

CprE 2810: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Signed Numbers

CprE 2810: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Signed Integer Numbers

CprE 2810: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Today's Lecture is About Addition and Subtraction of Signed Numbers

Quick Review

Addition of 1-bit Unsigned Numbers

Addition of two 1-bit numbers (there are four possible cases)

Addition of two 1-bit numbers (there are four possible cases)

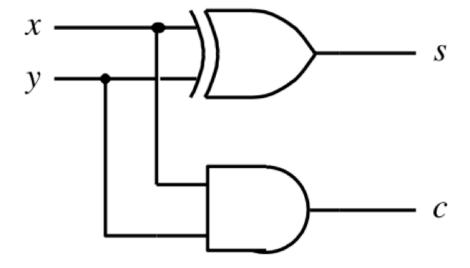
Adding two bits (the truth table)

x y	Carry c	Sum s
0 0 0 1 1 0	0 0 0	0 1 1
1 1	1	0

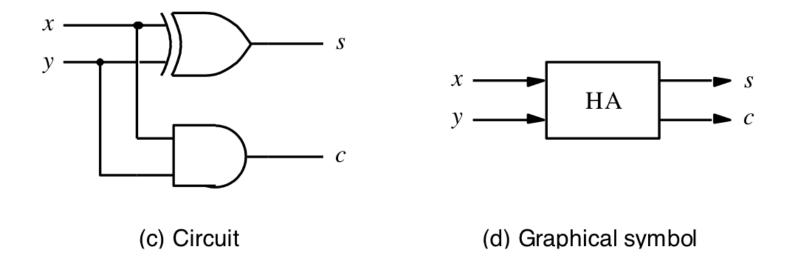
Adding two bits (the truth table)

	Carry	Sum
x y	С	S
0 + 0	= 0	$0 = 0_{10}$
0 + 1	= 0	$1 = 1_{10}$
1 + 0	= 0	$1 = 1_{10}$
1 + 1	= 1	$0 = 2_{10}$

Adding two bits (the logic circuit)



The Half-Adder



carry	0	1	1	0	
	L	3	8	9	
	Г	1	5	7	
		5	4	6	

Another example in base 10

Another example in base 10

carry	1	0	1	0	
	<u>.</u>	9	3	8	
	Т	2	1	4	
		1	5	2	

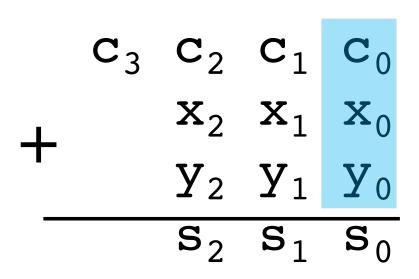
Example in base 2

Example in base 2

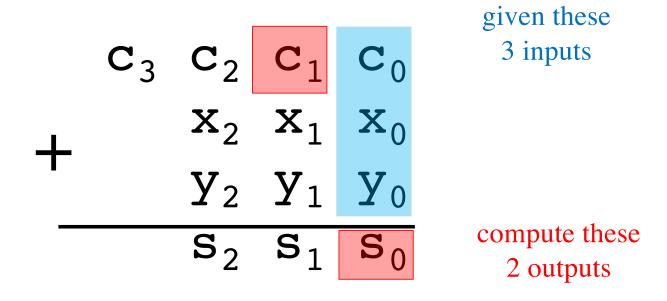
carry		1	0	0	0	
			1	0	1	
	Т		1	1	0	
	_	1	0	1	1	

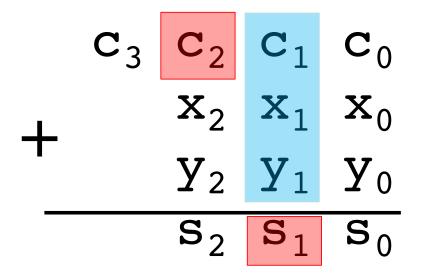
Example in base 2

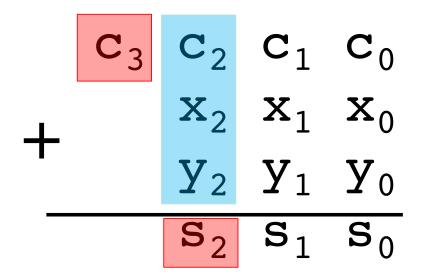
carry		1	0	0	0	
			1	0	1	5 ₁₀
	Т		1	1	0	+ 6 ₁₀
		1	0	1	1	11 ₁₀



given these 3 inputs







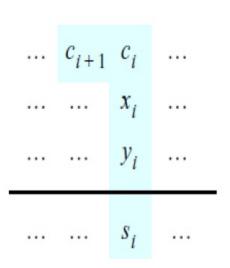
Problem Statement and Truth Table

 c_{i+1}	c_{i}	
 	x_i	
 	y_i	
 	s_i	

Bit position i

$0 \ 0 \ 0 \ 0 \ 0$	
0 0 1 0 1	
0 1 0 0 1	
0 1 1 1 0	
1 0 0 0 1	
1 0 1 1 0	
1 1 0 1 0	
1 1 1 1 1	

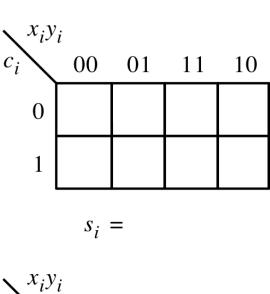
Problem Statement and Truth Table

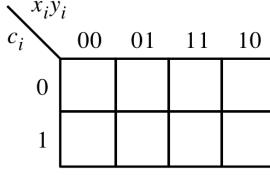


$c_i x_i y_i$	c_{i+1}	s_i	
0+0+0 0+0+1 0+1+0 0+1+1 1+0+0 1+0+1 1+1+0	= 0 $= 0$ $= 0$ $= 1$ $= 1$ $= 1$	0 1 1 0 1 0	$= 0_{10}$ $= 1_{10}$ $= 1_{10}$ $= 2_{10}$ $= 2_{10}$ $= 2_{10}$
1+1+1	= 1		$=3_{10}$

Let's fill-in the two K-maps

c_{i}	x_i	y_i	c_{i+1}	s_i
0	0	0 1	0 0	0 1
0	1	0	0 0 1	1 1 0
0	1 0	1 0	0	1
1		1 0	1	0
1	1	1	1	1



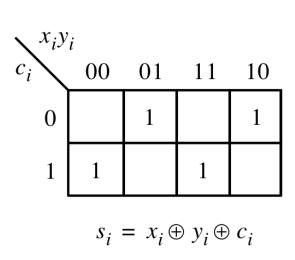


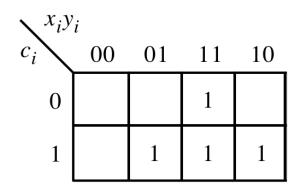
$$c_{i+1} =$$

[Figure 3.3a-b from the textbook]

Let's fill-in the two K-maps

c_{i}	x_i	y_i	c_{i+1}	s_i
0 0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1 0	0 0 0 1 0 1	0 1 1 0 1 0 0
1	1	1	1	1

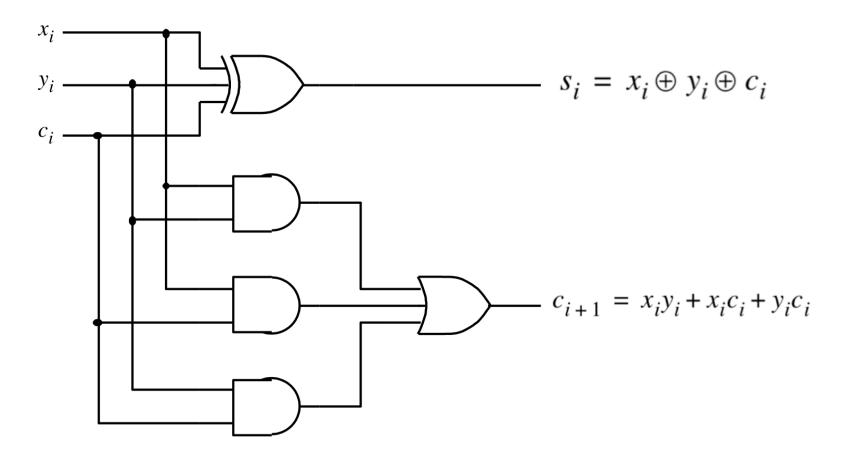




$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

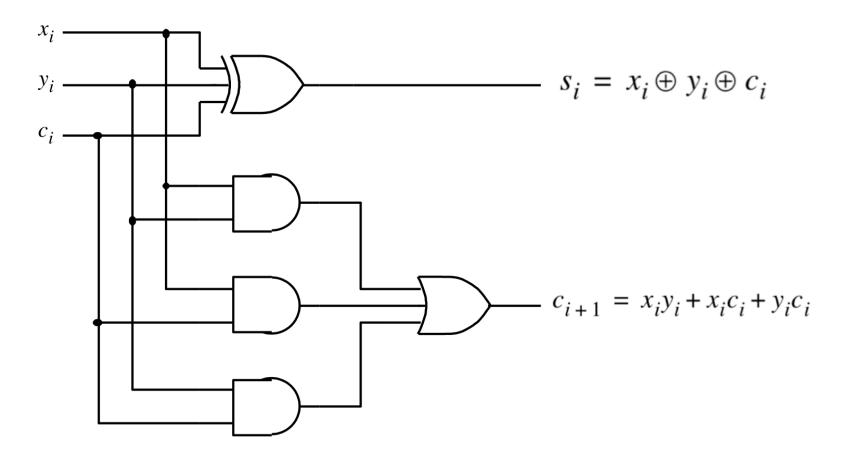
[Figure 3.3a-b from the textbook]

The circuit for the two expressions



[Figure 3.3c from the textbook]

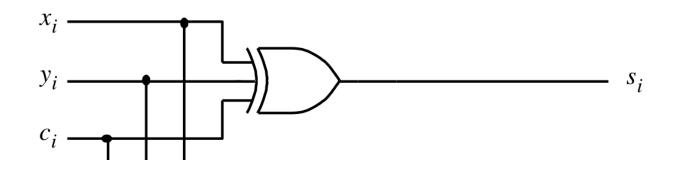
This is called the Full-Adder

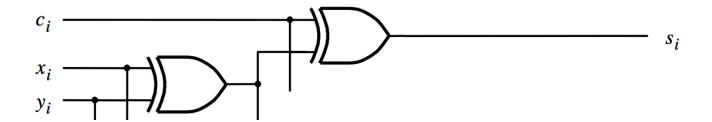


[Figure 3.3c from the textbook]

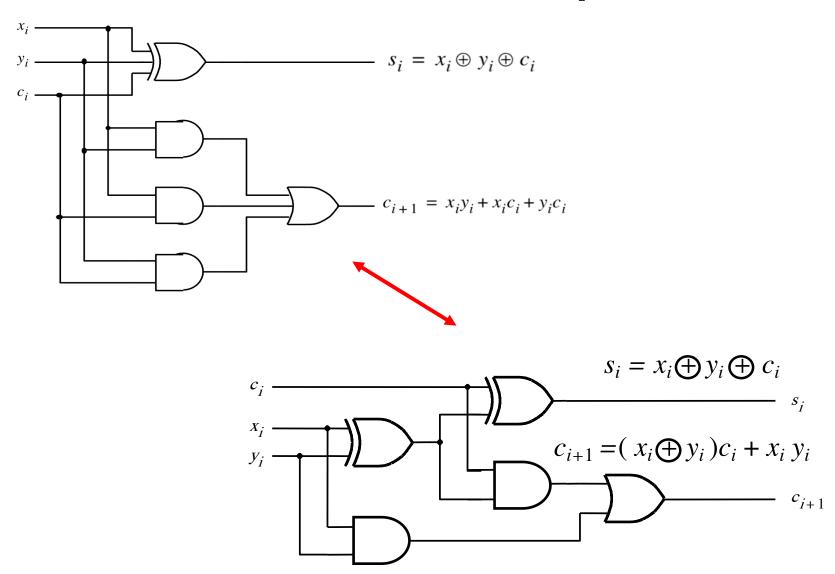
XOR Magic (s_i can be implemented in two different ways)

$$s_i = x_i \oplus y_i \oplus c_i$$

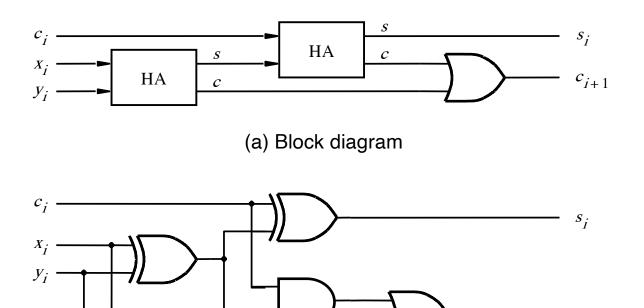




These two circuits are equivalent



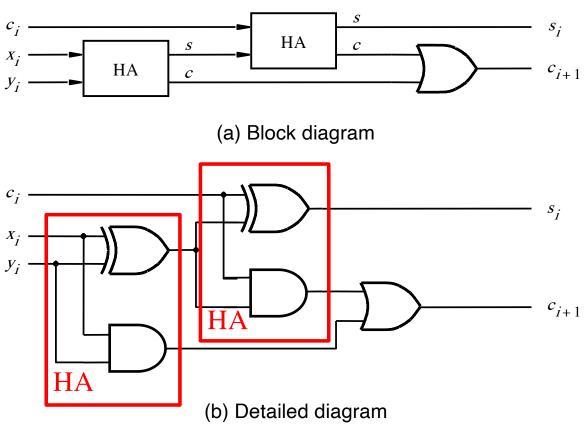
A decomposed implementation of the full-adder circuit



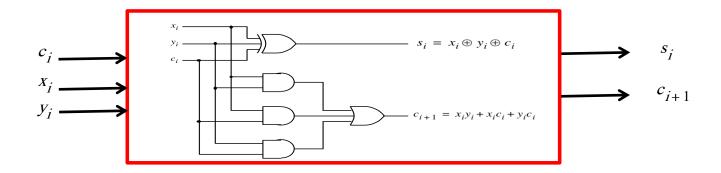
(b) Detailed diagram

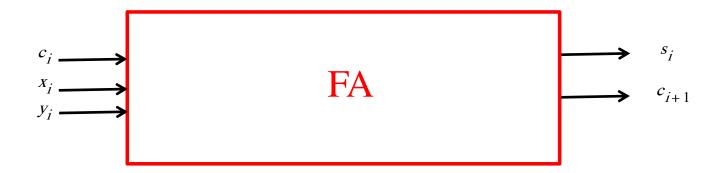
[Figure 3.4 from the textbook]

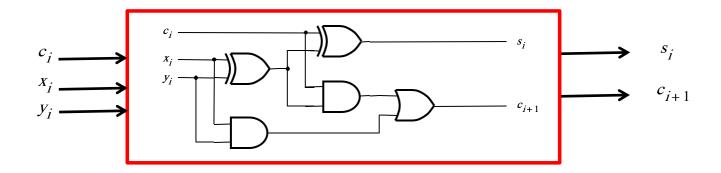
A decomposed implementation of the full-adder circuit

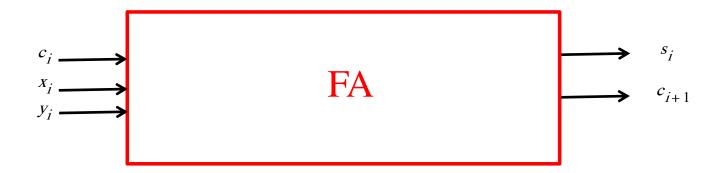


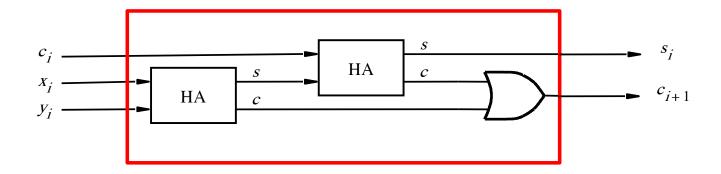
[Figure 3.4 from the textbook]

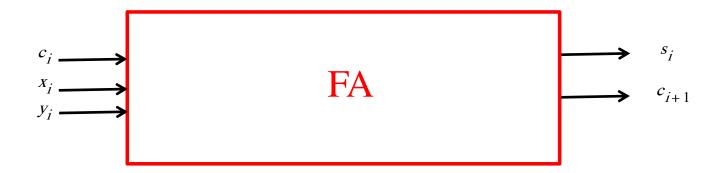




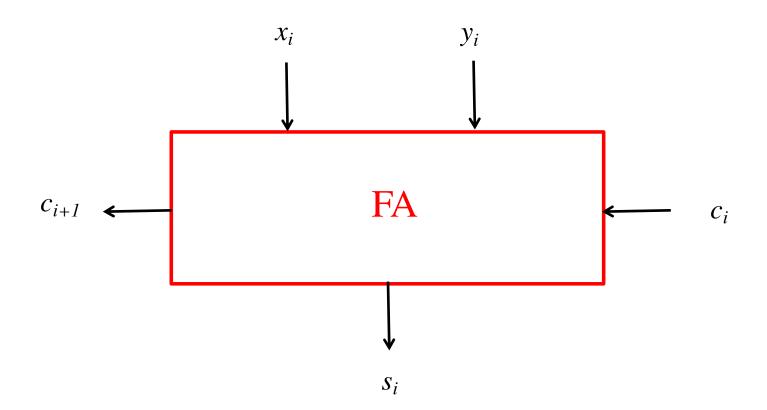




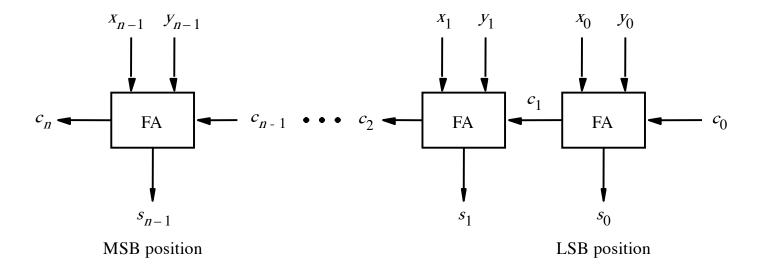




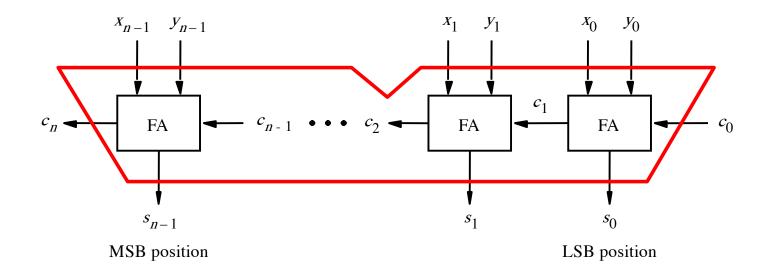
We can place the arrows anywhere



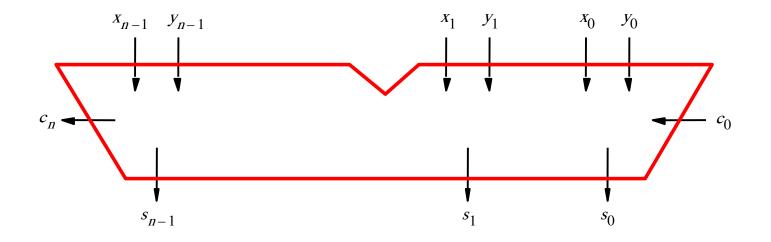
n-bit ripple-carry adder



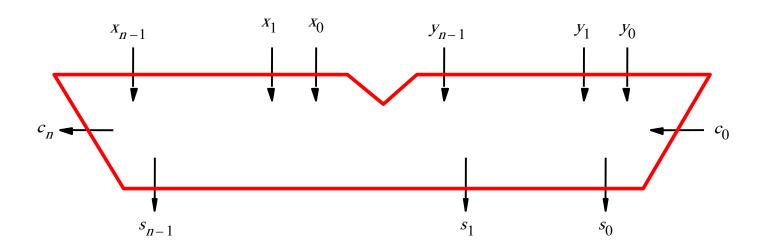
n-bit ripple-carry adder abstraction



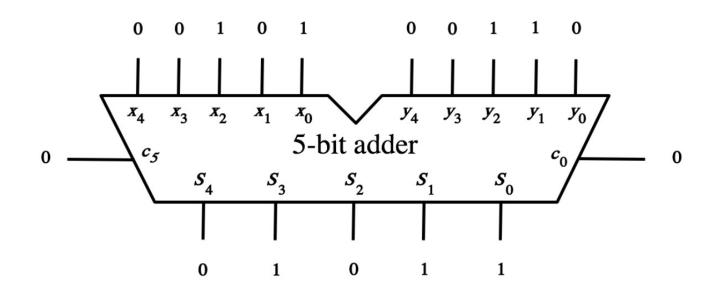
n-bit ripple-carry adder abstraction



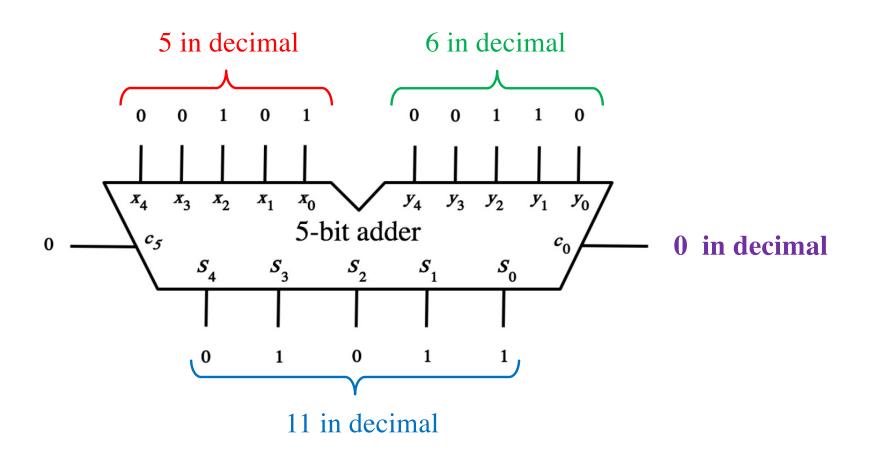
The x and y lines are typically grouped together for better visualization, but the underlying logic remains the same



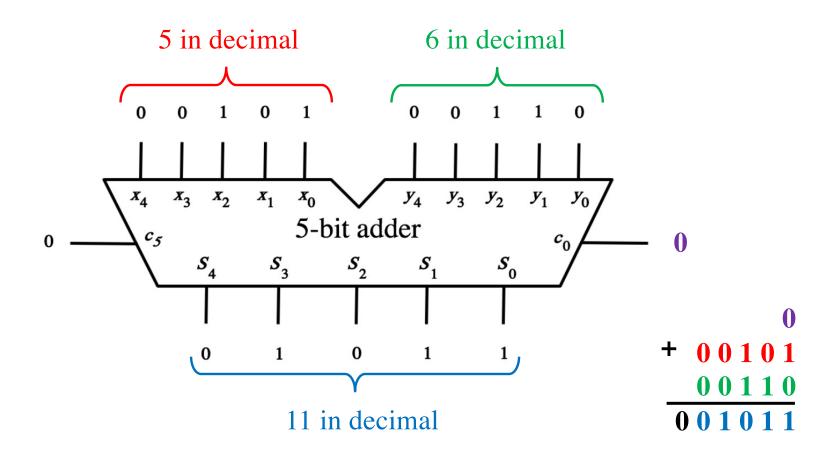
Example: Computing 5+6 using a 5-bit adder



Example: Computing 5+6 using a 5-bit adder



Example: Computing 5+6 using a 5-bit adder



Math Review

The problems in which row are easier to calculate?

$$-\frac{82}{61}$$

$$-\frac{48}{26}$$

$$-\frac{32}{11}$$

$$-\frac{82}{64}$$

$$-\frac{32}{13}$$

The problems in which row are easier to calculate?

$$-\frac{82}{61}$$

$$\frac{21}{21}$$

$$-\frac{48}{26}$$

$$-\frac{32}{11}$$

$$-\frac{21}{21}$$

Why?

$$82 - 64 = 82 + 100 - 100 - 64$$

$$82 - 64 = 82 + 100 - 100 - 64$$

$$= 82 + (100 - 64) - 100$$

$$82 - 64 = 82 + 100 - 100 - 64$$

$$= 82 + (100 - 64) - 100$$

$$= 82 + (99 + 1 - 64) - 100$$

$$82 - 64 = 82 + 100 - 100 - 64$$

$$= 82 + (100 - 64) - 100$$

$$= 82 + (99 + 1 - 64) - 100$$

$$= 82 + (99 - 64) + 1 - 100$$

$$82 - 64 = 82 + 100 - 100 - 64$$

$$= 82 + (100 - 64) - 100$$

$$= 82 + (99 + 1 - 64) - 100$$

Does not require borrows

$$= 82 + (99 - 64) + 1 - 100$$

9's Complement (subtract each digit from 9)

10's Complement

(subtract each digit from 9 and add 1 to the result)

$$-\frac{99}{64} - \frac{35 + 1}{35 + 1} = 36$$

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

9's complement

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

9's complement

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

= $82 + 35 + 1 - 100$

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

$$= 82 + 35 + 1 - 100$$

$$82 - 64 = 82 + 99 - 64) + 1 - 100$$

$$= 82 + 35 + 1) - 100$$

$$= 82 + 36 - 100$$

$$82 - 64 = 82 + 99 - 64 + 1 - 100$$

$$= 82 + 35 + 1 - 100$$

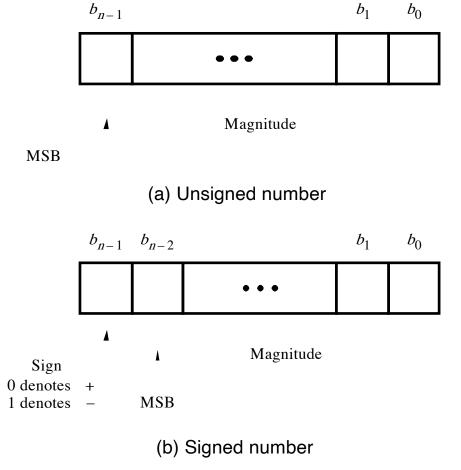
$$= 82 + 36 - 100$$
// Add the first two.
$$= 118 - 100$$

$$82 - 64 = 82 + 99 - 64 + 1 - 100$$

$$= 82 + 35 + 1 - 100$$

$$= 82 + 36 - 100$$
// Add the first two.
$$= 018 - 100$$
// Just delete the leading 1.
// No need to subtract 100.
$$= 18$$

Formats for representation of integers



[Figure 3.7 from the textbook]

Unsigned Representation

							2^0
0	O	1	0	1	1	0	0

This represents +44.

Unsigned Representation

_	_	_	_	_	_	_	2^0
1	0	1	0	1	1	0	0

This represents + 172.

Three Different Methods to Represent Negative Integer Numbers

- Sign and magnitude
- 1's complement
- 2's complement

Three Different Methods to Represent Negative Integer Numbers

- Sign and magnitude
- 1's complement
- 2's complement

only this method is used in modern computers

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement		
0111	+7	+7	+7		
0110	+6	+6	+6		
0101	+5	+5	+5		
0100	+4	+4	+4		
0011	+3	+3	+3		
0010	+2	+2	+2		
0001	+1	+1	+1		
0000	+0	+0	+0		
1000	-0	-7	-8		
1001	-1	-6	-7		
1010	-2	-5	-6		
1011	-3	-4	-5		
1100	-4	-3	-4		
1101	-5	-2	-3		
1110	-6	-1	-2		
1111	-7	-0	-1		

The top half is the same in all three representations. It corresponds to the positive integers.

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement	
0111	+7	+7	+7	
0110	+6	+6	+6	
0101	+5	+5	+5	
0100	+4	+4	+4	
0011	+3	+3	+3	
0010	+2	+2	+2	
0001	+1	+1	+1	
0000	+0	+0	+0	
1000	-0	-7	-8	
1001	-1	-6	-7	
1010	-2	-5	-6	
1011	-3	-4	-5	
1100	-4	-3	-4	
1101	-5	-2	-3	
1110	-6	-1	-2	
1111	-7	-0	-1	

In all three representations the first bit represents the sign.

If that bit is 1, then the number is negative.

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	_+1_	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	$\overline{-1}$	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

Notice that in this representation there are two zeros!

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	_1	-2
1111	-7	-0	-1

There are two zeros in this representation as well!

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

In this representation there is one more negative number.

Method #1:

Sign and Magnitude Representation

Sign and Magnitude Representation (using the left-most bit as the sign)

sign	2^6	25	24	2^4 2^3 2^2 2^1 2^2		2^3 2^2 2^1	
0	0	1	0	1	1	0	0

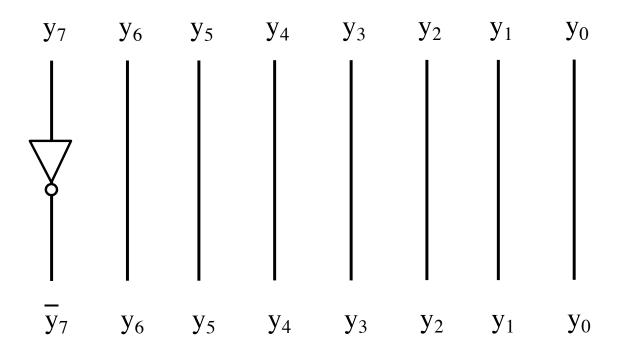
This represents +44.

Sign and Magnitude Representation (using the left-most bit as the sign)

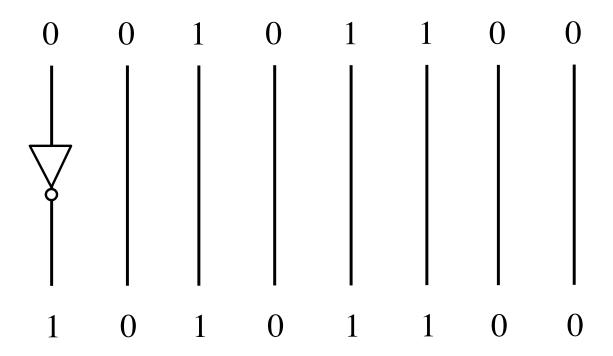
sign	2^6	25	24	23	2^2 2^1		2^0
1	0	1	0	1	1	0	0

This represents -44.

Circuit for negating a number stored in sign and magnitude representation



Circuit for negating a number stored in sign and magnitude representation



Method #2:

1's Complement Representation

1's complement (subtract each digit from 1)

Let K be the negative equivalent of an n-bit positive number P.

Then, in 1's complement representation K is obtained by subtracting P from $2^n - 1$, namely

$$K = (2^n - 1) - P$$

This means that K can be obtained by inverting all bits of P.

1's complement (subtract each digit from 1)

Let K be the negative equivalent of an 8-bit positive number P.

Then, in 1's complement representation K is obtained by subtracting P from $2^8 - 1$, namely

$$K = (2^8 - 1) - P = 255 - P$$

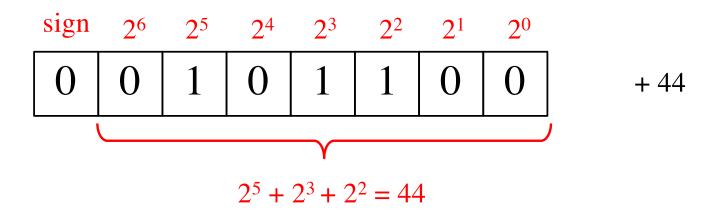
This means that K can be obtained by inverting all bits of P.

Provided that P is between 0 and 127, because the most significant bit must be zero to indicate that it is positive.

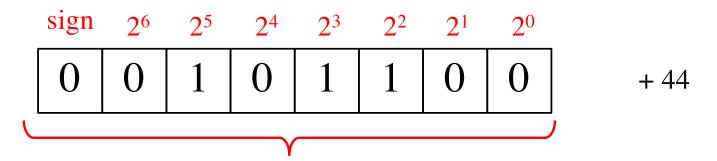
1's Complement Representation

sign	26	25	24	23	2^2	2^1	2^0
0	0	1	0	1	1	0	0

1's Complement Representation

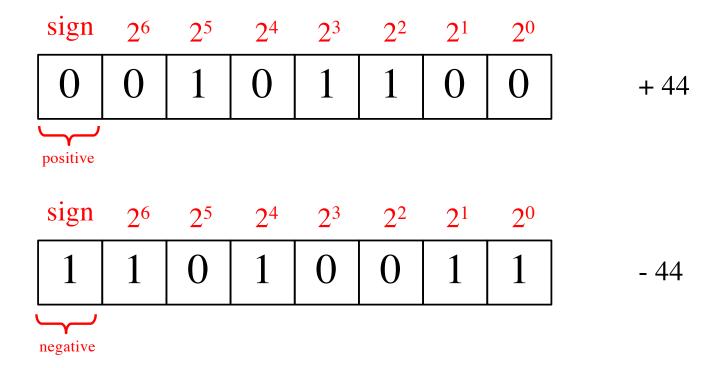


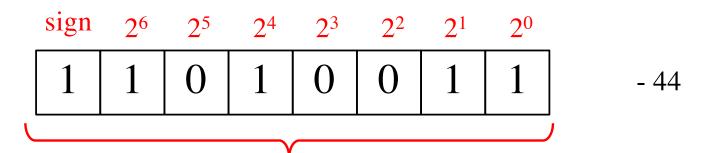
1's Complement Representation



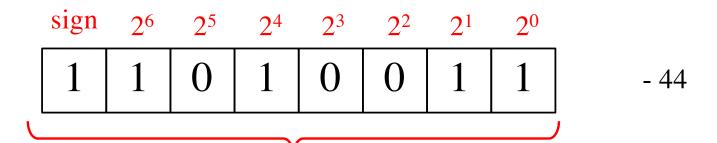
+ 44 in 1's complement representation

_	_	_	_	_	2^2	_	_	
0	0	1	0	1	1	0	0	+ 44
								•
sign	26	25	24	2^3	2^2	21	2^0	
1	1	0	1	0	0	1	1	- 44

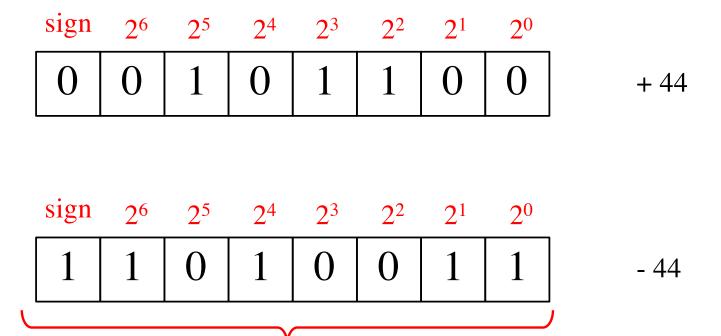




 $2^7 + 2^6 + 2^4 + 2^1 + 2^0 = 211$ (as unsigned)



211 = 255 - 44 (as unsigned)



- 44 in 1's complement representation

1's complement (subtract each digit from 1)

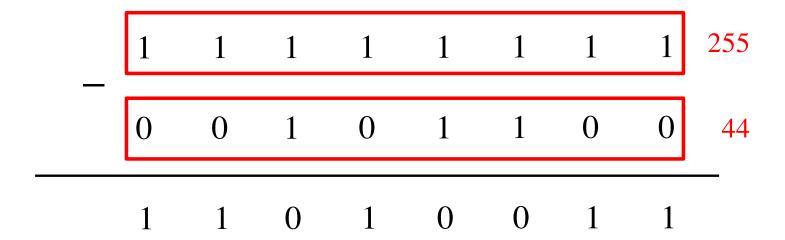
_	1	1	1	1	1	1	1	1	
	0	0	1	0	1	1	0	0	
	1	1	0	1	0	0	1	1	

1's complement (subtract each digit from 1)

No need to borrow!

_	1	1	1	1	1	1	1	1	
	0	0	1	0	1	1	0	0	
	1	1	0	1	0	0	1	1	

1's complement (subtract each digit from 1)



1's complement (subtract each digit from 1)

211 = 255 - 44 (as unsigned)

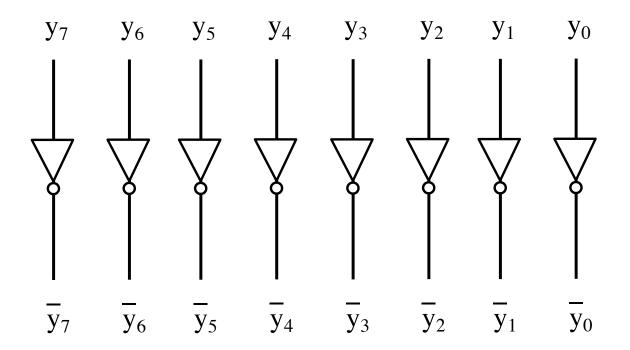
1's complement (subtract each digit from 1)

211 = 255 - 44 (as unsigned)

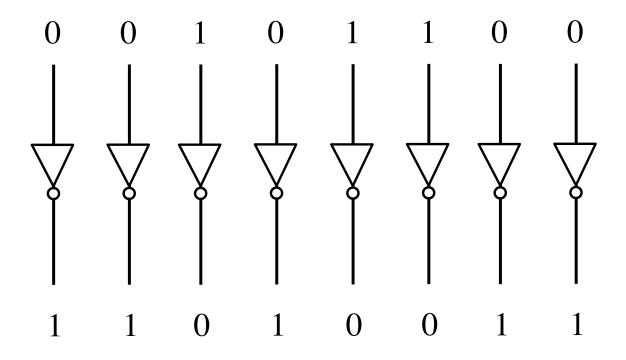
or

- 44 in 1's complement representation

Circuit for negating a number stored in 1's complement representation



Circuit for negating a number stored in 1's complement representation



This works in reverse too (from negative to positive)

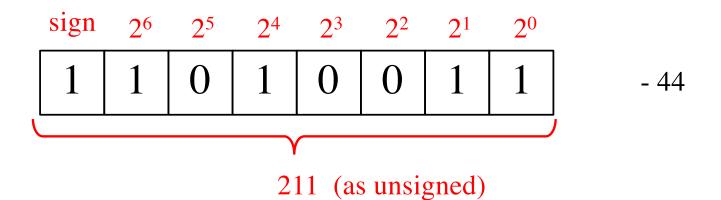
sign	26	25	24	23	2^2	2^1	20	_
1	1	0	1	0	0	1	1	- 44

1's Complement Representation (invert all the bits to negate the number)

sig	n 26	25	24	23	2^2	21	2^0	_
1	1	0	1	0	0	1	1	- 44

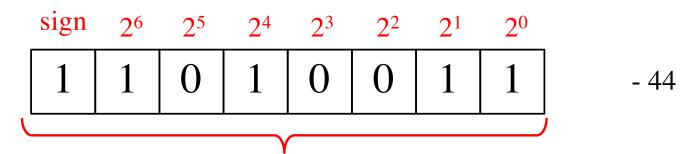
sign								
0	0	1	0	1	1	0	0	+ 44

1's Complement Representation (invert all the bits to negate the number)



44 = 255 - 211 (as unsigned)

1's Complement Representation (invert all the bits to negate the number)



- 44 in 1's complement representation



+ 44 in 1's complement representation

Negate these numbers stored in 1's complement representation

0 1 0 1

1011

1 1 1 0

0 1 1 1

Negate these numbers stored in 1's complement representation

0 1 0 1	1011
1010	0100

Just flip 1's to 0's and vice versa.

Negate these numbers stored in 1's complement representation

$$0\ 1\ 0\ 1 = +5$$

$$1010 = -5$$

$$1011 = -4$$

$$0\ 1\ 0\ 0 = +4$$

$$1\ 1\ 1\ 0 = -1$$

$$0\ 0\ 0\ 1 = +1$$

$$0.1111 = +7$$

$$1000 = -7$$

Just flip 1's to 0's and vice versa.

Addition of two numbers stored in 1's complement representation

There are four cases to consider

•
$$(+5)$$
 + (-2)

•
$$(-5)$$
 + (-2)

There are four cases to consider

```
• (+5) + (+2) positive plus positive
```

•
$$(-5)$$
 + (-2) negative plus negative

$$\begin{array}{c} (+5) \\ +(+2) \\ \hline (+7) \end{array} \qquad \begin{array}{c} 0\ 1\ 0\ 1 \\ +\ 0\ 0\ 1\ 0 \\ \hline \hline 0\ 1\ 1\ 1 \end{array}$$

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

$$\begin{array}{c} (+5) \\ +(+2) \\ \hline (+7) \end{array} + \begin{array}{c} 0 \ 1 \ 0 \ 1 \\ \hline 0 \ 1 \ 1 \ 1 \end{array}$$

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

$$\frac{(-5)}{+(+2)} + \frac{1010}{0010} + \frac{10010}{1100}$$

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

$$\begin{array}{c}
(-5) \\
+(+2) \\
\hline
(-3)
\end{array}
+ \begin{array}{c}
1010 \\
+0010 \\
\hline
1100
\end{array}$$

$b_3b_2b_1b_0$	1's complement
0111	. 7
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

$$\begin{array}{ccc} (+5) & & 0 & 1 & 0 & 1 \\ +(-2) & & +1 & 1 & 0 & 1 \\ \hline (+3) & & 1 & 0 & 0 & 1 & 0 \end{array}$$

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

$$\begin{array}{ccc} (+5) & & 0 & 1 & 0 & 1 \\ +(-2) & & +1 & 1 & 0 & 1 \\ \hline (+3) & & 1 & 0 & 0 & 1 & 0 \end{array}$$

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

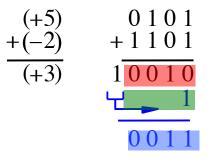
$$\begin{array}{ccc}
(+5) & & 0 & 1 & 0 & 1 \\
+(-2) & & +1 & 1 & 0 & 1 \\
\hline
(+3) & & 1 & 0 & 0 & 1 & 0
\end{array}$$

But this is 2!

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

We need to perform one more addition to get the result.

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0
1	I

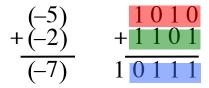


We need to perform one more addition to get the result.

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0
1	

$$\begin{array}{ccc}
 & (-5) & & 1010 \\
 + (-2) & & + 1101 \\
\hline
 & (-7) & & 10111
\end{array}$$

$b_3b_2b_1b_0$	1's complement					
0111	+7					
0110	+6					
0101	+5					
0100	+4					
0011	+3					
0010	+2					
0001	+1					
0000	+0					
1000	-7					
1001	-6					
1010	-5					
1011	-4					
1100	-3					
1101	-2					
1110	-1					
1111	-0					



$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

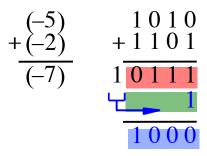
$$+\frac{(-5)}{(-7)}$$
 $+\frac{1010}{10111}$

But this is +7!

1's complement
+7
+6
+5
+4
+3
+2
+1
+0
-7
-6
-5
-4
-3
-2
-1
-0

We need to perform one more addition to get the result.

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0
1	I



We need to perform one more addition to get the result.

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0
I	I

Implications for arithmetic operations in 1's complement representation

- We could do addition in 1's complement, but the circuit will need to handle these exceptions.
- In some cases, it will run faster that others, thus creating uncertainties in the timing.
- Therefore, 1's complement is not used in practice to do arithmetic operations.
- But it may show up as an intermediary step in doing 2's complement operations.

Method #3:

2's complement (subtract each digit from 1 and add 1 to the result)

Let K be the negative equivalent of an n-bit positive number P.

Then, in 2's complement representation K is obtained by subtracting P from 2ⁿ, namely

$$K = 2^n - P$$

2's complement (subtract each digit from 1 and add 1 to the result)

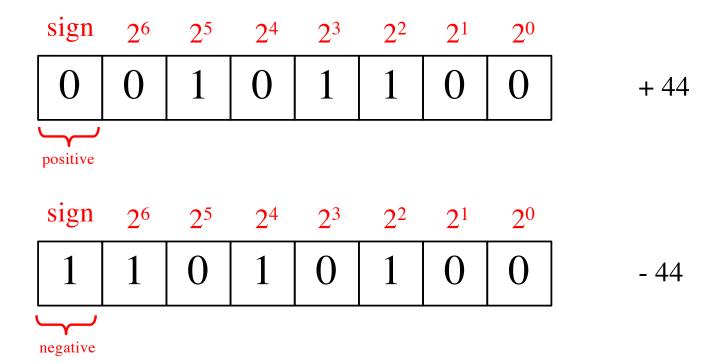
Let K be the negative equivalent of an 8-bit positive number P.

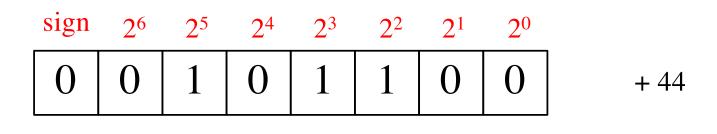
Then, in 2's complement representation K is obtained by subtracting P from 2⁸, namely

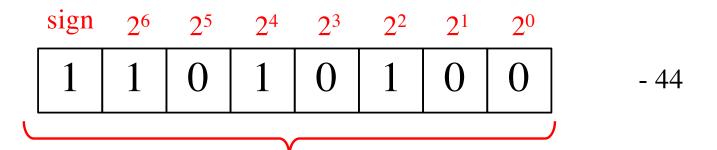
$$K = 2^8 - P = 256 - P$$

sign								
0	0	1	0	1	1	0	0	+ 44

sign								
1	1	0	1	0	1	0	0	- 44







$$212 = 256 - 44$$

Deriving 2's complement

For a positive n-bit number P, let K_1 and K_2 denote its 1's and 2's complements, respectively.

$$K_1 = (2^n - 1) - P$$

$$\mathbf{K}_2 = 2^{\mathbf{n}} - \mathbf{P}$$

Since $K_2 = K_1 + 1$, it is evident that in a logic circuit the 2's complement can be computed by inverting all bits of P and then adding 1 to the resulting 1's-complement number.

Deriving 2's complement

For a positive 8-bit number P, let K_1 and K_2 denote its 1's and 2's complements, respectively.

$$K_1 = (2^n - 1) - P = 255 - P$$

 $K_2 = 2^n - P = 256 - P$

Since $K_2 = K_1 + 1$, it is evident that in a logic circuit the 2's complement can be computed by inverting all bits of P and then adding 1 to the resulting 1's-complement number.

0 1 0 1

1 1 1 0

1 1 0 0

0 1 1 1

0 1 0 1 1 0 1 0 1 1 1 0

0001

1 1 0 0 0 0 1 1 $0\ 1\ 1\ 1$ $1\ 0\ 0\ 0$

Invert all bits...

$$\begin{array}{c}
1 \ 1 \ 1 \ 0 \\
+ \ 0 \ 0 \ 1 \\
\hline
0 \ 0 \ 1 \ 0
\end{array}$$

$$\begin{array}{r}
1100 \\
+0011 \\
\hline
0100
\end{array}$$

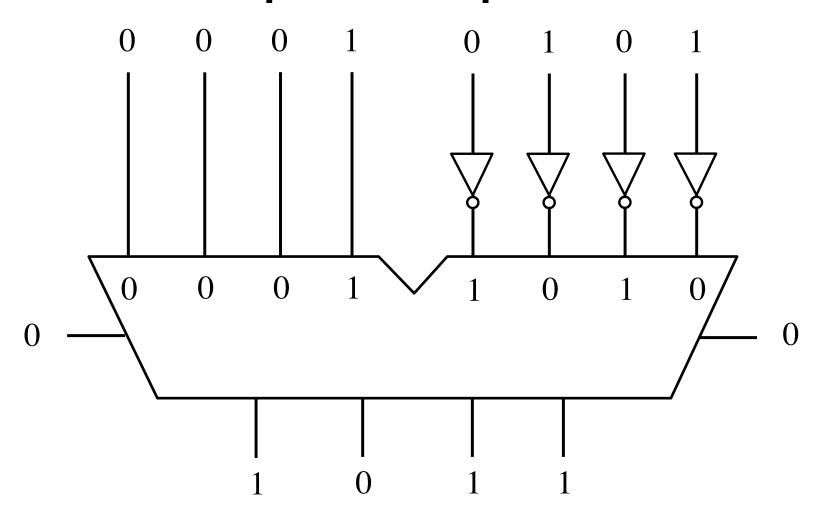
$$\begin{array}{r}
0 \ 1 \ 1 \ 1 \\
+ \ 1 \\
\hline
1 \ 0 \ 0 \ 1
\end{array}$$

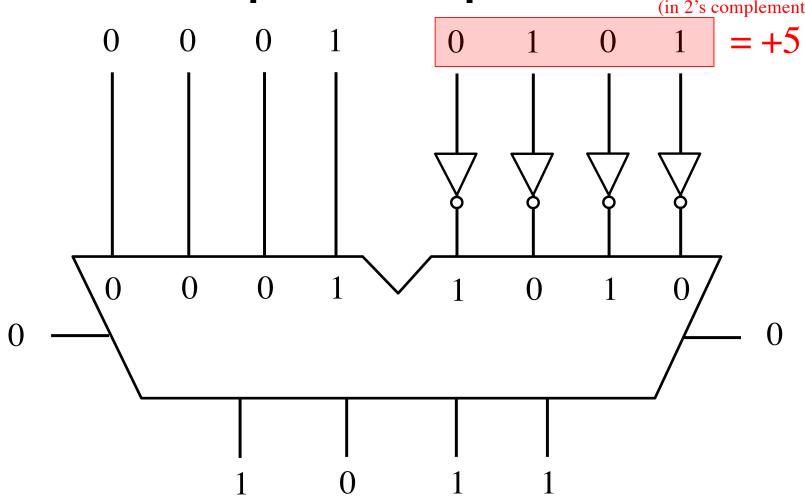
.. then add 1.

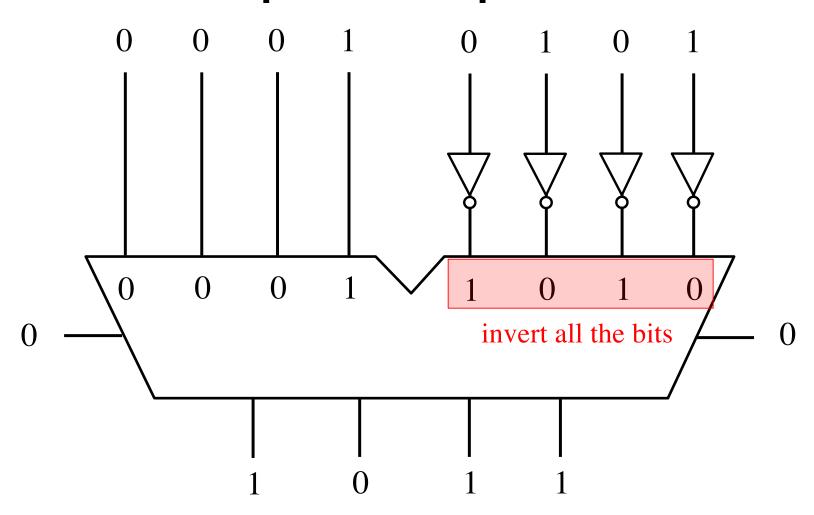
$$0101 = +5$$

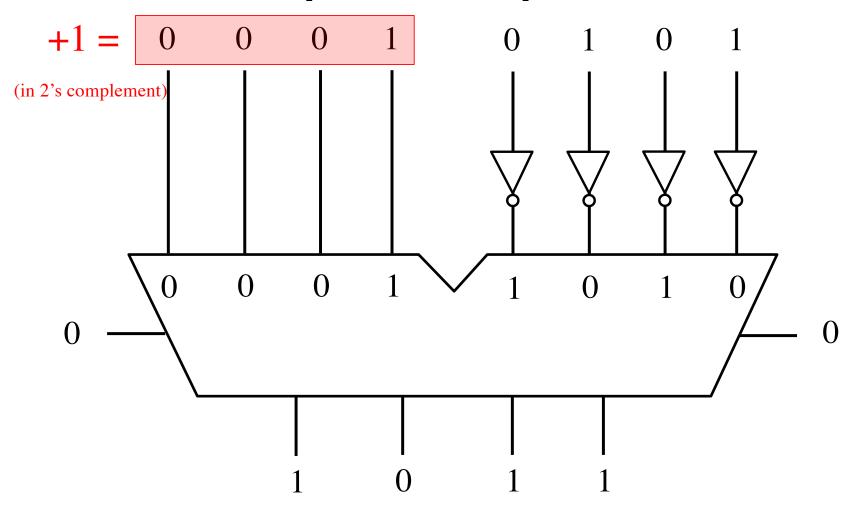
$$+ \frac{1010}{1}$$

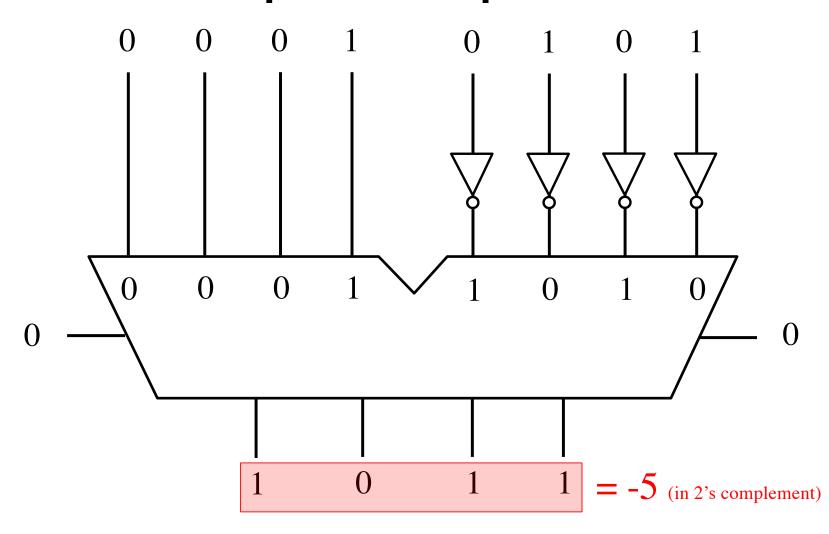
$$1011 = -5$$



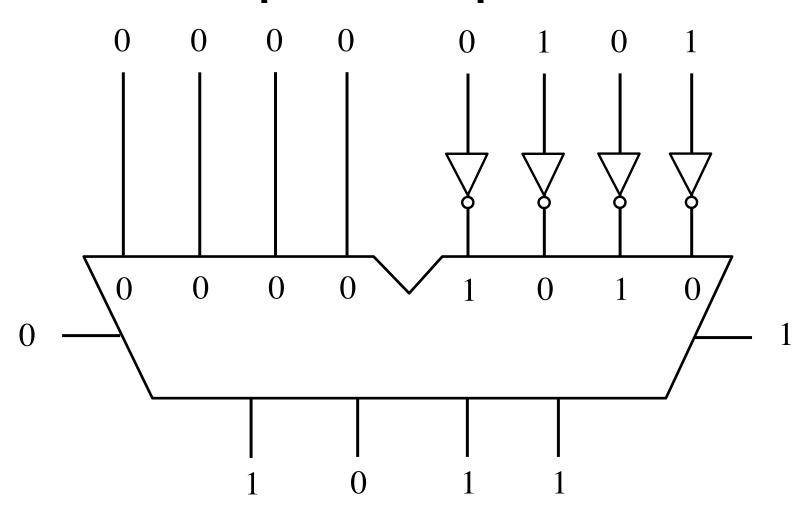


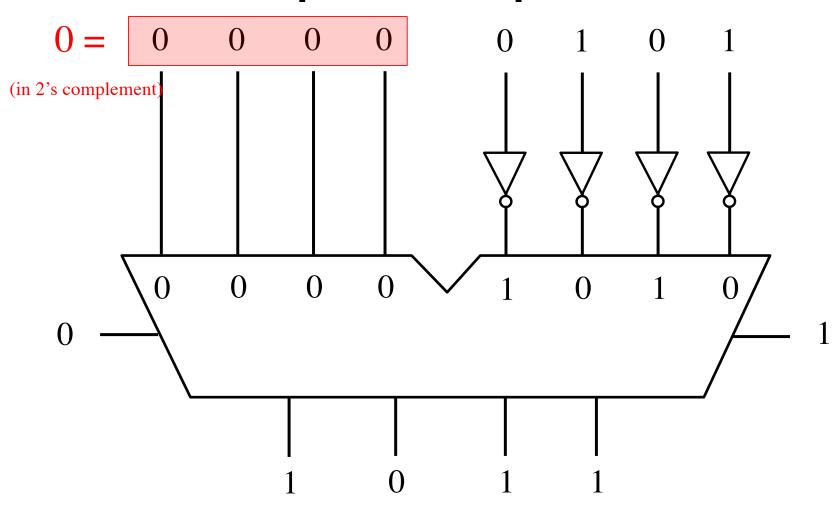


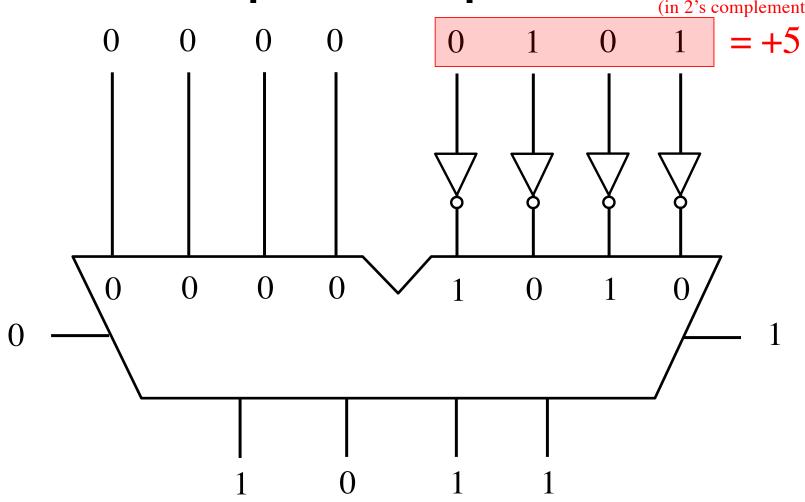


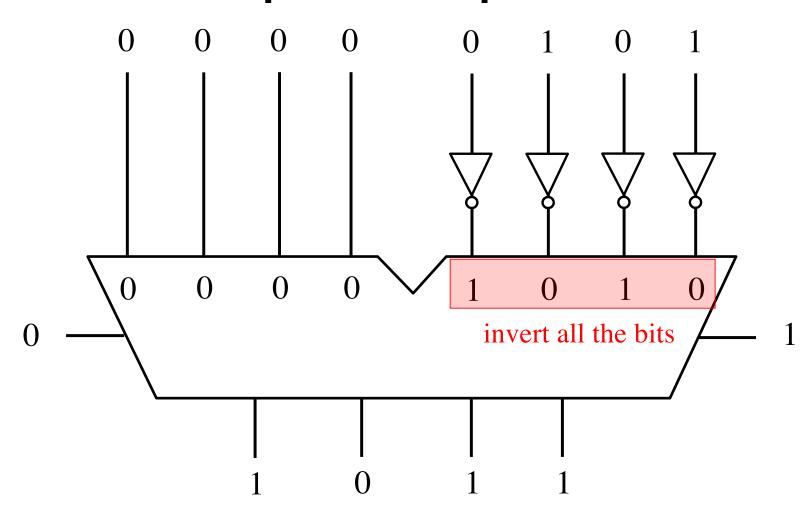


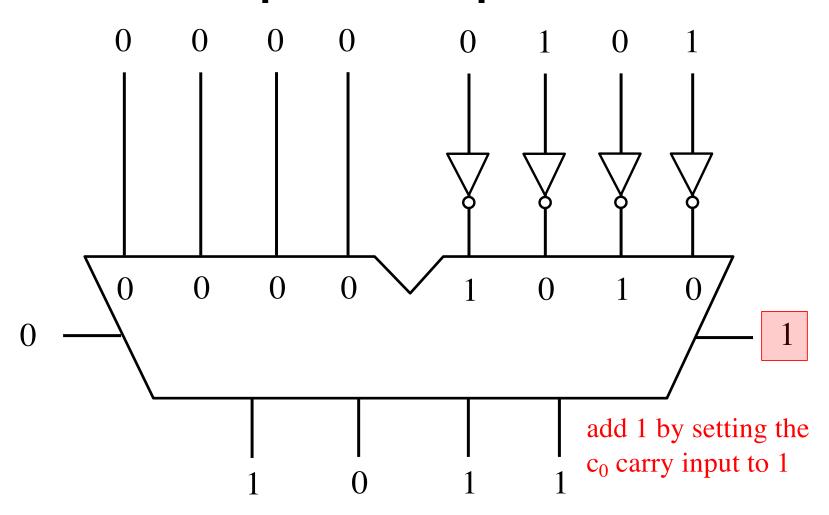
Alternative Circuit

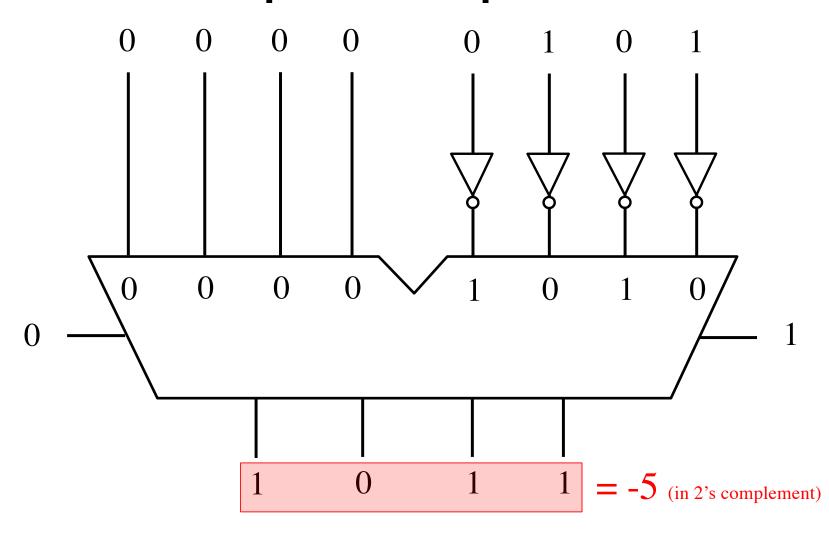




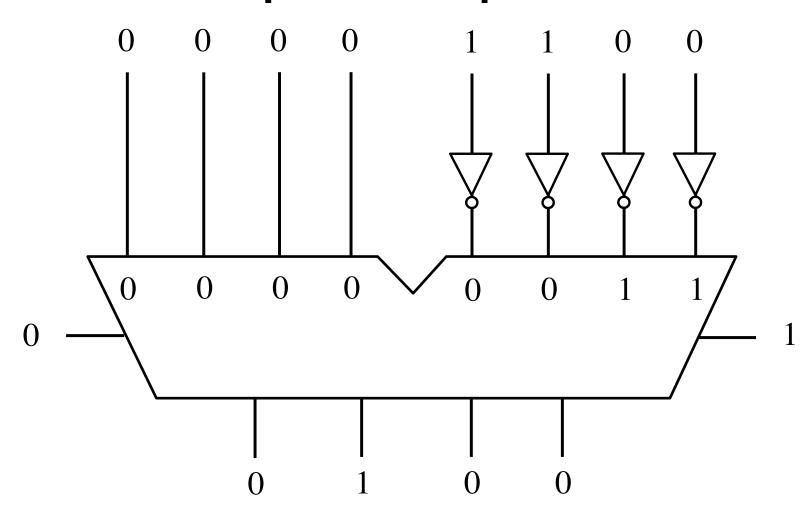


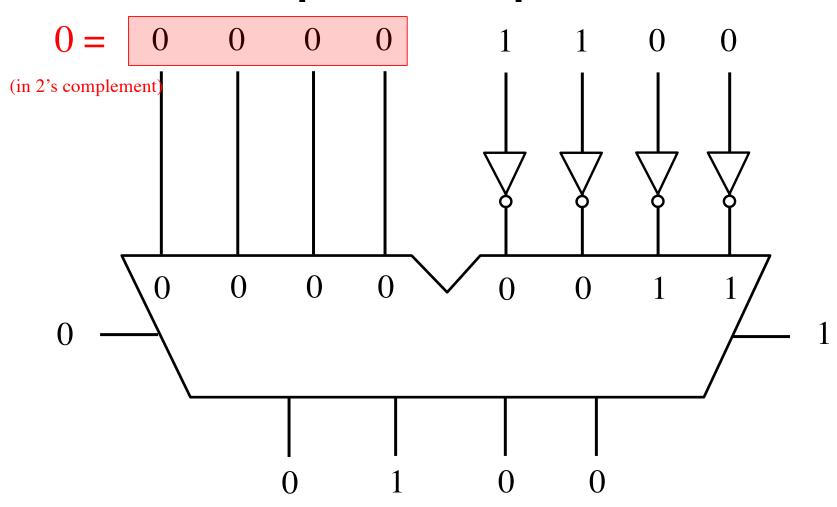


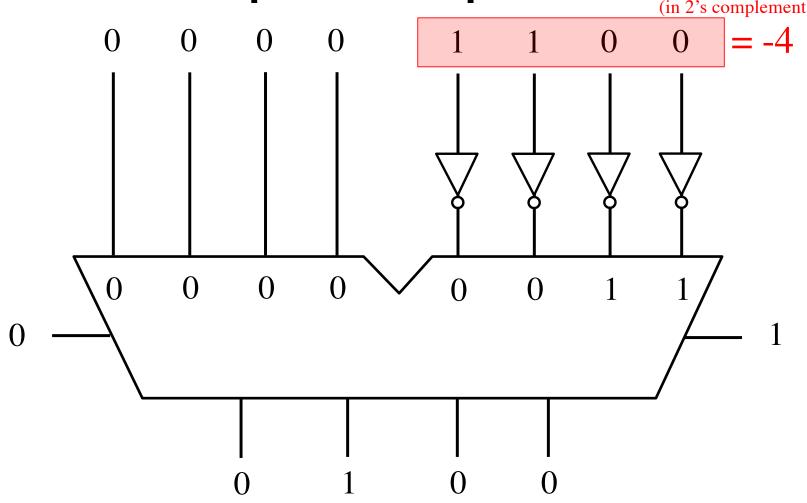


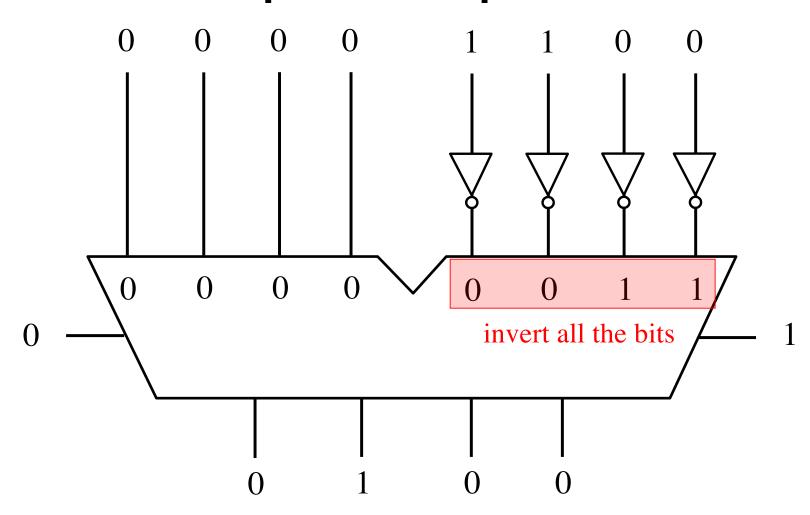


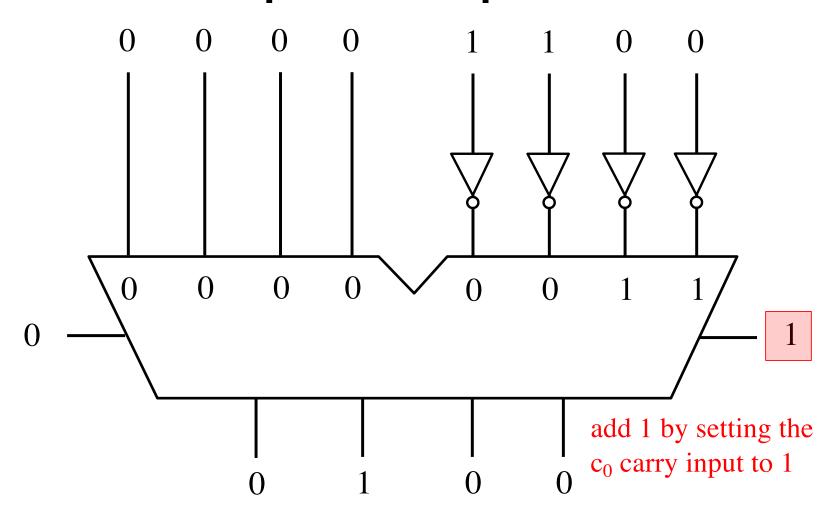
This also works for negating a negative number, thus making it positive

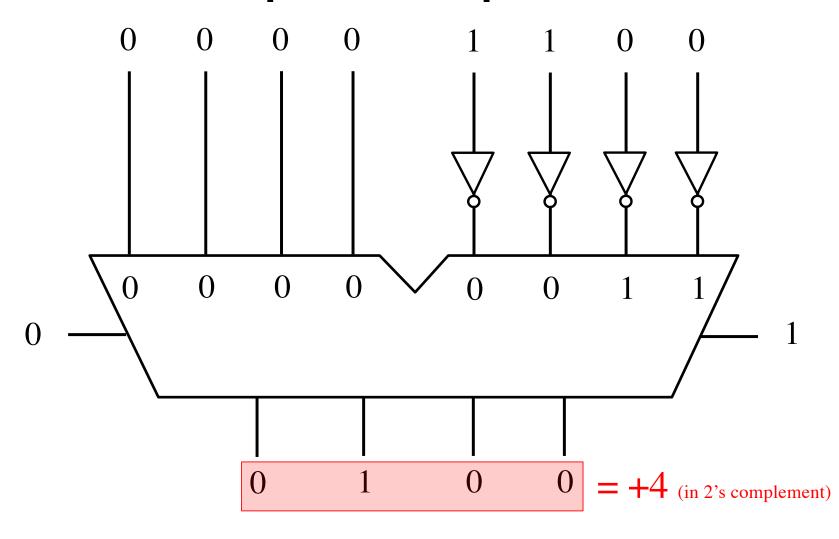












Quick way (for a human) to negate a number stored in 2's complement

- Scan the binary number from right to left
- Copy all bits that are 0 from right to left
- Stop at the first 1
- Copy that 1 as well
- Invert all remaining bits

0 1 0 1

1 1 1 0

1 1 0 0

0 1 1 1

0 1 0 1 1 1 1 0

. . . 0

1 1 0 0 . . 0 0

Copy all bits that are 0 from right to left.

Stop at the first 1. Copy that 1 as well.

0 1 0 1
 1 0 1 1
 0 0 1 0

Invert all remaining bits.

$$0\ 1\ 0\ 1 = +5$$

$$1011 = -5$$

$$1 \ 1 \ 1 \ 0 = -2$$

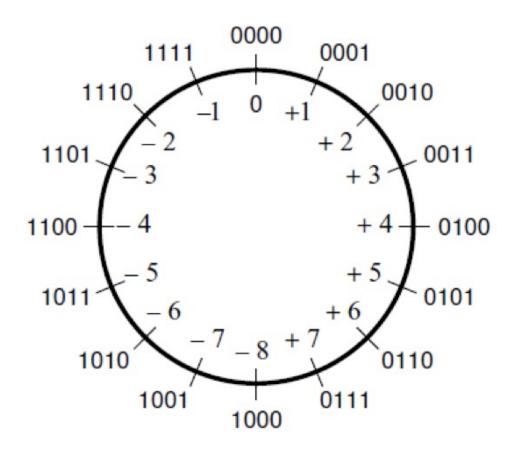
$$0 \ 0 \ 1 \ 0 = +2$$

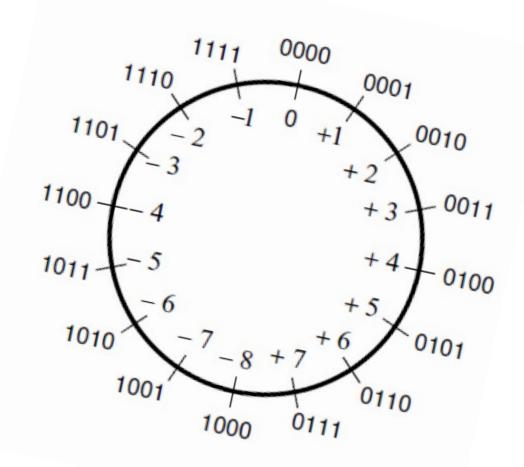
$$1\ 1\ 0\ 0\ = -4$$

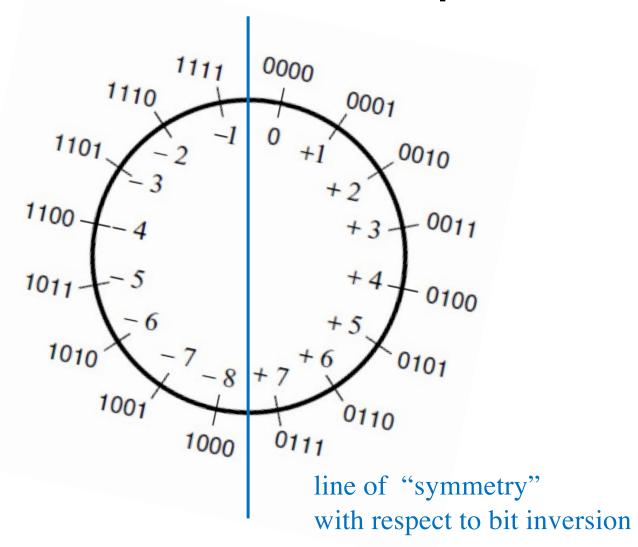
$$0\ 1\ 0\ 0\ = +4$$

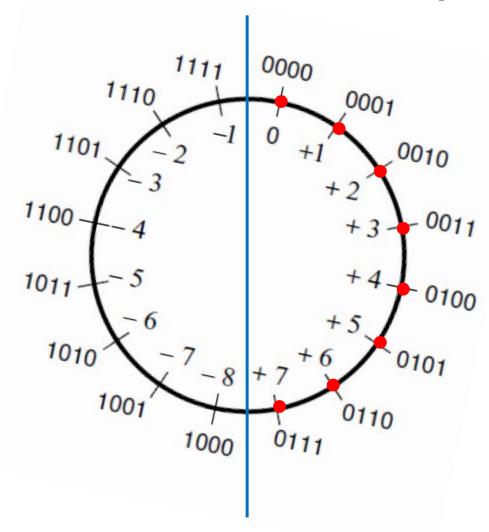
$$0 \ 1 \ 1 \ 1 = +7$$

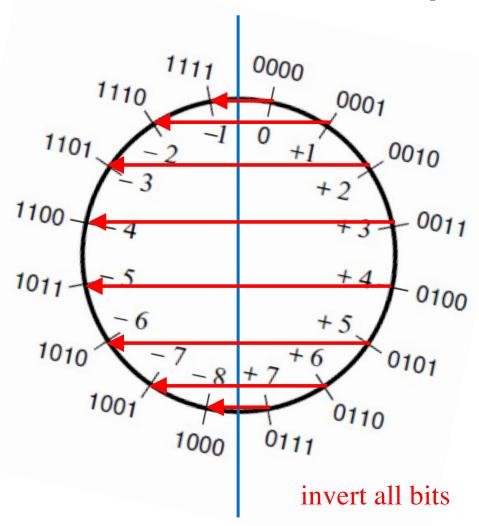
$$1\ 0\ 0\ 1 = -7$$

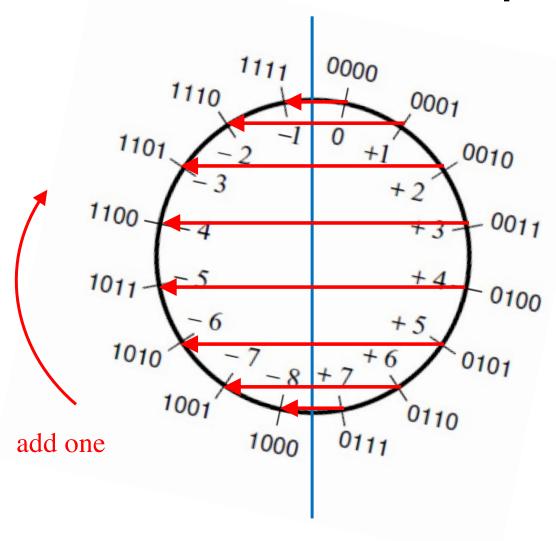


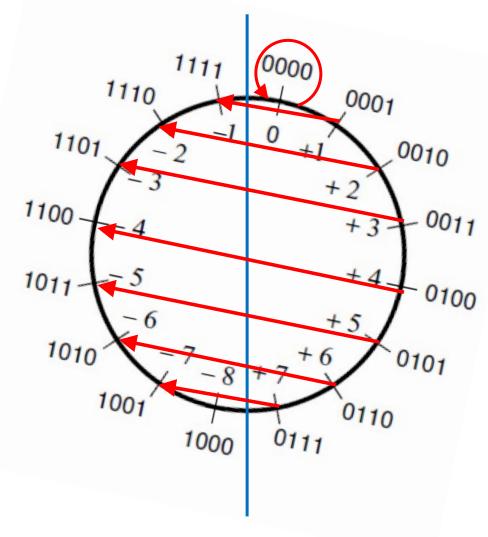


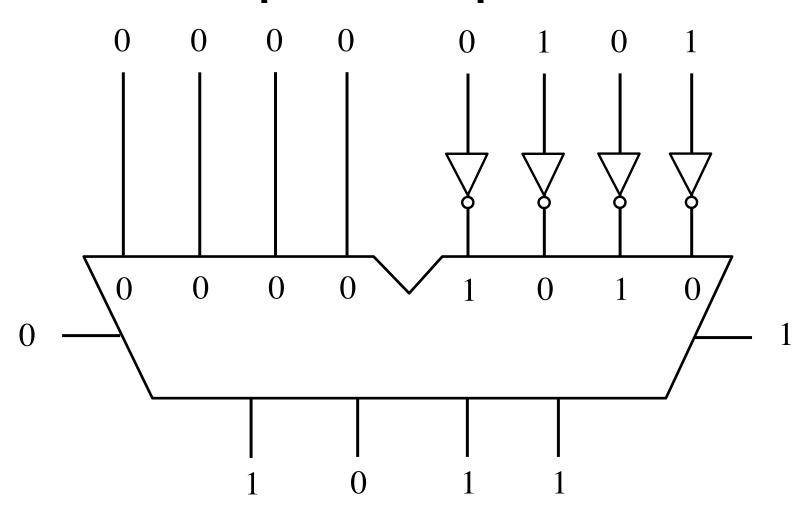


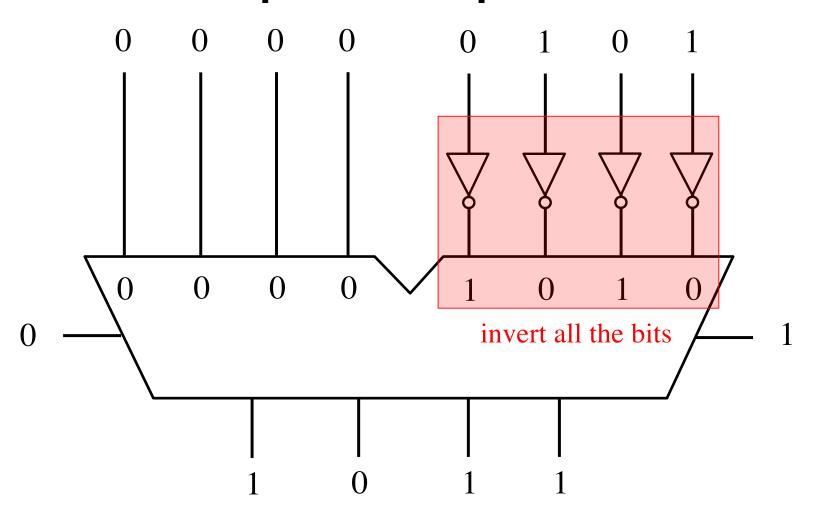


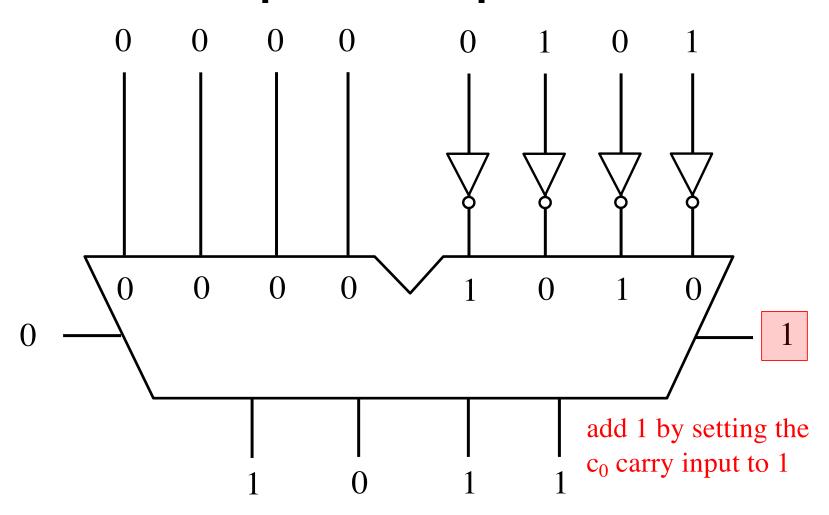


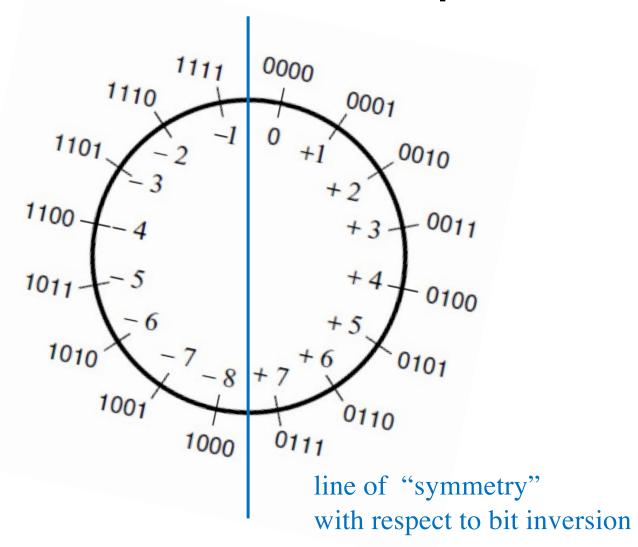


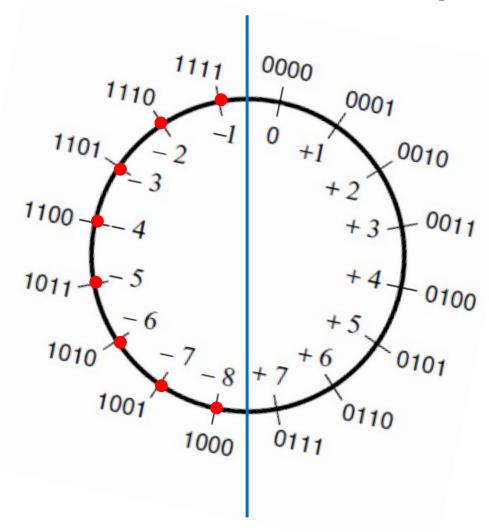


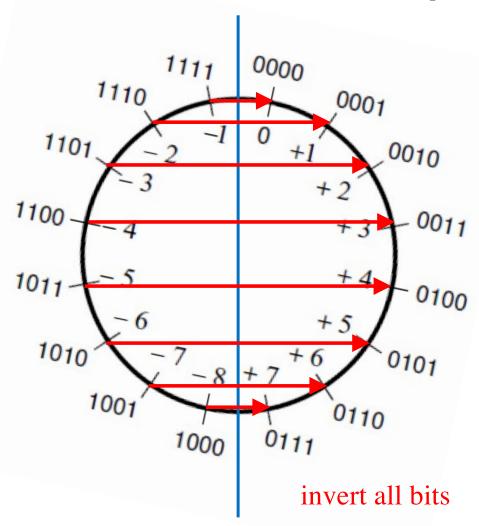


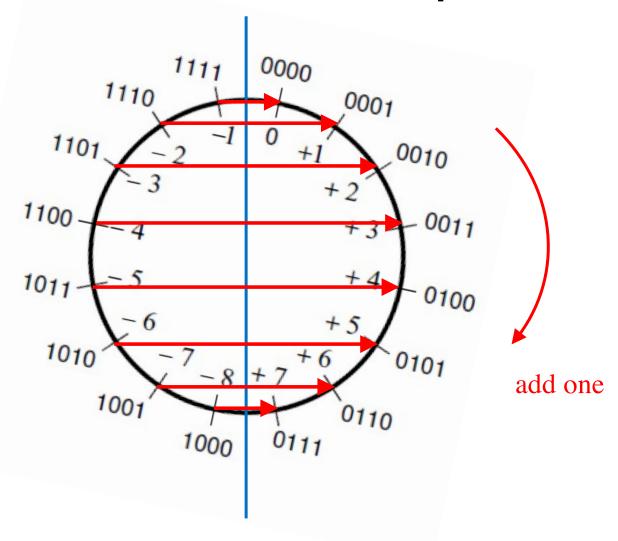


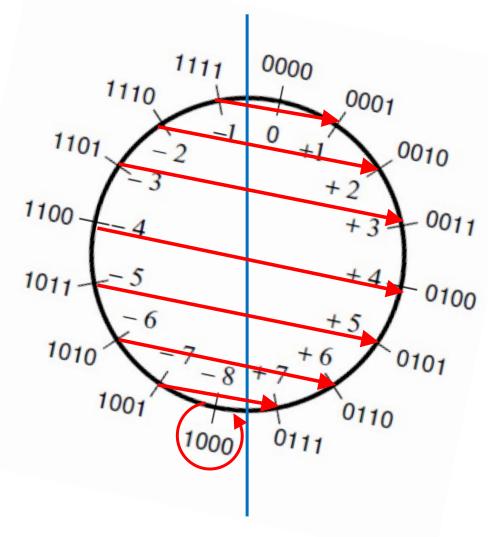


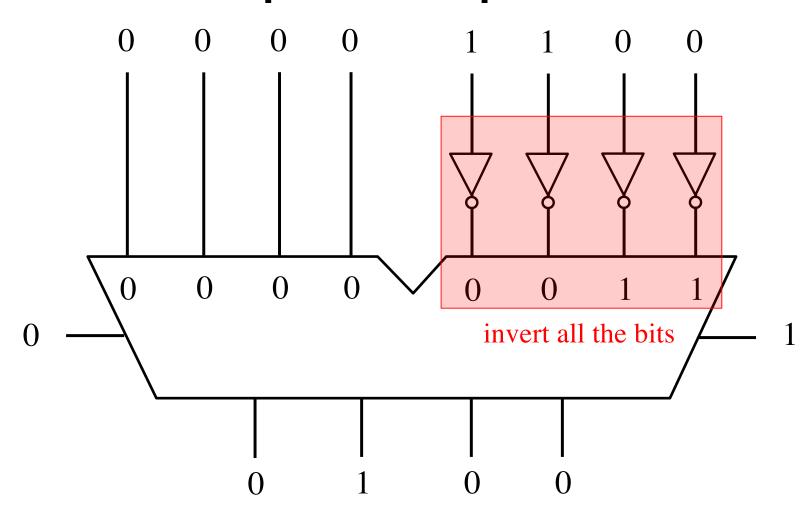


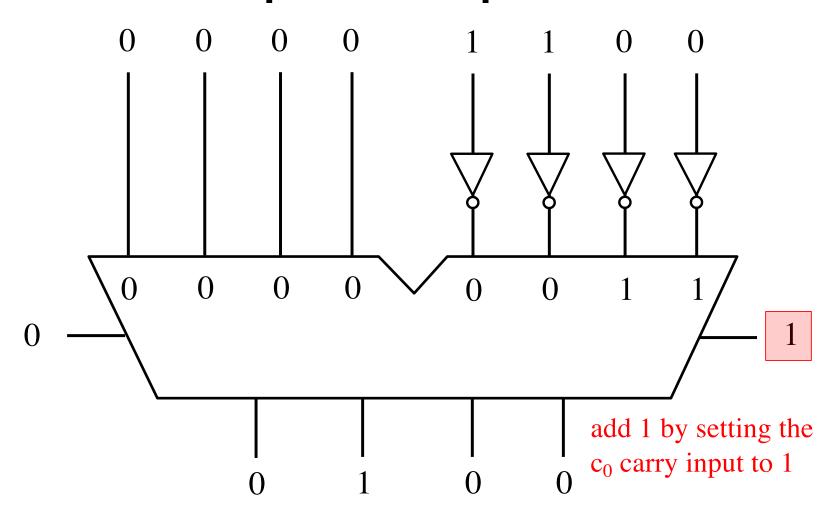












Addition of two numbers stored in 2's complement representation

There are four cases to consider

a)
$$(+5)$$
 + $(+2)$

b)
$$(-5)$$
 + $(+2)$

c)
$$(+5)$$
 + (-2)

$$d) (-5) + (-2)$$

There are four cases to consider

a)
$$(+5)$$
 + $(+2)$

positive plus positive

b)
$$(-5)$$
 + $(+2)$

negative plus positive

c)
$$(+5)$$
 + (-2)

c) (+5) + (-2) positive plus negative

$$d) (-5) + (-2)$$

negative plus negative

A) Example of 2's complement addition

$$\begin{array}{ccc}
(+5) & & & & & & \\
+ (+2) & & & & + & & \\
(+7) & & & & & & \\
\end{array}$$

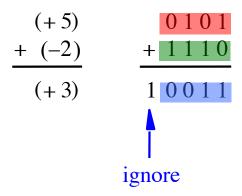
$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

B) Example of 2's complement addition

$$\begin{array}{ccc}
(-5) & & 1011 \\
+ (+2) & & + 0010 \\
\hline
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\end{array}$$

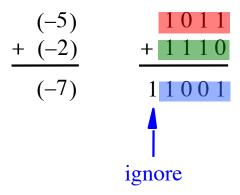
$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

C) Example of 2's complement addition



$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

D) Example of 2's complement addition



$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

Naming Ambiguity: 2's Complement

2's complement has two different meanings:

representation for signed integer numbers

 algorithm for computing the 2's complement (regardless of the representation of the number)

Naming Ambiguity: 2's Complement

2's complement has two different meanings:

- representation for signed integer numbers in 2's complement
- algorithm for computing the 2's complement (regardless of the representation of the number)
 take the 2's complement (or negate)

Taking the 2's complement negates the number

decimal	b ₃ b ₂ b ₁ b ₀	take the 2's complement	b ₃ b ₂ b ₁ b ₀	decimal
+7	0111	\Longrightarrow	1001	-7
+6	0110	\Longrightarrow	1010	-6
+5	0101	\Longrightarrow	1011	- 5
+4	0100	=>	1100	-4
+3	0011	\Longrightarrow	1101	-3
+2	0010	\Longrightarrow	1110	-2
+1	0001	\Longrightarrow	1111	-1
+0	0000	=>	0000	+0
-8	1000	\Longrightarrow	1000	-8
- 7	1001	\Longrightarrow	0111	+7
-6	1010	\Longrightarrow	0110	+6
-5	1011	⇒	0101	+5
-4	1100	\Longrightarrow	0100	+4
-3	1101	=>	0011	+3
-2	1110	\Longrightarrow	0010	+2
-1	1111	=>	0001	+1

Taking the 2's complement negates the number

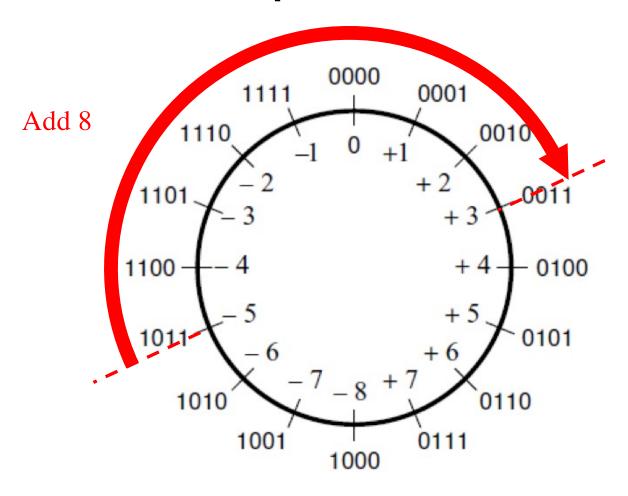
decimal	b ₃ b ₂ b ₁ b ₀	take the 2's complement	b ₃ b ₂ b ₁ b ₀	decimal	
+7	0111	=>	1001	- 7	
+6	0110	⇒	1010	-6	
+5	0101	\Longrightarrow	1011	- 5	
+4	0100	=>	1100	-4	
+3	0011	\Longrightarrow	1101	-3	
+2	0010	\Longrightarrow	1110	-2	
+1	0001	⇒	1111	-1	This is an
+0	0000	=>	0000	+0 e	exception
-8	1000	=>	1000	-8	
- 7	1001	\Longrightarrow	0111	+7	
-6	1010	⇒	0110	+6	
-5	1011	=>	0101	+5	
-4	1100	⇒	0100	+4	
-3	1101	\Longrightarrow	0011	+3	
-2	1110	\Longrightarrow	0010	+2	
-1	1111	=>	0001	+1	

Taking the 2's complement negates the number

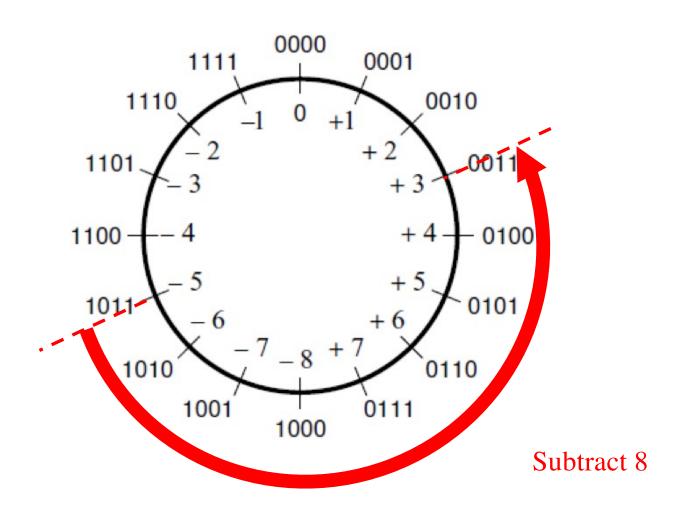
decimal	b ₃ b ₂ b ₁ b ₀	take the 2's complement	$b_3 b_2 b_1 b_0$	decimal
+7	0111	\Longrightarrow	1001	-7
+6	0110	\Longrightarrow	1010	-6
+5	0101	\Longrightarrow	1011	- 5
+4	0100	=>	1100	-4
+3	0011	⇒	1101	-3
+2	0010	⇒	1110	-2
+1	0001	\Longrightarrow	1111	-1
+0	0000	\Longrightarrow	0000	+0 A
-8	1000	=>	1000	-8 OI
- 7	1001	=>	0111	+7
-6	1010	\Longrightarrow	0110	+6
- 5	1011	\Longrightarrow	0101	+5
-4	1100	=>	0100	+4
-3	1101	\Longrightarrow	0011	+3
-2	1110	\Longrightarrow	0010	+2
-1	1111	\Longrightarrow	0001	+1

But that exception does not matter

But that exception does not matter



But that exception does not matter



Questions?

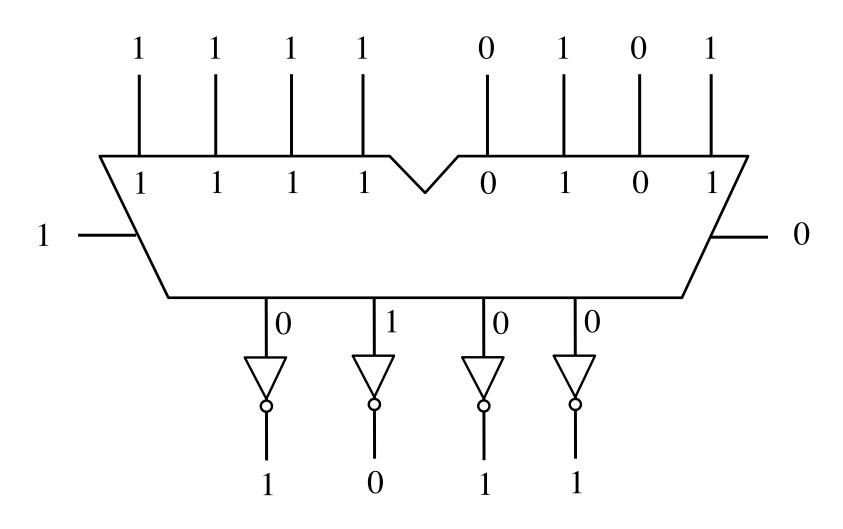
THE END

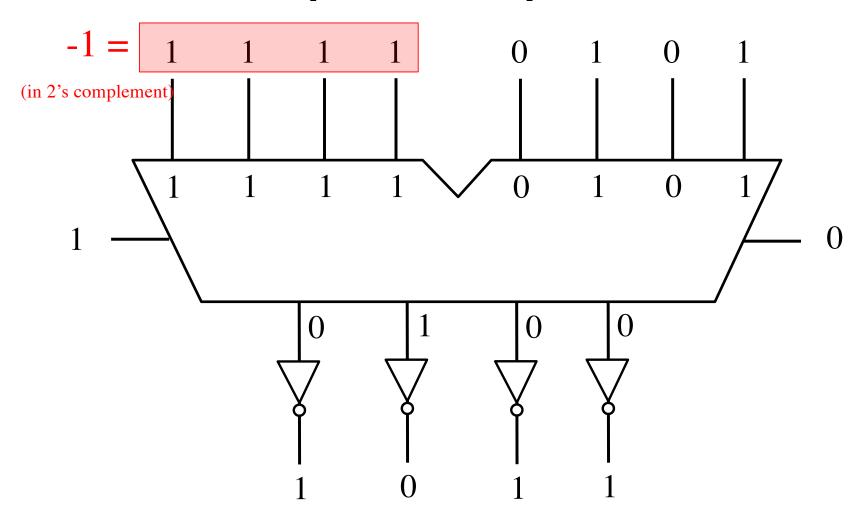
Additional Material

Alternative Circuit #3 (not used in practice)

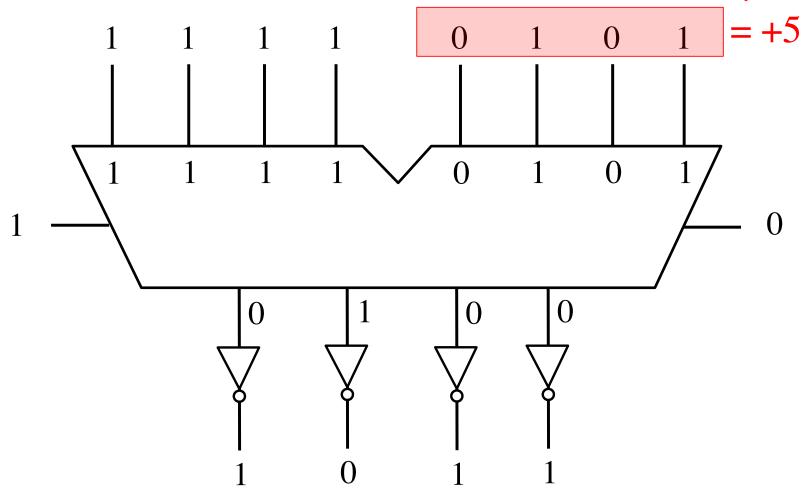
A former student came up with this circuit during a midterm exam!

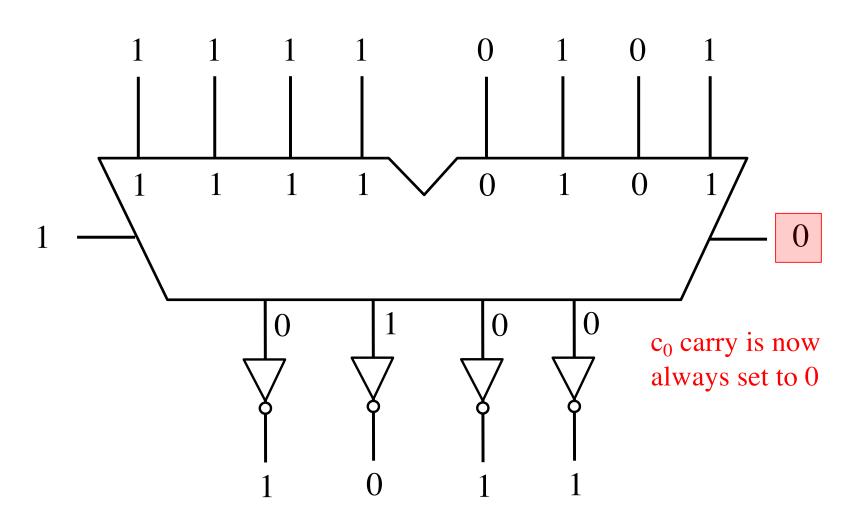
Alternative Circuit #3 (not used in practice)

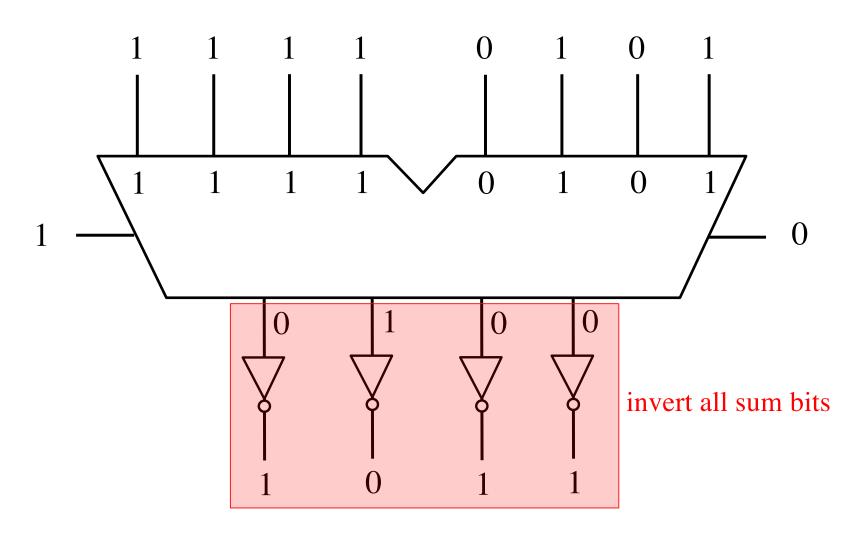


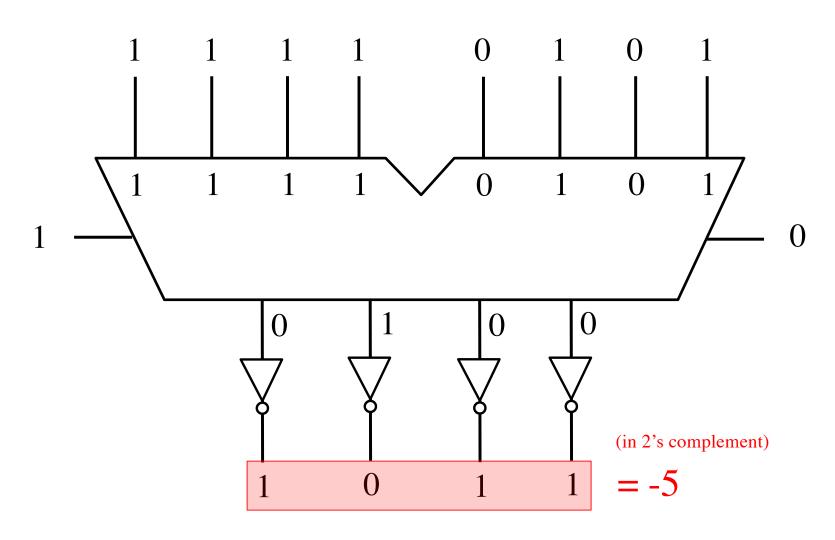


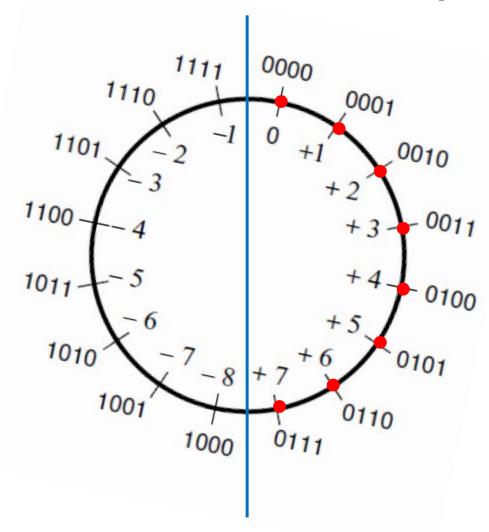
Circuit #3 for negating a number stored in 2's complement representation (in 2's complement)

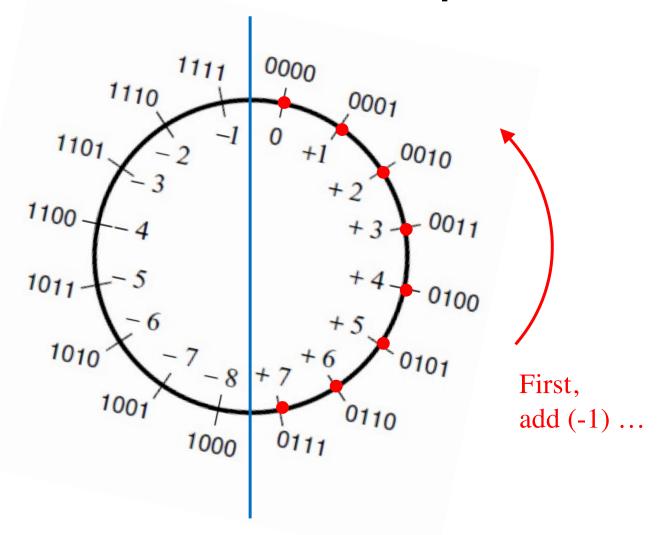


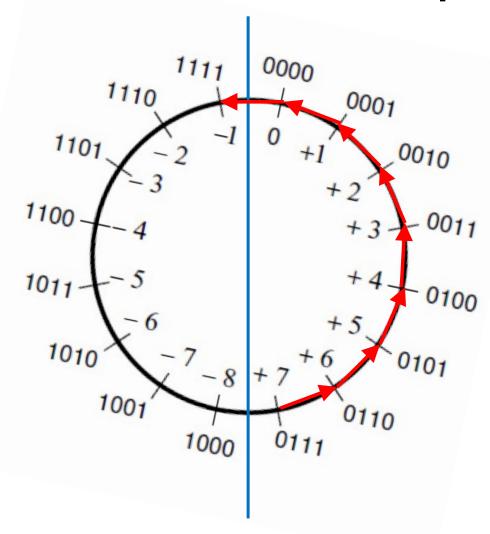


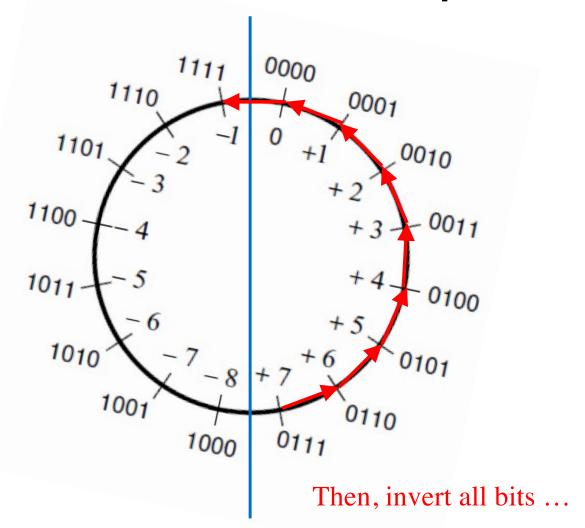


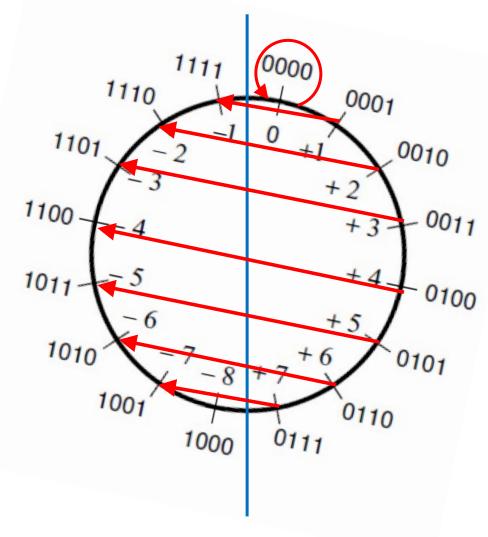


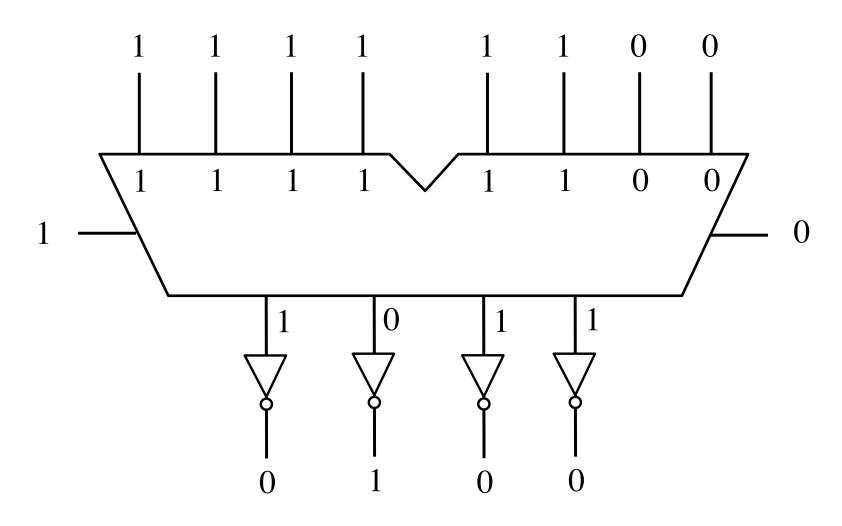


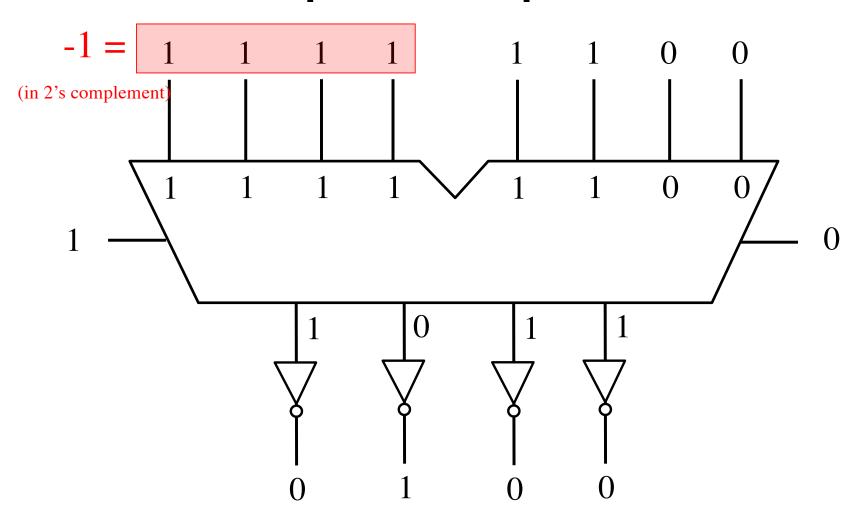












Circuit #3 for negating a number stored in 2's complement representation (in 2's complement)

