
Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

CprE 281:
Digital Logic

Integer Subtraction,
Overflow Detection,

and Fast Adders

CprE 2810: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

• No HW is due next Monday

• HW 6 will is due on Monday Oct. 13 @ 10 pm.

Administrative Stuff

• Labs next week

• Mini-Project

• This is worth 3% of your grade (x2 labs)

• https://www.ece.iastate.edu/~alexs/classes/
 2025_Fall_2810/labs/Project-Mini/

Three Different Methods to
Represent Negative Integer Numbers

• Sign and magnitude

• 1’s complement

• 2’s complement

Three Different Methods to
Represent Negative Integer Numbers

• Sign and magnitude

• 1’s complement

• 2’s complement only this method is used
in modern computers

[Table 3.2 from the textbook]

Interpretation of four-bit signed integers

[Table 3.2 from the textbook]

Interpretation of four-bit signed integers

Note that each table includes both positive and negative integers.

2’s complement representation (4-bit)

The number circle for 2's complement

[Figure 3.11a from the textbook]

Addition of two numbers stored
in 2’s complement representation

There are four cases to consider

• (+5) + (+2)

• (-5) + (+2)

• (+5) + (-2)

• (-5) + (-2)

There are four cases to consider

• (+5) + (+2) positive plus positive

• (-5) + (+2) negative plus positive

• (+5) + (-2) positive plus negative

• (-5) + (-2) negative plus negative

Positive plus positive

[Figure 3.9 from the textbook]

+

0 1 1 1

0 1 0 1
0 0 1 0

5+()
2+()

7+()

+

Negative plus positive

+

1 1 0 1

1 0 1 1
0 0 1 02+()

5–()

3–()

+

[Figure 3.9 from the textbook]

Positive plus negative

+

0 0 1 1

0 1 0 1
1 1 1 0

1

ignore

5+()

3+()

+ 2–()

[Figure 3.9 from the textbook]

Negative plus negative

+

1 0 0 1

1 0 1 1
1 1 1 0

1

ignore

5–()

7–()

+ 2–()

[Figure 3.9 from the textbook]

Subtraction of two numbers stored
in 2’s complement representation

There are four cases to consider

a) positive minus positive

b) negative minus positive

c) positive minus negative

d) negative minus negative

There are four cases to consider

a) (+5) - (+2)

b) (-5) - (+2)

c) (+5) - (-2)

d) (-5) - (-2)

There are four cases to consider

a) (+5) - (+2) = (+5) + (-2)

b) (-5) - (+2) = (-5) + (-2)

c) (+5) - (-2) = (+5) + (+2)

d) (-5) - (-2) = (-5) + (+2)

There are four cases to consider

a) (+5) - (+2) = (+5) + (-2)

b) (-5) - (+2) = (-5) + (-2)

c) (+5) - (-2) = (+5) + (+2)

d) (-5) - (-2) = (-5) + (+2)

We can change subtraction into addition ...

There are four cases to consider

a) (+5) - (+2) = (+5) + (-2)

b) (-5) - (+2) = (-5) + (-2)

c) (+5) - (-2) = (+5) + (+2)

d) (-5) - (-2) = (-5) + (+2)

… if we negate the second number.

There are four cases to consider

a) (+5) - (+2) = (+5) + (-2)

b) (-5) - (+2) = (-5) + (-2)

c) (+5) - (-2) = (+5) + (+2)

d) (-5) - (-2) = (-5) + (+2)

These are the four addition cases
(arranged in a shuffled order)

Case a) Start with positive minus positive

–
0 1 0 1
0 0 1 0

5+()
2+()

3+()

–

[Figure 3.10 from the textbook]

Case a) Convert to positive plus negative

–
0 1 0 1
0 0 1 0

5+()
2+()

3+()

– +
0 1 0 1
1 1 1 0

[Figure 3.10 from the textbook]

means negate
Notice that the operation changes to addition.

Case a) Perform the addition and ignore that extra bit

–
0 1 0 1
0 0 1 0

5+()
2+()

3+()

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

[Figure 3.10 from the textbook]

5+()
2–()

3+()

+

[Figure 3.11 from the textbook]

Graphical interpretation of four-bit
2’s complement numbers

Case b) Start with negative minus positive

[Figure 3.10 from the textbook]

–
1 0 1 1
0 0 1 0–

5–()

7–()

2+()

case b) Convert to negative plus negative

[Figure 3.10 from the textbook]

–
1 0 1 1
0 0 1 0

1

ignore

+

1 0 0 1

1 0 1 1
1 1 1 0–

5–()

7–()

2+() +
5–()

7–()

2–()

Case c) Start with positive minus negative

–
0 1 0 1
1 1 1 0

5+()

7+()

– 2–()

[Figure 3.10 from the textbook]

Case c) Convert to positive plus positive

–
0 1 0 1
1 1 1 0 +

0 1 1 1

0 1 0 1
0 0 1 0

5+()

7+()

– 2–()

[Figure 3.10 from the textbook]

5+()

7+()

+ 2+ ()

Case d) Start with negative minus negative

–
1 0 1 1
1 1 1 0– 2–()

5–()

3–()

[Figure 3.10 from the textbook]

Case d) Convert to negative plus positive

–
1 0 1 1
1 1 1 0 +

1 1 0 1

1 0 1 1
0 0 1 0– 2–()

5–()

3–()

[Figure 3.10 from the textbook]

+ 2+()
5–()

3–()

Take Home Message

Take Home Message

• Subtraction can be performed by simply negating
the second number and adding it to the first,
regardless of the signs of the two numbers.

• Thus, the same adder circuit can be used to perform
both addition and subtraction !!!

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Adder / Subtractor

XOR Tricks

y

control
out

y

0
y

XOR as a repeater

y y

XOR as a repeater

y

1
y

XOR as an inverter

y

XOR as an inverter

y

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Addition: when control = 0

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Addition: when control = 0

0

000

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Addition: when control = 0

0

000

yn-1 y1 y0…

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Subtraction: when control = 1

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Subtraction: when control = 1

1

111

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Subtraction: when control = 1

1

111

yn-1 y1 y0…

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Subtraction: when control = 1

1

111

yn-1 y1 y0…

1

carry for the
first column!

Addition Examples:

all inputs and outputs are given in
2’s complement representation

0 1 0 1 1

x 0

c 5 5-bit adder c 0

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4

S
0

S
1

S
2

S
3

S
4

0

0

0 0 1 1 0

0 0 1 0 1

Addition: 5 + 6 = 11

0 1 0 1 1

x 0

c 5 5-bit adder c 0

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4

S
0

S
1

S
2

S
3

S
4

0

0

0 0 1 1 0

0 0 1 0 1

Addition: 5 + 6 = 11

0 1 0 1 1

x 0

c 5 5-bit adder c 0

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4

S
0

S
1

S
2

S
3

S
4

0

0

0 0 1 1 0

0 0 1 0 1

Addition: 5 + 6 = 11

0 1 0 1 1

x 0

c 5 5-bit adder c 0

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4

S
0

S
1

S
2

S
3

S
4

0

0

0 0 1 1 0

0 0 1 0 1

Addition: 5 + 6 = 11

0 0 1 1 0

0 1 0 1 1

x 0

c 5 5-bit adder c 0

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4

S
0

S
1

S
2

S
3

S
4

0

0

0 0 1 1 0

0 0 1 0 1

Addition: 5 + 6 = 11

0 0 1 1 0

0
 0 0 1 0 1
 0 0 1 1 0
0 0 1 0 1 1

+

1 1 1 0 1

x 0

c 5 5-bit adder c 0

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4

S
0

S
1

S
2

S
3

S
4

0

0

1 1 0 0 1

0 0 1 0 0

Addition: 4 + (-7) = -3

1 1 1 0 1

x 0

c 5 5-bit adder c 0

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4

S
0

S
1

S
2

S
3

S
4

0

0

1 1 0 0 1

0 0 1 0 0

Addition: 4 + (-7) = -3

1 1 0 0 1

1 1 1 0 1

x 0

c 5 5-bit adder c 0

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4

S
0

S
1

S
2

S
3

S
4

0

0

1 1 0 0 1

0 0 1 0 0

Addition: 4 + (-7) = -3

1 1 0 0 1

0
 0 0 1 0 0
 1 1 0 0 1
0 1 1 1 0 1

+

Subtraction Examples:

all inputs and outputs are given in
2’s complement representation

Subtraction: 7 - 3 = 4

0 0 1 0 0

x 0

c 5 5-bit adder c 0

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4

S
0

S
1

S
2

S
3

S
4

1

1

0 0 0 1 1

0 0 1 1 1

Subtraction: 7 - 3 = 4

0 0 1 0 0

x 0

c 5 5-bit adder c 0

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4

S
0

S
1

S
2

S
3

S
4

1

1

0 0 0 1 1

0 0 1 1 1

Subtraction: 7 - 3 = 4

0 0 1 0 0

x 0

c 5 5-bit adder c 0

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4

S
0

S
1

S
2

S
3

S
4

1

1

0 0 0 1 1

0 0 1 1 1

1 1 1 0 0

Subtraction: 7 - 3 = 4

0 0 1 0 0

x 0

c 5 5-bit adder c 0

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4

S
0

S
1

S
2

S
3

S
4

1

1

0 0 0 1 1

0 0 1 1 1

1 1 1 0 0

1
 0 0 1 1 1
 1 1 1 0 0
1 0 0 1 0 0

+

Subtraction: 7 - 3 = 4

0 0 1 0 0

x 0

c 5 5-bit adder c 0

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4

S
0

S
1

S
2

S
3

S
4

1

1

0 0 0 1 1

0 0 1 1 1

1 1 1 0 0

1
 0 0 1 1 1
 1 1 1 0 0
1 0 0 1 0 0

+

Ignore

Ignore

Analogy: Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100

= 82 + 35 + 1 - 100

= 118 - 100

9’s complement

= 82 + 36 - 100

= 18

// Add the first two.

// Just delete the leading 1.
// No need to subtract 100.

10’s complement

Subtraction: (–2) – (–5) = 3

0 0 0 1 1

x 0

c 5 5-bit adder c 0

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4

S
0

S
1

S
2

S
3

S
4

1

1

1 1 0 1 1

1 1 1 1 0

Subtraction: (–2) – (–5) = 3

0 0 0 1 1

x 0

c 5 5-bit adder c 0

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4

S
0

S
1

S
2

S
3

S
4

1

1

1 1 0 1 1

1 1 1 1 0

0 0 1 0 0

Subtraction: (–2) – (–5) = 3

0 0 0 1 1

x 0

c 5 5-bit adder c 0

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4

S
0

S
1

S
2

S
3

S
4

1

1

1 1 0 1 1

1 1 1 1 0

0 0 1 0 0

1
 1 1 1 1 0
 0 0 1 0 0
1 0 0 0 1 1

+

Subtraction: (–2) – (–5) = 3

0 0 0 1 1

x 0

c 5 5-bit adder c 0

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4

S
0

S
1

S
2

S
3

S
4

1

1

1 1 0 1 1

1 1 1 1 0

0 0 1 0 0

1
 1 1 1 1 0
 0 0 1 0 0
1 0 0 0 1 1

+

Ignore

Ignore

Detecting Overflow

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow

[Figure 3.13 from the textbook]

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow

[Figure 3.13 from the textbook]

In 2's complement, both +9 and -9 are not representable with 4 bits.

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Include the carry bits: c4 c3 c2 c1 c0

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Include the carry bits: c4 c3 c2 c1 c0

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Include the carry bits: c4 c3 c2 c1 c0

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Overflow occurs only in these two cases.

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=

Overflow = c3c4 + c3c4

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=

Overflow = c3c4 + c3c4

XOR

Calculating overflow for 4-bit numbers
with only three significant bits

Calculating overflow for n-bit numbers
with only n-1 significant bits

FA

x n – 1

c n c n 1

y n 1 –

s n 1 –

FA

x 1

c 2

y 1

s 1

FA
c 1

x 0 y 0

s 0

c 0

Detecting Overflow

-

FA

x n – 1

c n c n 1 -

y n 1 –

s n 1 –

FA

x 1

c 2

y 1

s 1

FA
c 1

x 0 y 0

s 0

c 0

Detecting Overflow
(with one extra XOR)

overflow

FA

x n – 1

c n c n 1

y n 1 –

s n 1 –

FA

x 1

c 2

y 1

s 1

FA
c 1

x 0 y 0

s 0

c 0

Detecting Overflow
(with one extra XOR)

overflow

-

This method detects overflow
for both addition and subtraction.

Detecting Overflow
(alternative method)

Used if you don’t have access to the internal carries of the adder.

FA

x n – 1

c n c n 1

y n 1 –

s n 1 –

FA

x 1

c 2

y 1

s 1

FA
c 1

x 0 y 0

s 0

c 0

Detecting Overflow
(with one extra XOR)

overflow

-

If the adder is implemented on a chip,
then this line is not available.

So the first method can’t be used.

X= x3 x2 x1 x0
Y= y3 y2 y1 y0

 S= s3 s2 s1 s0

+

Another way to look at the overflow issue

X= x3 x2 x1 x0
Y= y3 y2 y1 y0

 S= s3 s2 s1 s0

+

Another way to look at the overflow issue

If both numbers that we are adding have the same sign
but the sum does not, then we have an overflow.

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

In 2's complement, both +9 and -9 are not representable with 4 bits.

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

Overflow occurs only in these two cases.

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

Overflow = x3 y3 s3 + x3 y3 s3

X= x3 x2 x1 x0
Y= y3 y2 y1 y0

 S= s3 s2 s1 s0

+

Another way to look at the overflow issue

If both numbers that we are adding have the same sign
but the sum does not, then we have an overflow.

Overflow = x3 y3 s3 + x3 y3 s3

Overflow Detection

x 0

c 4 4-bit adder c 0

x 1 x 2 x 3 y 0 y 1 y 2 y 3

S 0
S

1 S
2

S
3

Add ⁄ Sub
control

Overflow Detection

x 0

c 4 4-bit adder c 0

x 1 x 2 x 3 y 0 y 1 y 2 y 3

S 0
S

1 S
2

S
3

overflow

Add ⁄ Sub
control

x3 y3 s3 + x3 y3 s3

Overflow Detection

x 0

c 4 4-bit adder c 0

x 1 x 2 x 3 y 0 y 1 y 2 y 3

S 0
S

1 S
2

S
3

overflow

Add ⁄ Sub
control

This must be taken after the XOR!

Overflow Detection

x 0

c 4 4-bit adder c 0

x 1 x 2 x 3 y 0 y 1 y 2 y 3

S 0
S

1 S
2

S
3

overflow

Add ⁄ Sub
control

This method also detects overflow
for both addition and subtraction.

x 0

c 5 5-bit adder c 0

x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 y 4

S 0
S 1

S
2

S 3
S 4

overflow
x4 y4 s4 + x4 y4 s4

Add ⁄ Sub
control

Overflow detection for a 5-bit adder

Overflow detection for a 4-bit adder

x 0

c 4 4-bit adder c 0

x 1 x 2 x 3 y 0 y 1 y 2 y 3

S 0
S

1 S
2

S
3

overflow

Add ⁄ Sub
control

x3 y3 s3 + x3 y3 s3

New Topic:

Fast Adders

A ripple-carry adder

FA

x n – 1

c n c n 1

y n 1 –

s n 1 –

FA

x 1

c 2

y 1

s 1

FA
c 1

x 0 y 0

s 0

c 0

How long does it take to compute all
sum bits and all carry bits?

–

HA
HAs

c

s
c

c i
x i
y i

c i 1 +

s i

c i

x i
y i

c i 1 +

s i

(a) Block diagram

(b) Detailed diagram

Delays through the modular
implementation of the full-adder circuit

[Figure 3.4 from the textbook]

HA
HAs

c

s
c

c i
x i
y i

c i 1 +

s i

c i

x i
y i

c i 1 +

s i

(a) Block diagram

(b) Detailed diagram

Delays through the modular
implementation of the full-adder circuit

[Figure 3.4 from the textbook]

2 gate delays through this route

HA
HAs

c

s
c

c i
x i
y i

c i 1 +

s i

c i

x i
y i

c i 1 +

s i

(a) Block diagram

(b) Detailed diagram

Delays through the modular
implementation of the full-adder circuit

[Figure 3.4 from the textbook]

3 gate delays in total

FA

x n – 1

c n c n 1

y n 1 –

s n 1 –

FA

x 1

c 2

y 1

s 1

FA
c 1

x 0 y 0

s 0

c 0

How long does it take to compute all
sum bits and all carry bits in this case?

–

It takes 3n gate delays?

Delays through the Full-Adder circuit

[Figure 3.3c from the textbook]

Delays through the Full-Adder circuit

[Figure 3.3c from the textbook]

1 gate delay through this route

Delays through the Full-Adder circuit

[Figure 3.3c from the textbook]

2 gate delays in total

FA

x n – 1

c n c n 1

y n 1 –

s n 1 –

FA

x 1

c 2

y 1

s 1

FA
c 1

x 0 y 0

s 0

c 0

How long does it take to compute all
sum bits and all carry bits?

–

It takes 2n gate delays?

Can we perform addition even faster?

The goal is to evaluate very fast if the carry from the
previous stage will be equal to 0 or 1.

Can we perform addition even faster?

The goal is to evaluate very fast if the carry from the
previous stage will be equal to 0 or 1.

To accomplish this goal we will have to redesign the
full-adder circuit yet again.

The Full-Adder Circuit

[Figure 3.3c from the textbook]

The Full-Adder Circuit

[Figure 3.3c from the textbook]

Let's take a closer look at this.

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi)ci

Decomposing the Carry Expression

yi

xi

ci+1

ci

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi)ci

Another Way to Draw the Full-Adder Circuit

yi

xi

ci

ci+1

si

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi)ci

Another Way to Draw the Full-Adder Circuit

ci+1 = xi yi + (xi + yi)ci

yi

xi

ci

ci+1

si

Another Way to Draw the Full-Adder Circuit

ci+1 = xi yi + (xi + yi)ci

gi pi

yi

xi

ci

ci+1

si

Another Way to Draw the Full-Adder Circuit

ci+1 = xi yi + (xi + yi)ci

gi pi

g - generate p - propagate

yi

xi

ci

ci+1

si

gi

pi

Yet Another Way to Draw It (Just Rotate It)

ci

ci+1 si

xi yi

pigi

x 1 y 1

g 1 p 1

s 1

Stage 1

x 0 y 0

g 0 p 0

s 0

Stage 0

c 0
c 1 c 2

Now we can Build a Ripple-Carry Adder

[Figure 3.14 from the textbook]

x 1 y 1

g 1 p 1

s 1

Stage 1

x 0 y 0

g 0 p 0

s 0

Stage 0

c 0
c 1 c 2

Now we can Build a Ripple-Carry Adder

[Figure 3.14 from the textbook]

x 1 y 1

g 1 p 1

s 1

Stage 1

x 0 y 0

g 0 p 0

s 0

Stage 0

c 0
c 1 c 2

2-bit ripple-carry adder: 5 gate delays (1+2+2)

x 1 y 1

g 1 p 1

s 1

Stage 1

x 0 y 0

g 0 p 0

s 0

Stage 0

c 0
c 1 c 2

n-bit ripple-carry adder: 2n+1 gate delays

. . .

n-bit Ripple-Carry Adder

• It takes 1 gate delay to generate all gi and pi signals

• +2 more gate delays to generate carry 1

• +2 more gate delay to generate carry 2

 …

• +2 more gate delay to generate carry n

• Thus, the total delay through an
 n-bit ripple-carry adder is 2n+1 gate delays!

n-bit Ripple-Carry Adder

• It takes 1 gate delay to generate all gi and pi signals

• +2 more gate delays to generate carry 1

• +2 more gate delay to generate carry 2

 …

• +2 more gate delay to generate carry n

• Thus, the total delay through an
 n-bit ripple-carry adder is 2n+1 gate delays!

This is slower by 1 than the original design?!

A carry-lookahead adder

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi)ci

gi pi

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi)ci

gi pi
(1 gate delay) (1 gate delay)

x 1 y 1

g 1 p 1

s 1

Stage 1

x 0 y 0

g 0 p 0

s 0

Stage 0

c 0
c 1 c 2

It takes 1 gate delay to compute all pi signals

[Figure 3.14 from the textbook]

x 1 y 1

g 1 p 1

s 1

Stage 1

x 0 y 0

g 0 p 0

s 0

Stage 0

c 0
c 1 c 2

It takes 1 gate delay to compute all gi signals

[Figure 3.14 from the textbook]

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi)ci

gi pi

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi)ci

gi pi

ci+1 = gi + pi ci

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi)ci

gi pi

ci+1 = gi + pi ci

ci+1 = gi + pi (gi-1 + pi-1 ci-1)
ci

recursive
expansion of

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi)ci

gi pi

ci+1 = gi + pi ci

ci+1 = gi + pi (gi-1 + pi-1 ci-1)

ci+1 = gi + pi gi-1 + pi pi-1 ci-1

Expanding the Carry Expression for C3

ci+1 = gi + pi ci

= g2 + p2g1 + p2p1g0 + p2p1p0c0

c3 = g2 + p2 c2

= g2 + p2 (g1 + p1 c1)
= g2 + p2 g1 + p2 p1 c1

= g2 + p2 g1 + p2 p1 (g0 + p0 c0)

Carry for the first three stages

c1 = g0 + p0 c0

c2 = g1 + p1g0 + p1p0c0

c3 = g2 + p2g1 + p2p1g0 + p2p1p0c0

x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

c 2

x 0 y 0

c 0

c 1

g 0 p 0

[Figure 3.15 from the textbook]

Now we can Build a Carry-Lookahead Adder

x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

c 2

x 0 y 0

c 0

c 1

g 0 p 0

The first two stages of a carry-lookahead adder

[Figure 3.15 from the textbook]

. . .
Stage 0Stage 1

c1 = g0 + p0 c0

Carry for the first stage

x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

c 2

x 0 y 0

c 0

c 1

g 0 p 0

c1 = g0 + p0 c0

Carry for the first stage

Carry for the second stage

c2 = g1 + p1g0 + p1p0c0

x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

c 2

x 0 y 0

c 0

c 1

g 0 p 0

c2 = g1 + p1g0 + p1p0c0

Carry for the second stage

Carry for the first two stages

c1 = g0 + p0 c0

c2 = g1 + p1g0 + p1p0c0

Carry for the first two stages

c1 = g0 + p0 c0

c2 = g1 + p1g0 + p1p0c0

Carry for the first two stages

c1 = g0 + p0 c0

c2 = g1 + p1g0 + p1p0c0

= g1 + p1 (g0 + p0c0)
c1

Carry for the first two stages

c1 = g0 + p0 c0

c2 = g1 + p1g0 + p1p0c0

= g1 + p1 (g0 + p0c0)

= g1 + p1 c1
c1

x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

c 2

x 0 y 0

c 0

c 1

g 0 p 0

The first two stages of a carry-lookahead adder

[Figure 3.15 from the textbook]

x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

c 2

x 0 y 0

c 0

c 1

g 0 p 0

It takes 3 gate delays to generate c1

c1 = g0 + p0 c0

x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

c 2

x 0 y 0

c 0

c 1

g 0 p 0

It takes 3 gate delays to generate c2

c2 = g1 + p1g0 + p1p0c0

x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

x 0 y 0

c 0

c 1

g 0 p 0

The first two stages of a carry-lookahead adder

2 c

x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

x 0 y 0

c 0

c 1

g 0 p 0

It takes 4 gate delays to generate s1

2 c

It takes 4 gate delays to generate s2
x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

c 2

x 0 y 0

c 0

c 1

g 0 p 0

s 2

N-bit Carry-Lookahead Adder
• It takes 1 gate delay to generate all gi and pi signals

• It takes 2 more gate delays to generate all carry signals

• It takes 1 more gate delay to generate all sum bits

• Thus, the total delay through an
 n-bit carry-lookahead adder is only 4 gate delays!

N-bit Carry-Lookahead Adder
• It takes 1 gate delay to generate all gi and pi signals

• It takes 2 more gate delays to generate all carry signals

• It takes 1 more gate delay to generate all sum bits

• Thus, the total delay through an
 n-bit carry-lookahead adder is only 4 gate delays!

Expanding the Carry Expression

c1 = g0 + p0 c0

c2 = g1 + p1g0 + p1p0c0

ci+1 = gi + pi ci

c3 = g2 + p2g1 + p2p1g0 + p2p1p0c0

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

. . .

Expanding the Carry Expression

c1 = g0 + p0 c0

c2 = g1 + p1g0 + p1p0c0

ci+1 = gi + pi ci

c3 = g2 + p2g1 + p2p1g0 + p2p1p0c0

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

. . .

Even this takes
only 3 gate delays

A hierarchical carry-lookahead adder
with ripple-carry between blocks

Block

x31 24–

c32
c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c03
Block

1
Block

0

A hierarchical carry-lookahead adder with
ripple-carry between blocks

x23 16– y23 16–

s23 16–

Block
2

Block

x31 24–

c32
c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c03
Block

1
Block

0

A hierarchical carry-lookahead adder with
ripple-carry between blocks

x23 16– y23 16–

s23 16–

Block
2

x31 24–

c32
c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c0

A hierarchical carry-lookahead adder with
ripple-carry between blocks

x23 16– y23 16–

s23 16–

A hierarchical carry-lookahead adder

Block

x31 24–

c32 c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c03
Block

1
Block

0

A hierarchical carry-lookahead adder with
ripple-carry between blocks

[Figure 3.16 from the textbook]

Block

x 15 8 – y 15 8 – x 7 0 – y 7 0 –

3
Block

1
Block

0

Second-level lookahead

c 0

s 7 0 –

P 0 G 0 P 1 G 1 P 3 G 3

s 15 8 – s 31 24–

c 8 c 16c 32

x 31 24– y 31 24–

c 24

[Figure 3.17 from the textbook]

A hierarchical carry-lookahead adder

Block

x 15 8 – y 15 8 – x 7 0 – y 7 0 –

3
Block

1
Block

0

Second-level lookahead

c 0

s 7 0 –

P 0 G 0 P 1 G 1 P 3 G 3

s 15 8 – s 31 24–

c 8 c 16c 32

x 31 24– y 31 24–

c 24

A hierarchical carry-lookahead adder

c 32

Block

x 15 8 – y 15 8 – x 7 0 – y 7 0 –

3
Block

1
Block

0

Second-level lookahead

c 0

s 7 0 –

P 0 G 0 P 1 G 1 P 3 G 3

s 15 8 – s 31 24–

c 8 c 16c 32

x 31 24– y 31 24–

c 24

A hierarchical carry-lookahead adder

c 32

Block

x 15 8 – y 15 8 – x 7 0 – y 7 0 –

3
Block

1
Block

0

Second-level lookahead

c 0

s 7 0 –

P 0 G 0 P 1 G 1 P 3 G 3

s 15 8 – s 31 24–

c 8 c 16c 32

x 31 24– y 31 24–

c 24

A hierarchical carry-lookahead adder

? ? ?

c 32

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

G0

P0

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

G0

P0

c8 = G0 + P0 c0

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

G0

P0

c8 = G0 + P0 c0

2-gate delays

3-gate delays

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

G0

P0

c8 = G0 + P0 c0

2-gate delays

3-gate delays

2-gate
delays

3-gate
delays

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

G0

P0

c8 = G0 + P0 c0

2-gate delays

3-gate delays

3-gate
delays

3-gate
delays

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

G0

P0

c8 = G0 + P0 c0

2-gate delays

3-gate delays

4-gate
delays

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

c16 = g15 + p15g14 + p15p14g13 + p15p14p13g12
 + p15p14p13p12g11 + p15p14p13p12p11g10
 + p15p14p13p12p11p10g9+ p15p14p13p12p11p10p9g8
 + p15p14p13p12p11p10p9p8c8

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

c16 = g15 + p15g14 + p15p14g13 + p15p14p13g12
 + p15p14p13p12g11 + p15p14p13p12p11g10
 + p15p14p13p12p11p10g9+ p15p14p13p12p11p10p9g8
 + p15p14p13p12p11p10p9p8c8

The same expression, just add 8 to all subscripts

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

c16 = g15 + p15g14 + p15p14g13 + p15p14p13g12
 + p15p14p13p12g11 + p15p14p13p12p11g10
 + p15p14p13p12p11p10g9+ p15p14p13p12p11p10p9g8
 + p15p14p13p12p11p10p9p8c8

G0

P0 2-gate delays

3-gate delays

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

c16 = g15 + p15g14 + p15p14g13 + p15p14p13g12
 + p15p14p13p12g11 + p15p14p13p12p11g10
 + p15p14p13p12p11p10g9+ p15p14p13p12p11p10p9g8
 + p15p14p13p12p11p10p9p8c8

G1

P1 2-gate delays

3-gate delays

The Hierarchical Carry Expression

c8 = G0 + P0 c0

The Hierarchical Carry Expression

c8 = G0 + P0 c0
3-gate delays

The Hierarchical Carry Expression

c8 = G0 + P0 c0
2-gate delays

The Hierarchical Carry Expression

c8 = G0 + P0 c0
3-gate delays

The Hierarchical Carry Expression

c8 = G0 + P0 c0

4-gate delays

The Hierarchical Carry Expression

c8 = G0 + P0 c0

c16 = G1 + P1 c8

 = G1 + P1 G0 + P1 P0 c0

The Hierarchical Carry Expression

c8 = G0 + P0 c0

c16 = G1 + P1 c8

 = G1 + P1 G0 + P1 P0 c0

3-gate delays

3-gate delays

The Hierarchical Carry Expression

c8 = G0 + P0 c0

c16 = G1 + P1 c8

 = G1 + P1 G0 + P1 P0 c0

3-gate delays

3-gate delays

The Hierarchical Carry Expression

c8 = G0 + P0 c0

c16 = G1 + P1 c8

 = G1 + P1 G0 + P1 P0 c0

3-gate delays

The Hierarchical Carry Expression

c8 = G0 + P0 c0

c16 = G1 + P1 c8

 = G1 + P1 G0 + P1 P0 c0

2-gate delays

The Hierarchical Carry Expression

c8 = G0 + P0 c0

c16 = G1 + P1 c8

 = G1 + P1 G0 + P1 P0 c0
4-gate delays

The Hierarchical Carry Expression

c8 = G0 + P0 c0

c16 = G1 + P1 c8

 = G1 + P1 G0 + P1 P0 c0
2-gate delays

The Hierarchical Carry Expression

c8 = G0 + P0 c0

c16 = G1 + P1 c8

 = G1 + P1 G0 + P1 P0 c0
2-gate delays

The Hierarchical Carry Expression

c8 = G0 + P0 c0

c16 = G1 + P1 c8

 = G1 + P1 G0 + P1 P0 c0
3-gate delays

The Hierarchical Carry Expression

c8 = G0 + P0 c0

c16 = G1 + P1 c8

 = G1 + P1 G0 + P1 P0 c0

5-gate delays

The Hierarchical Carry Expression

c8 = G0 + P0 c0

c16 = G1 + P1 c8

 = G1 + P1 G0 + P1 P0 c0

c24 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 c0

c32 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0+ P3 P2 P1 P0 c0

The Hierarchical Carry Expression

c8 = G0 + P0 c0

c16 = G1 + P1 c8

 = G1 + P1 G0 + P1 P0 c0

c24 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 c0

c32 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0+ P3 P2 P1 P0 c0

4-gate delays

5-gate delays

5-gate delays

5-gate delays

Block

x 15 8 – y 15 8 – x 7 0 – y 7 0 –

3
Block

1
Block

0

Second-level lookahead

c 0

s 7 0 –

P 0 G 0 P 1 G 1 P 3 G 3

s 15 8 – s 31 24–

c 8 c 16c 32

x 31 24– y 31 24–

c 24

[Figure 3.17 from the textbook]

A hierarchical carry-lookahead adder

Block

x 15 8 – y 15 8 – x 7 0 – y 7 0 –

3
Block

1
Block

0

Second-level lookahead

c 0

s 7 0 –

P 0 G 0 P 1 G 1 P 3 G 3

s 15 8 – s 31 24–

c 8 c 16c 32

x 31 24– y 31 24–

c 24

[Figure 3.17 from the textbook]

A hierarchical carry-lookahead adder

c8 = G0 + P0 c0c16 = G1 + P1 G0 + P1 P0 c0c32 =G3+P3G2+P3P2G1 +P3 P2 P1 G0+P3 P2 P1 P0 c0

Total Gate Delay Through a
Hierarchical Carry-Lookahead Adder

• The total delay is 8 gates:

§ 3 to generate all Gi and Pi signals

§ +2 to generate c8, c16, c24, and c32

§ +2 to generate internal carries in the blocks

§ +1 to generate the sum bits (one extra XOR)

Total Gate Delay Through a
Hierarchical Carry-Lookahead Adder

• The total delay is 8 gates:

§ 3 to generate all Gi and Pi signals

§ +2 to generate c8, c16, c24, and c32

§ +2 to generate internal carries in the blocks

§ +1 to generate the sum bits (one extra XOR)

x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

c 2

x 0 y 0

c 0

c 1

g 0 p 0

c1 = g0 + p0 c0

2 more gate delays for the internal carries within a block

x 9 y 9

g 9 p 9

s 1

x 0 y 0

s 0

c 10

x 8 y 8

c 8

c 9

g 8 p 8

c9 = g8 + p8 c8

2 more gate delays for the internal carries within a block

g 7
p 7 g 6

x 7 y 7 x
6 y 6

p 7
p 6

g 5

p 7
p 6

p 5
g 4

p 7
g 6

p 7
p 6

p 5
p 4

g 3
p 7

p 6
p 5

p 4
p 3

g 2
p 7

p 6
p 5

p 4
p 3

p 2
g 1

p 7
p 6

p 5
p 4

p 3
p 2

p 1
g 0

G
0 P

0
c 0

c 0P
0

c 8

Block 1

G
0

c 0P
0

Block 2

c 1
6

P
1

P
1
P

0
c 0

P
1

P
1
G

0

G
1

SECOND
LEVEL

HIERARCHY

p9

g9

c9

Block 2

p17

g17

c17

Block 3

p0

g0

c1

Block 1

c0

FIRST LEVEL HIERARCHY

Hierarchical Carry-
Lookahead Adder

(Carry Logic)

C8 – 4 gate delays
C16 – 5 gate delays
C24 – 5 Gate delays
C32 – 5 Gate delays

c8c16

g 7
p 7 g 6

x 7 y 7 x
6 y 6

p 7
p 6

g 5

p 7
p 6

p 5
g 4

p 7
g 6

p 7
p 6

p 5
p 4

g 3
p 7

p 6
p 5

p 4
p 3

g 2
p 7

p 6
p 5

p 4
p 3

p 2
g 1

p 7
p 6

p 5
p 4

p 3
p 2

p 1
g 0

G
0 P

0
c 0

c 0P
0

c 8

Block 1

G
0

c 0P
0

Block 2

c 1
6

P
1

P
1
P

0
c 0

P
1

P
1
G

0

G
1

SECOND
LEVEL

HIERARCHY

p9

g9

c9

Block 2

p17

g17

c17

Block 3

p0

g0

c1

Block 1

c0

FIRST LEVEL HIERARCHY

C1 - 3 gate delays
C9 – 6 gate delays
C17 – 7 gate delays
C25 – 7 Gate delays

c17 c9 c1

c8c16

Hierarchical Carry-
Lookahead Adder

(Critical Path)

Total Gate Delay Through a
Hierarchical Carry-Lookahead Adder

• The total delay is 8 gates:

§ 3 to generate all Gi and Pi signals

§ +2 to generate c8, c16, c24, and c32

§ +2 to generate internal carries in the blocks

§ +1 to generate the sum bits (one extra XOR)

Questions?

THE END

