0 1 1

+



Subtraction: (–2) – (–5) = 3

0 0 0 1 1

x 0 

c 5 5-bit adder c 0 

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4 

S 
0 

S 
1 

S 
2 

S 
3 

S 
4 

1

1

1 1 0 1 1

1 1 1 1 0

0 0 1 0 0

1
   1 1 1 1 0
  0 0 1 0 0
1 0 0 0 1 1

+

Ignore

Ignore



Detecting Overflow



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow

[ Figure 3.13 from the textbook ]



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow

[ Figure 3.13 from the textbook ]

In 2's complement, both +9 and -9 are not representable with 4 bits.



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Include the carry bits:  c4 c3 c2 c1 c0



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Include the carry bits:  c4 c3 c2 c1 c0



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Include the carry bits:  c4 c3 c2 c1 c0

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Overflow occurs only in these two cases.

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=

Overflow = c3c4  + c3c4



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=

Overflow = c3c4  + c3c4

XOR



Calculating overflow for 4-bit numbers 
with only three significant bits



Calculating overflow for n-bit numbers 
with only n-1 significant bits



FA

x n – 1 

c n c n 1 

y n 1 – 

s n 1 – 

FA

x 1 

c 2 

y 1 

s 1 

FA
c 1 

x 0 y 0 

s 0 

c 0 

Detecting Overflow

-



FA

x n – 1 

c n c n 1 -

y n 1 – 

s n 1 – 

FA

x 1 

c 2 

y 1 

s 1 

FA
c 1 

x 0 y 0 

s 0 

c 0 

Detecting Overflow
(with one extra XOR)

overflow



FA

x n – 1 

c n c n 1 

y n 1 – 

s n 1 – 

FA

x 1 

c 2 

y 1 

s 1 

FA
c 1 

x 0 y 0 

s 0 

c 0 

Detecting Overflow
(with one extra XOR)

overflow

-

This method detects overflow 
for both addition and subtraction.



Detecting Overflow
(alternative method)

Used if you don’t have access to the internal carries of the adder.



FA

x n – 1 

c n c n 1 

y n 1 – 

s n 1 – 

FA

x 1 

c 2 

y 1 

s 1 

FA
c 1 

x 0 y 0 

s 0 

c 0 

Detecting Overflow
(with one extra XOR)

overflow

-

If the adder is implemented on a chip, 
then this line is not available. 

So the first method can’t be used.



X= x3 x2 x1 x0
Y= y3 y2 y1 y0

 S= s3 s2 s1 s0

+

Another way to look at the overflow issue



X= x3 x2 x1 x0
Y= y3 y2 y1 y0

 S= s3 s2 s1 s0

+

Another way to look at the overflow issue

If  both numbers that we are adding have the same sign 
but the sum does not, then we have an overflow.



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

In 2's complement, both +9 and -9 are not representable with 4 bits.



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

Overflow occurs only in these two cases.



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

Overflow = x3 y3 s3 + x3 y3 s3



X= x3 x2 x1 x0
Y= y3 y2 y1 y0

 S= s3 s2 s1 s0

+

Another way to look at the overflow issue

If  both numbers that we are adding have the same sign 
but the sum does not, then we have an overflow.

Overflow = x3 y3 s3 + x3 y3 s3



Overflow Detection

x 0 

c 4 4-bit adder c 0 

x 1 x 2 x 3 y 0 y 1 y 2 y 3

S 0 
S 

1 S 
2 

S 
3 

Add ⁄ Sub 
control 



Overflow Detection

x 0 

c 4 4-bit adder c 0 

x 1 x 2 x 3 y 0 y 1 y 2 y 3

S 0 
S 

1 S 
2 

S 
3 

overflow

Add ⁄ Sub 
control 

x3 y3 s3 + x3 y3 s3



Overflow Detection

x 0 

c 4 4-bit adder c 0 

x 1 x 2 x 3 y 0 y 1 y 2 y 3

S 0 
S 

1 S 
2 

S 
3 

overflow

Add ⁄ Sub 
control 

This must be taken after the XOR!



Overflow Detection

x 0 

c 4 4-bit adder c 0 

x 1 x 2 x 3 y 0 y 1 y 2 y 3

S 0 
S 

1 S 
2 

S 
3 

overflow

Add ⁄ Sub 
control 

This method also detects overflow 
for both addition and subtraction.



x 0 

c 5 5-bit adder c 0 

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4 

S 0 
S 1 

S 
2 

S 3 
S 4 

overflow
x4 y4 s4 + x4 y4 s4

Add ⁄ Sub 
control 

Overflow detection for a 5-bit adder



Overflow detection for a 4-bit adder

x 0 

c 4 4-bit adder c 0 

x 1 x 2 x 3 y 0 y 1 y 2 y 3

S 0 
S 

1 S 
2 

S 
3 

overflow

Add ⁄ Sub 
control 

x3 y3 s3 + x3 y3 s3



New Topic:

Fast Adders



A  ripple-carry adder



FA

x n – 1 

c n c n 1 

y n 1 – 

s n 1 – 

FA

x 1 

c 2 

y 1 

s 1 

FA
c 1 

x 0 y 0 

s 0 

c 0 

How long does it take to compute all 
sum bits and all carry bits?

– 



HA
HAs 

c 

s 
c 

c i 
x i 
y i 

c i 1 + 

s i 

c i 

x i 
y i 

c i 1 + 

s i 

(a) Block diagram 

(b) Detailed diagram

Delays through the modular 
implementation of the full-adder circuit

[ Figure 3.4 from the textbook ]
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(a) Block diagram 

(b) Detailed diagram

Delays through the modular 
implementation of the full-adder circuit

[ Figure 3.4 from the textbook ]

2 gate delays through this route



HA
HAs 

c 

s 
c 

c i 
x i 
y i 

c i 1 + 

s i 

c i 

x i 
y i 

c i 1 + 

s i 

(a) Block diagram 

(b) Detailed diagram

Delays through the modular 
implementation of the full-adder circuit

[ Figure 3.4 from the textbook ]

3 gate delays in total



FA

x n – 1 

c n c n 1 

y n 1 – 

s n 1 – 

FA

x 1 

c 2 

y 1 

s 1 

FA
c 1 

x 0 y 0 

s 0 

c 0 

How long does it take to compute all 
sum bits and all carry bits in this case?

– 

It takes 3n gate delays? 



Delays through the Full-Adder circuit

[ Figure 3.3c from the textbook ]



Delays through the Full-Adder circuit

[ Figure 3.3c from the textbook ]

1 gate delay through this route



Delays through the Full-Adder circuit

[ Figure 3.3c from the textbook ]

2 gate delays in total



FA

x n – 1 

c n c n 1 

y n 1 – 

s n 1 – 

FA

x 1 

c 2 

y 1 

s 1 

FA
c 1 

x 0 y 0 

s 0 

c 0 

How long does it take to compute all 
sum bits and all carry bits?

– 

It takes 2n gate delays? 



Can we perform addition even faster?

The goal is to evaluate very fast if the carry from the 
previous stage will be equal to 0 or 1.



Can we perform addition even faster?

The goal is to evaluate very fast if the carry from the 
previous stage will be equal to 0 or 1.

To accomplish this goal we will have to redesign the 
full-adder circuit yet again.



The Full-Adder Circuit

[ Figure 3.3c from the textbook ]



The Full-Adder Circuit

[ Figure 3.3c from the textbook ]

Let's take a closer look at this.



Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci



Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi )ci



Decomposing the Carry Expression

yi

xi

ci+1

ci

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi )ci



Another Way to Draw the Full-Adder Circuit

yi

xi

ci

ci+1

si

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi )ci



Another Way to Draw the Full-Adder Circuit

ci+1 = xi yi + (xi + yi )ci

yi

xi

ci

ci+1

si



Another Way to Draw the Full-Adder Circuit

ci+1 = xi yi + (xi + yi )ci

gi pi

yi

xi

ci

ci+1

si



Another Way to Draw the Full-Adder Circuit

ci+1 = xi yi + (xi + yi )ci

gi pi

g - generate p - propagate

yi

xi

ci

ci+1

si

gi

pi



Yet Another Way to Draw It (Just Rotate It)

ci

ci+1 si

xi yi

pigi



x 1 y 1 

g 1 p 1 

s 1 

Stage 1 

x 0 y 0 

g 0 p 0 

s 0 

Stage 0 

c 0 
c 1 c 2 

Now we can Build a Ripple-Carry Adder

[ Figure 3.14 from the textbook ]



x 1 y 1 

g 1 p 1 

s 1 

Stage 1 

x 0 y 0 

g 0 p 0 

s 0 

Stage 0 

c 0 
c 1 c 2 

Now we can Build a Ripple-Carry Adder

[ Figure 3.14 from the textbook ]



x 1 y 1 

g 1 p 1 

s 1 

Stage 1 

x 0 y 0 

g 0 p 0 

s 0 

Stage 0 

c 0 
c 1 c 2 

2-bit ripple-carry adder: 5 gate delays (1+2+2)



x 1 y 1 

g 1 p 1 

s 1 

Stage 1 

x 0 y 0 

g 0 p 0 

s 0 

Stage 0 

c 0 
c 1 c 2 

n-bit ripple-carry adder: 2n+1 gate delays

. . . 



n-bit Ripple-Carry Adder

• It takes 1 gate delay to generate all gi and pi signals

• +2 more gate delays to generate carry 1

• +2 more gate delay to generate carry 2

      …

• +2 more gate delay to generate carry n

• Thus, the total delay through an 
     n-bit ripple-carry adder is 2n+1 gate delays!



n-bit Ripple-Carry Adder

• It takes 1 gate delay to generate all gi and pi signals

• +2 more gate delays to generate carry 1

• +2 more gate delay to generate carry 2

      …

• +2 more gate delay to generate carry n

• Thus, the total delay through an 
     n-bit ripple-carry adder is 2n+1 gate delays!

This is slower by 1 than the original design?!



A carry-lookahead adder



Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci



Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi )ci

gi pi



Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi )ci

gi pi
(1 gate delay) (1 gate delay)



x 1 y 1 

g 1 p 1 

s 1 

Stage 1 

x 0 y 0 

g 0 p 0 

s 0 

Stage 0 

c 0 
c 1 c 2 

It takes 1 gate delay to compute all pi signals

[ Figure 3.14 from the textbook ]



x 1 y 1 

g 1 p 1 

s 1 

Stage 1 

x 0 y 0 

g 0 p 0 

s 0 

Stage 0 

c 0 
c 1 c 2 

It takes 1 gate delay to compute all gi signals

[ Figure 3.14 from the textbook ]



Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi )ci

gi pi



Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi )ci

gi pi

ci+1 = gi  + pi ci



Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi )ci

gi pi

ci+1 = gi  + pi ci

ci+1 = gi  + pi (gi-1  + pi-1 ci-1 )
ci

recursive 
expansion of



Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi )ci

gi pi

ci+1 = gi  + pi ci

ci+1 = gi  + pi (gi-1  + pi-1 ci-1 )

ci+1 = gi  + pi gi-1  + pi pi-1 ci-1



Expanding the Carry Expression for C3

ci+1 = gi  + pi ci

=  g2  + p2g1 + p2p1g0 + p2p1p0c0  

c3 = g2  + p2 c2

= g2  + p2 (g1  + p1 c1)
= g2  + p2 g1  + p2 p1 c1

= g2  + p2 g1  + p2 p1 (g0  + p0 c0)



Carry for the first three stages

c1  =  g0  + p0 c0

c2  =  g1  + p1g0 + p1p0c0

c3  =  g2  + p2g1 + p2p1g0 + p2p1p0c0



x 1 y 1 

g 1 p 1 

s 1 

x 0 y 0 

s 0 

c 2 

x 0 y 0 

c 0 

c 1 

g 0 p 0 

[ Figure 3.15 from the textbook ]

Now we can Build a Carry-Lookahead Adder



x 1 y 1 

g 1 p 1 

s 1 

x 0 y 0 

s 0 

c 2 

x 0 y 0 

c 0 

c 1 

g 0 p 0 

The first two stages of a carry-lookahead adder

[ Figure 3.15 from the textbook ]

. . . 
Stage 0Stage 1



c1  =  g0  + p0 c0

Carry for the first stage



x 1 y 1 

g 1 p 1 

s 1 

x 0 y 0 

s 0 

c 2 

x 0 y 0 

c 0 

c 1 

g 0 p 0 

c1  =  g0  + p0 c0

Carry for the first stage



Carry for the second stage

c2  =  g1  + p1g0 + p1p0c0



x 1 y 1 

g 1 p 1 

s 1 

x 0 y 0 

s 0 

c 2 

x 0 y 0 

c 0 

c 1 

g 0 p 0 

c2  =  g1  + p1g0 + p1p0c0

Carry for the second stage



Carry for the first two stages

c1  =  g0  + p0 c0

c2  =  g1  + p1g0 + p1p0c0



Carry for the first two stages

c1  =  g0  + p0 c0

c2  =  g1  + p1g0 + p1p0c0



Carry for the first two stages

c1  =  g0  + p0 c0

c2  =  g1  + p1g0 + p1p0c0

=  g1  + p1 (g0 + p0c0)
c1



Carry for the first two stages

c1  =  g0  + p0 c0

c2  =  g1  + p1g0 + p1p0c0

=  g1  + p1 (g0 + p0c0)

=  g1  + p1 c1
c1



x 1 y 1 

g 1 p 1 

s 1 

x 0 y 0 

s 0 

c 2 

x 0 y 0 

c 0 

c 1 

g 0 p 0 

The first two stages of a carry-lookahead adder

[ Figure 3.15 from the textbook ]



x 1 y 1 

g 1 p 1 

s 1 

x 0 y 0 

s 0 

c 2 

x 0 y 0 

c 0 

c 1 

g 0 p 0 

It takes 3 gate delays to generate c1

c1  =  g0  + p0 c0



x 1 y 1 

g 1 p 1 

s 1 

x 0 y 0 

s 0 

c 2 

x 0 y 0 

c 0 

c 1 

g 0 p 0 

It takes 3 gate delays to generate c2

c2  =  g1  + p1g0 + p1p0c0



x 1 y 1 

g 1 p 1 

s 1 

x 0 y 0 

s 0 

x 0 y 0 

c 0 

c 1 

g 0 p 0 

The first two stages of a carry-lookahead adder

2 c 



x 1 y 1 

g 1 p 1 

s 1 

x 0 y 0 

s 0 

x 0 y 0 

c 0 

c 1 

g 0 p 0 

It takes 4 gate delays to generate s1

2 c 



It takes 4 gate delays to generate s2
x 1 y 1 

g 1 p 1 

s 1 

x 0 y 0 

s 0 

c 2 

x 0 y 0 

c 0 

c 1 

g 0 p 0 

s 2 



N-bit Carry-Lookahead Adder
• It takes 1 gate delay to generate all gi and pi signals

• It takes 2 more gate delays to generate all carry signals

• It takes 1 more gate delay to generate all sum bits

• Thus, the total delay through an 
     n-bit carry-lookahead adder is only 4 gate delays!



N-bit Carry-Lookahead Adder
• It takes 1 gate delay to generate all gi and pi signals

• It takes 2 more gate delays to generate all carry signals

• It takes 1 more gate delay to generate all sum bits

• Thus, the total delay through an 
     n-bit carry-lookahead adder is only 4 gate delays!



Expanding the Carry Expression

c1  =  g0  + p0 c0

c2  =  g1  + p1g0 + p1p0c0

ci+1 = gi  + pi ci

c3  =  g2  + p2g1 + p2p1g0 + p2p1p0c0

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

. . .



Expanding the Carry Expression

c1  =  g0  + p0 c0

c2  =  g1  + p1g0 + p1p0c0

ci+1 = gi  + pi ci

c3  =  g2  + p2g1 + p2p1g0 + p2p1p0c0

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

. . .

Even this takes 
only 3 gate delays 



A hierarchical carry-lookahead adder 
with ripple-carry between blocks
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A hierarchical carry-lookahead adder with 
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x31 24–

c32
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y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8
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s7 0–
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A hierarchical carry-lookahead adder with 
ripple-carry between blocks

x23 16– y23 16–
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A hierarchical carry-lookahead adder



Block

x31 24–

c32 c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c03
Block

1
Block

0

A hierarchical carry-lookahead adder with 
ripple-carry between blocks

[ Figure 3.16 from the textbook ]



Block 

x 15 8 – y 15 8 – x 7 0 – y 7 0 – 

3 
Block 

1 
Block 

0 

Second-level lookahead

c 0 

s 7 0 – 

P 0 G 0 P 1 G 1 P 3 G 3 

s 15 8 – s 31 24– 

c 8 c 16c 32

x 31 24– y 31 24– 

c 24

[ Figure 3.17 from the textbook ]

A hierarchical carry-lookahead adder
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Block 

x 15 8 – y 15 8 – x 7 0 – y 7 0 – 

3 
Block 

1 
Block 

0 

Second-level lookahead

c 0 

s 7 0 – 

P 0 G 0 P 1 G 1 P 3 G 3 

s 15 8 – s 31 24– 

c 8 c 16c 32

x 31 24– y 31 24– 

c 24

A hierarchical carry-lookahead adder

? ? ?

c 32



The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0



The Hierarchical Carry Expression
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The Hierarchical Carry Expression
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The Hierarchical Carry Expression
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The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
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The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

G0

P0

c8  =  G0  + P0 c0

2-gate delays
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The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0
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The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

c16  =  g15  + p15g14 + p15p14g13 + p15p14p13g12
 + p15p14p13p12g11 + p15p14p13p12p11g10
 + p15p14p13p12p11p10g9+ p15p14p13p12p11p10p9g8
 + p15p14p13p12p11p10p9p8c8



The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

c16  =  g15  + p15g14 + p15p14g13 + p15p14p13g12
 + p15p14p13p12g11 + p15p14p13p12p11g10
 + p15p14p13p12p11p10g9+ p15p14p13p12p11p10p9g8
 + p15p14p13p12p11p10p9p8c8

The same expression, just add 8 to all subscripts



The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

c16  =  g15  + p15g14 + p15p14g13 + p15p14p13g12
 + p15p14p13p12g11 + p15p14p13p12p11g10
 + p15p14p13p12p11p10g9+ p15p14p13p12p11p10p9g8
 + p15p14p13p12p11p10p9p8c8

G0

P0 2-gate delays

3-gate delays



The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

c16  =  g15  + p15g14 + p15p14g13 + p15p14p13g12
 + p15p14p13p12g11 + p15p14p13p12p11g10
 + p15p14p13p12p11p10g9+ p15p14p13p12p11p10p9g8
 + p15p14p13p12p11p10p9p8c8

G1

P1 2-gate delays

3-gate delays
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The Hierarchical Carry Expression

c8  =  G0  + P0 c0

c16  =  G1  + P1 c8

 =  G1  + P1 G0 + P1 P0 c0

c24  = G2  + P2 G1 + P2 P1 G0 + P2 P1 P0 c0

c32  = G3  + P3 G2  + P3 P2 G1 + P3 P2 P1 G0+ P3 P2 P1 P0 c0

4-gate delays

5-gate delays

5-gate delays

5-gate delays
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x 31 24– y 31 24– 

c 24

[ Figure 3.17 from the textbook ]

A hierarchical carry-lookahead adder
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[ Figure 3.17 from the textbook ]

A hierarchical carry-lookahead adder

c8  =  G0  + P0 c0c16  = G1  + P1 G0 + P1 P0 c0c32 =G3+P3G2+P3P2G1 +P3 P2 P1 G0+P3 P2 P1 P0 c0



Total Gate Delay Through a 
Hierarchical Carry-Lookahead Adder 

• The total delay is 8 gates:

§ 3 to generate all Gi and Pi signals

§ +2 to generate c8, c16, c24, and c32

§ +2 to generate internal carries in the blocks

§ +1 to generate the sum bits (one extra XOR) 
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c1  =  g0  + p0 c0

2 more gate delays for the internal carries within a block



x 9 y 9 
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c 10 
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c9  =  g8  + p8 c8

2 more gate delays for the internal carries within a block
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C8   – 4 gate delays
C16 – 5 gate delays
C24 – 5 Gate delays
C32 – 5 Gate delays 

c8c16
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Total Gate Delay Through a 
Hierarchical Carry-Lookahead Adder 

• The total delay is 8 gates:

§ 3 to generate all Gi and Pi signals

§ +2 to generate c8, c16, c24, and c32

§ +2 to generate internal carries in the blocks

§ +1 to generate the sum bits (one extra XOR) 



Questions?



THE END


