

CprE 2810: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Addition of Unsigned Numbers

CprE 2810: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

We are now starting with Chapter 3

HW5 is due today @ 10 pm

No homework due next week

• HW6 will be due on Monday, Oct 13

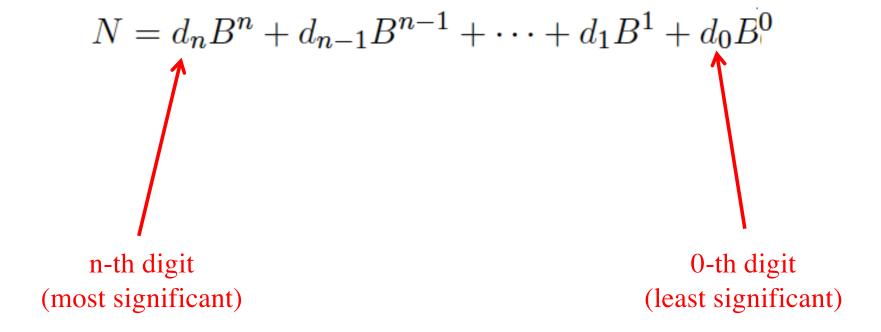
The first midterm exam was last Friday

Quick Review

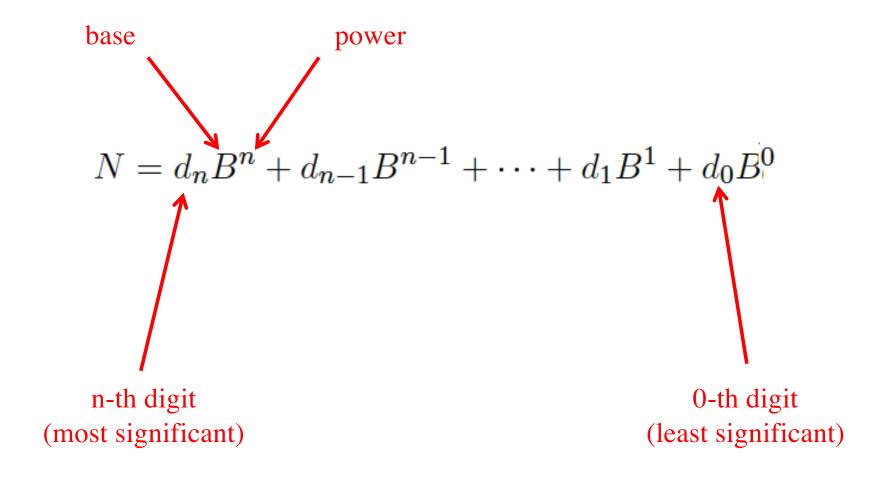
Number Systems

$$N = d_n B^n + d_{n-1} B^{n-1} + \dots + d_1 B^1 + d_0 B^0$$

Number Systems



Number Systems



The Decimal System (Base 10)

$$524_{10} = 5 \times 10^2 + 2 \times 10^1 + 4 \times 10^0$$

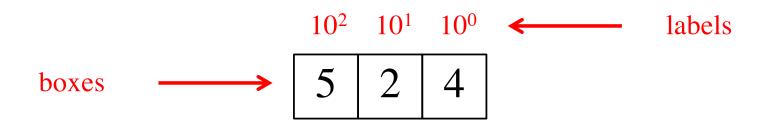
The Decimal System

$$524_{10} = 5 \times 10^{2} + 2 \times 10^{1} + 4 \times 10^{0}$$
$$= 5 \times 100 + 2 \times 10 + 4 \times 1$$
$$= 500 + 20 + 4$$
$$= 524_{10}$$

5 2 4

 $10^2 \quad 10^1 \quad 10^0$

5 | 2 | 4

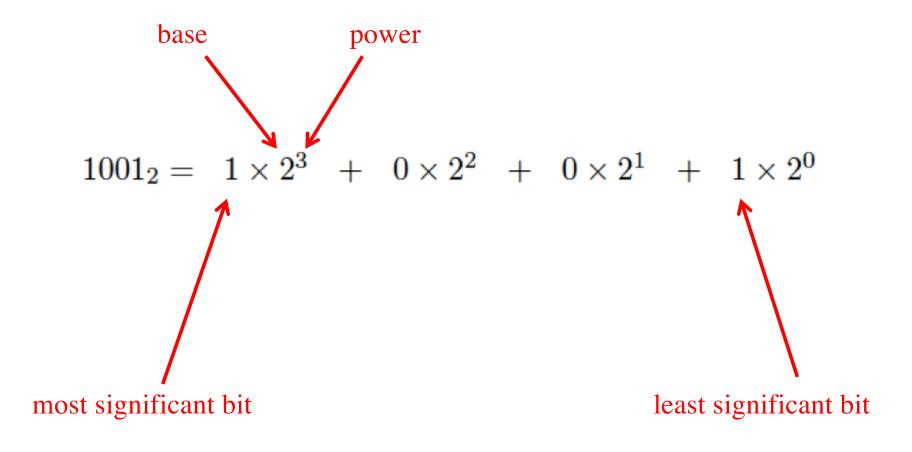


Each box can contain only one digit and has only one label. From right to left, the labels are increasing powers of the base, starting from 0.

Binary Numbers (Base 2)

$$1001_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

Binary Numbers (Base 2)



Binary Numbers (Base 2)

$$1001_{2} = 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 1 \times 8 + 0 \times 4 + 0 \times 2 + 1 \times 1 = 8 + 0 + 0 + 1 = 9_{10}$$

Another Example

Powers of 2

```
2^{10}
            1024
2^{9}
             512
2^{8}
       = 256
2^{7}
             128
2^{6}
               64
2^5
               32
2^{4}
               16
2^3
                8
2^2
2^1
2^{0}
```

What is the value of this binary number?

• 00101100

· 0 0 1 0 1 1 0 0

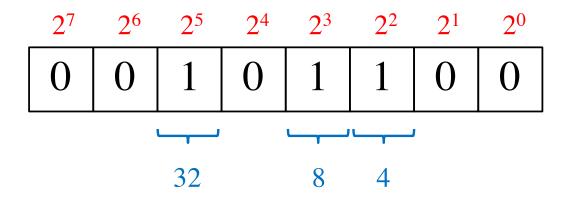
• $0*2^7 + 0*2^6 + 1*2^5 + 0*2^4 + 1*2^3 + 1*2^2 + 0*2^1 + 0*2^0$

• 0*128 + 0*64 + 1*32 + 0*16 + 1*8 + 1*4 + 0*2 + 0*1

• 0*128 + 0*64 + 1*32 + 0*16 + 1*8 + 1*4 + 0*2 + 0*1

• 32+8+4=44 (in decimal)

							2^0
0	0	1	0	1	1	0	0



Signed v.s. Unsigned Numbers

Signed v.s. Unsigned Numbers

positive and negative integers only positive integers

Signed v.s. Unsigned Numbers

positive

and

negative

integers

only

positive

integers

and zero

and zero

Two Different Types of Binary Numbers

Unsigned numbers

- All bits jointly represent a positive integer.
- Negative numbers cannot be represented this way.

Signed numbers

- The left-most bit represents the sign of the number.
- If that bit is 0, then the number is positive.
- If that bit is 1, then the number is negative.
- The magnitude of the largest number that can be represented in this way is twice smaller than the largest number in the unsigned representation.

Two Different Types of Binary Numbers

Unsigned numbers

- All bits jointly represent a positive integer.
- Negative numbers cannot be represented this way.

There are 3 different ways to represent signed numbers.

Signed numbers

They will be introduced next time.

- The left-most bit represents the sign of the number.
- If that bit is 0, then the number is positive.
- If that bit is 1, then the number is negative.
- The magnitude of the largest number that can be represented in this way is twice smaller than the largest number in the unsigned representation.

Unsigned Representation

							2^0
0	0	1	0	1	1	0	0

This represents +44.

Unsigned Representation

_	_	_	_	_	_	_	2^0
1	0	1	0	1	1	0	0

This represents + 172.

Sign-and-Magnitude Representation (using the left-most bit as the sign)

sign	2^6	2^5	24	2^3	2^2	2^1	2^0
0	0	1	0	1	1	0	0

This represents +44.

Sign-and-Magnitude Representation (using the left-most bit as the sign)

sign	2^6	2^5	24	2^3	2^2	2^1	2^0
1	0	1	0	1	1	0	0

This represents -44.

Three ways to represent negative numbers

sign 2^6 2^5 2^4 2^3 2^2 2^1 2^0 0 0 ()Sign and magnitude - 44 sign 2^6 2^5 2^4 2^3 2^2 2^1 2^0 0 1's complement - 44 sign 2^6 2^5 2^4 2^3 2^2 2^1 2^{0} - 44 2's complement

Today's Lecture is About Addition of Unsigned Numbers

Important Clarification: There are two types of addition

Addition of Boolean variables, e.g.,

$$x + y$$
 where $x, y \in \{0, 1\}$

Addition of n-bit Binary numbers, e.g.,

```
x_4x_3x_2x_1x_0 + y_4y_3y_2y_1y_0 where each x_k, y_k \in \{0, 1\}
```

Important Clarification: There are two types of addition

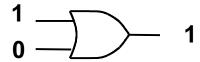
Addition of Boolean variables, e.g.,

$$1 + 0 = 1$$

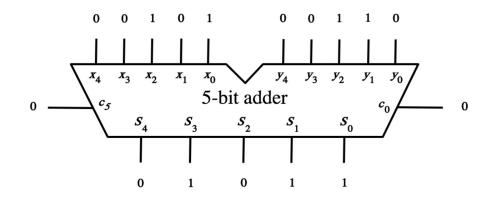
Addition of n-bit Binary numbers, e.g.,

$$00101 + 00110 = 01011$$

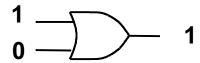
Addition of Boolean variables, e.g.,



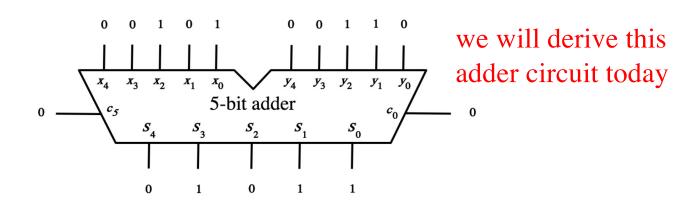
Addition of n-bit Binary numbers, e.g.,



Addition of Boolean variables, e.g.,



Addition of n-bit Binary numbers, e.g.,



Addition of two Boolean <u>variables</u>, e.g.,

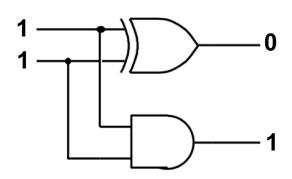
```
1 + 1 = 1 (according to the rules of Boolean algebra)
```

Addition of two 1-bit Binary <u>numbers</u>, e.g.,

```
1 + 1 = 10 (because in decimal 1 + 1 = 2)
```

Addition of two Boolean variables, e.g.,

Addition of two 1-bit Binary numbers, e.g.,



In this case, the adder circuit simplifies to the half-adder.

Addition of 1-bit Unsigned Numbers

$$\begin{array}{c}
x \\
+y \\
c s
\end{array}$$
Carry \longrightarrow Sum

Addition of two 1-bit numbers (there are four possible cases)

Addition of two 1-bit numbers (there are four possible cases)

Addition of two 1-bit numbers (the truth table)

x y	Carry c	Sum s
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

$$\frac{x}{+y}$$

x y	c	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

X	0	0	1	1
<u>+ y</u>			+0	
c s	0 0	0 1	0 1	1 0

x y	c	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

X	0	0	1	1
<u>+ y</u>	+0	+ 1	+0	+ 1
c s	0 0	0 1	0 1	1 0

x	y	c	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$x$$
 $+y$
 $c s$

x y	c	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

$\boldsymbol{\mathcal{X}}$	0	0	1	1
+ y	+ 0	+ 1	+0	+ 1
$\frac{}{c}$			0 1	

x y	c	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

\mathcal{X}	0	0	1	1
+ y	+ 0	+ 1	+0	+ 1
$\frac{}{c}$	${0}$	0 1	0 1	$\frac{-}{1 \ 0}$

x	у	c	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0
		I	

$$x$$
 $+y$
 $c s$

x y	c	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

$$x + y$$
 $c s$

x y	\boldsymbol{c}	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

$$x + y$$
 $c s$

- <u>-</u>	x	y	c	S
	0	0	0	0
	0	1	0	1
	1	0	0	1
	1	1	1	0

$$x$$
 $+y$
 $c s$

x y	c	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

$$\frac{x}{+y}$$

x y	\boldsymbol{c}	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

$$\frac{x}{+y}$$

x y	c	S	
0 0	0	0	
0 1	0	1	
1 0	0	1	
1 1	1	0	

$$x$$
 $+y$
 $c s$

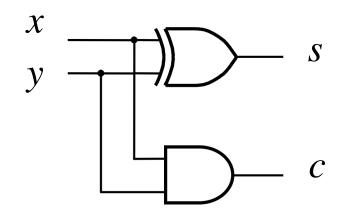
x y	c	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

x y	c	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

x y	c	S	_
0 + 0	= 0	0	$=0_{10}$
0 + 1	= 0	1	$=1_{10}$
1 + 0	= 0	1	$= 1_{10}$
1 + 1	= 1	0	$=2_{10}$
	l l		

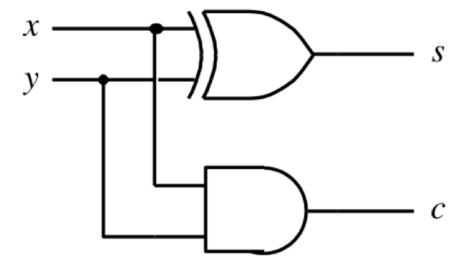
AND				
x y	c	S		
0 0	0	0		
0 1	0	1		
1 0	0	1		
1 1	1	0		
		I		

		>	KOF	3
x y	c		S	
0 0	0		0	
0 1	0		1	
1 0	0		1	
1 1	1		0	

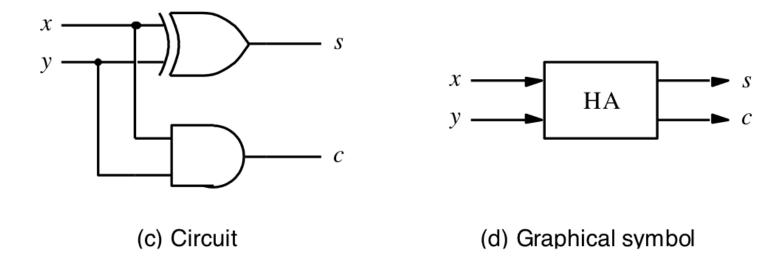


x y	c	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

Addition of two 1-bit numbers (the logic circuit)



The Half-Adder



Analogy with addition in base 10

Analogy with addition in base 10

Analogy with addition in base 10

carry	0	1	1	0	
	L	3	8	9	
	Г	1	5	7	
		5	4	6	

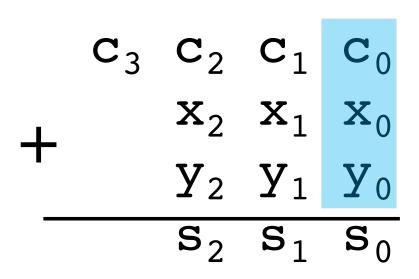
Example in base 2

Example in base 2

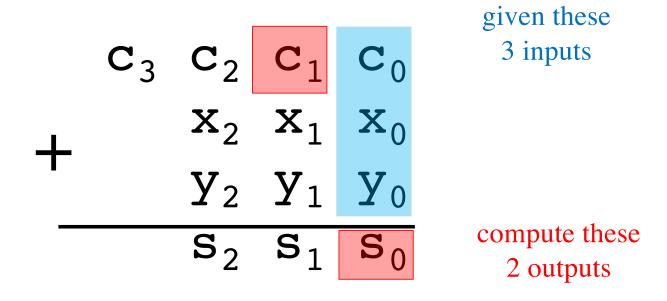
carry		1	0	0	0	
	+		1	0	1	
			1	1	0	
		1	0	1	1	

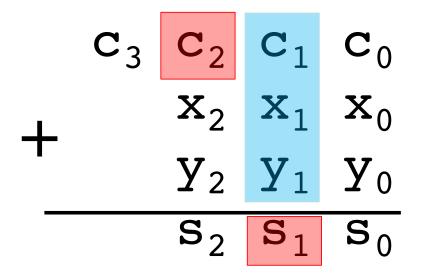
Example in base 2

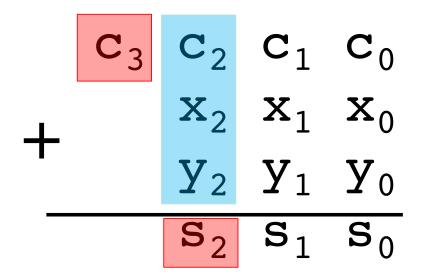
carry		1	0	0	0	
			1	0	1	5 ₁₀
	Т		1	1	0	+ 6 ₁₀
		1	0	1	1	11 ₁₀



given these 3 inputs







Addition of multibit numbers

Generated carries
$$\longrightarrow$$
 1 1 1 0 ... c_{i+1} c_i ... $X = x_4 x_3 x_2 x_1 x_0$ 0 1 1 1 1 (15)₁₀ ... x_i ...

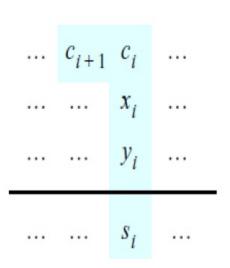
Bit position *i*

Problem Statement and Truth Table

 c_{i+1}	c_{i}	
 	x_i	
 	y_i	
 	s_i	

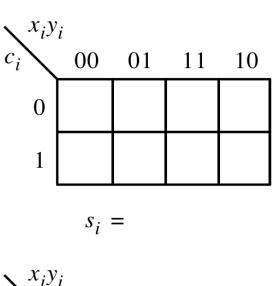
c_i	x_i	y_i	c_{i+1}	s_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

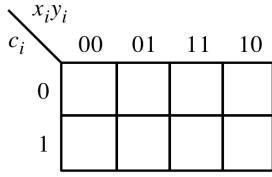
Problem Statement and Truth Table



$c_i x_i y_i$	c_{i+1}	s_i	
0+0+0 0+0+1 0+1+0 0+1+1 1+0+0 1+0+1 1+1+0	= 0 $= 0$ $= 0$ $= 1$ $= 1$ $= 1$	0 1 1 0 1 0	$= 0_{10}$ $= 1_{10}$ $= 1_{10}$ $= 2_{10}$ $= 2_{10}$ $= 2_{10}$
1+1+1	= 1		$=3_{10}$

c_{i}	x_i	y_i	c_{i+1}	s_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1



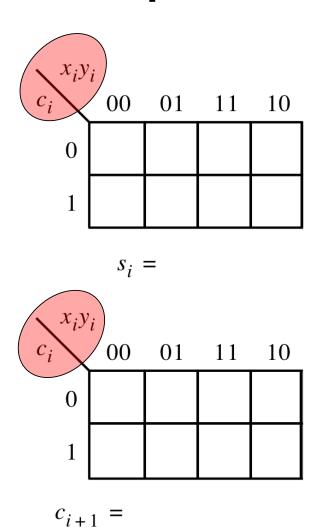


$$c_{i+1} =$$

[Figure 3.3a-b from the textbook]

Note that the textbook switched to the other way to draw a K-Map

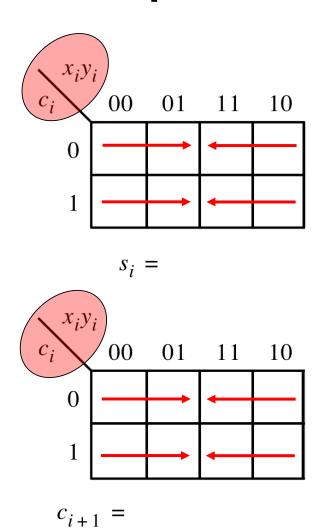
c_{i}	x_i	y_i	c_{i+1}	s_i
0	0	0	0	0
0		1	0	1
0		0	0	1
0		1	1	0
0		0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1



[Figure 3.3a-b from the textbook]

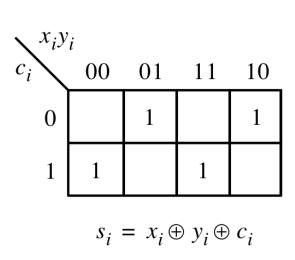
Note that the textbook switched to the other way to draw a K-Map

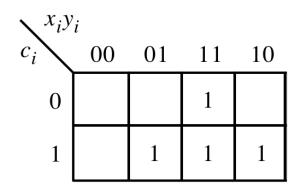
$c_i x_i y_i$	c_{i+1}	s_i
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 1	0 1 1 0
1 0 0 1 0 1 1 1 0 1 1 1	0 1 1 1	1 0 0 1



[Figure 3.3a-b from the textbook]

c_{i}	x_i	y_i	c_{i+1}	s_i
0 0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1 0	0 0 0 1 0 1	0 1 1 0 1 0 0
1	1	1	1	1

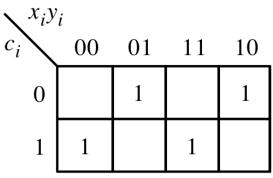




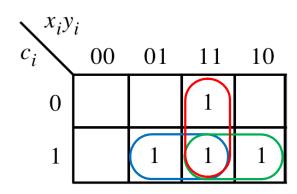
$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

[Figure 3.3a-b from the textbook]

c_{i}	x_i	y_i	c_{i+1}	s_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1



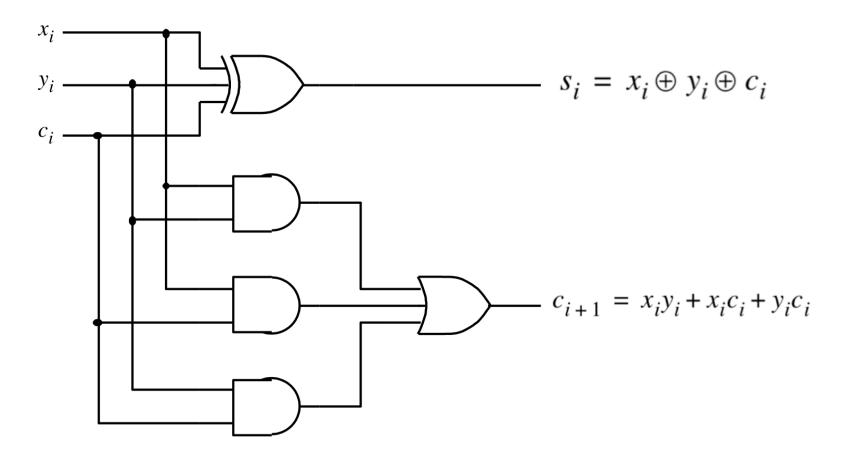
3-input XOR $s_i = x_i \oplus y_i \oplus c_i$



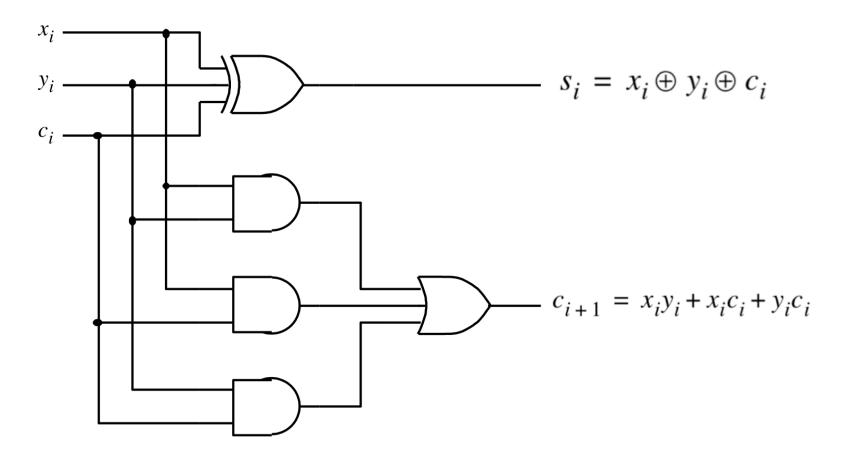
$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

[Figure 3.3a-b from the textbook]

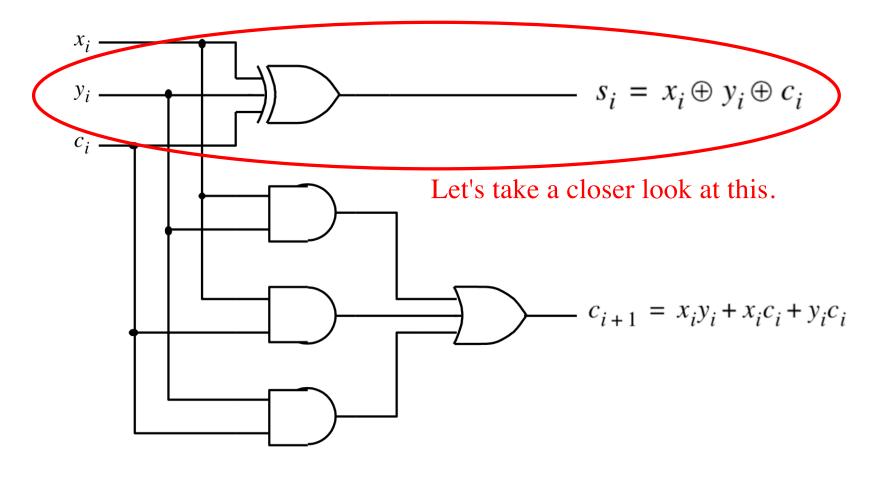
The circuit for the two expressions



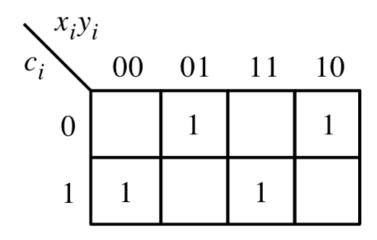
This is called the Full-Adder



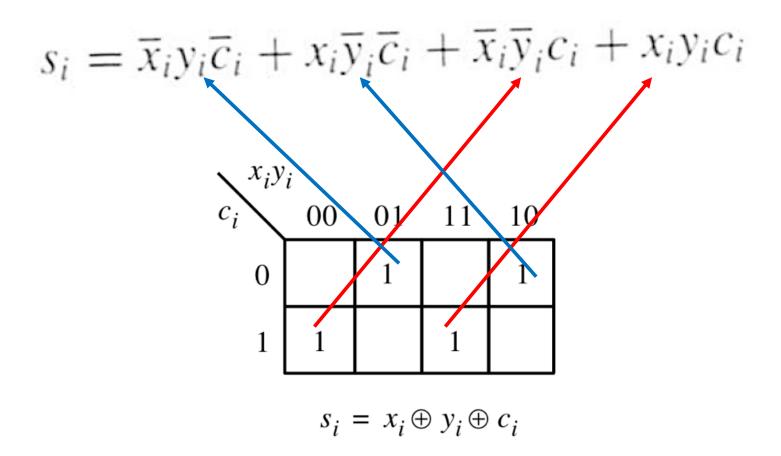
This is called the Full-Adder



$$s_i = \overline{x}_i y_i \overline{c}_i + x_i \overline{y}_i \overline{c}_i + \overline{x}_i \overline{y}_i c_i + x_i y_i c_i$$



$$s_i = x_i \oplus y_i \oplus c_i$$



$$s_i = \overline{x}_i y_i \overline{c}_i + x_i \overline{y}_i \overline{c}_i + \overline{x}_i \overline{y}_i c_i + x_i y_i c_i$$

$$s_{i} = (\overline{x}_{i}y_{i} + x_{i}\overline{y}_{i})\overline{c}_{i} + (\overline{x}_{i}\overline{y}_{i} + x_{i}y_{i})c_{i}$$

$$= (x_{i} \oplus y_{i})\overline{c}_{i} + (\overline{x}_{i} \oplus y_{i})c_{i}$$

$$= (x_{i} \oplus y_{i}) \oplus c_{i}$$

$$s_i = \overline{x}_i y_i \overline{c}_i + x_i \overline{y}_i \overline{c}_i + \overline{x}_i \overline{y}_i c_i + x_i y_i c_i$$

Can you prove this?

$$s_{i} = (\overline{x}_{i}y_{i} + x_{i}\overline{y}_{i})\overline{c}_{i} + (\overline{x}_{i}\overline{y}_{i} + x_{i}y_{i})c_{i}$$

$$= (x_{i} \oplus y_{i})\overline{c}_{i} + (x_{i} \oplus y_{i})e_{i}$$

$$= (x_{i} \oplus y_{i}) \oplus c_{i}$$

$$\overline{x_i} \, \overline{y_i} + x_i \, y_i = \overline{x_i \oplus y_i}$$

$$(x_i y_i + x_i y_i) = x_i \oplus y_i$$
XNOR

$$\overline{x_i} \, \overline{y_i} + x_i \, y_i = \overline{x_i \oplus y_i}$$

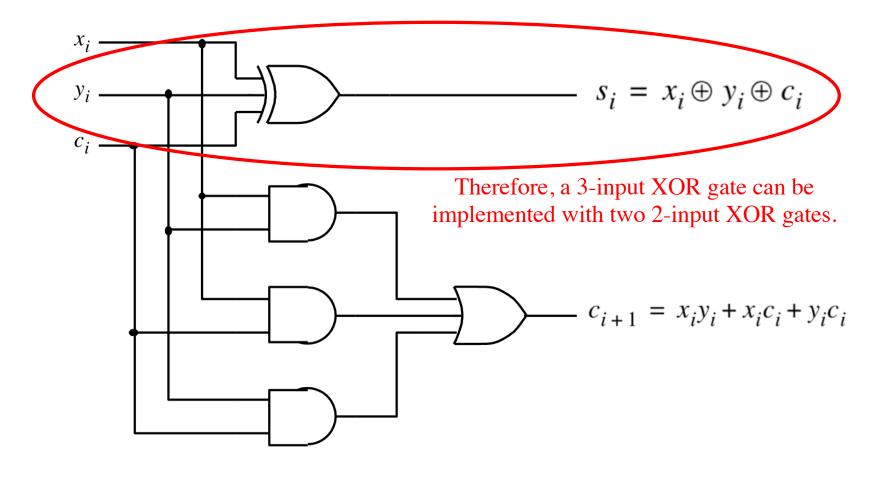
$$XOR$$

$$\overline{x_i} \, \overline{y_i} + x_i \, y_i = x_i \oplus y_i$$
XNOR

$$\overline{x_i} \, \overline{y_i} + x_i \, y_i = \overline{x_i \oplus y_i}$$

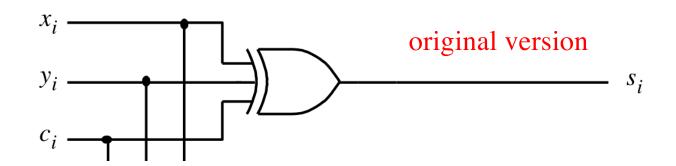
You can also prove this using the theorems of Boolean algebra. Try that at home.

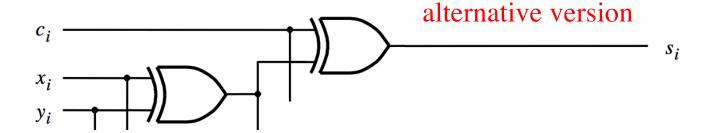
The Full-Adder Circuit

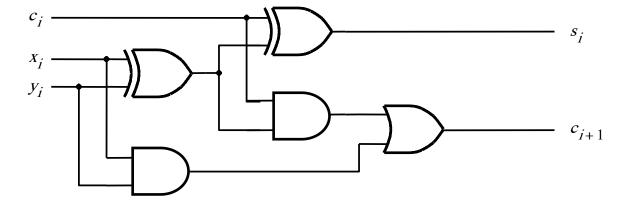


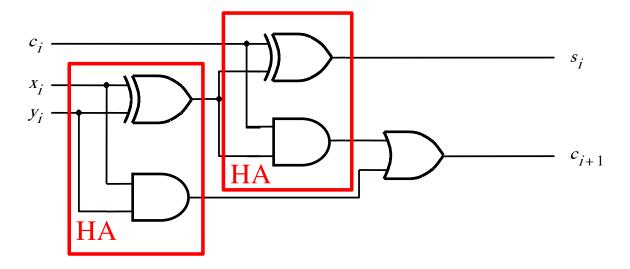
s_i can be implemented in two different ways

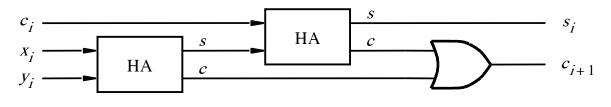
$$s_i = x_i \oplus y_i \oplus c_i$$



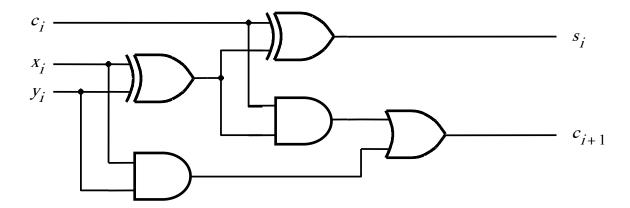






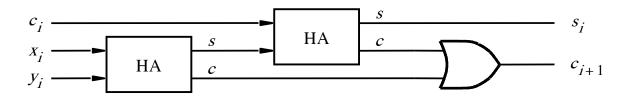


(a) Block diagram

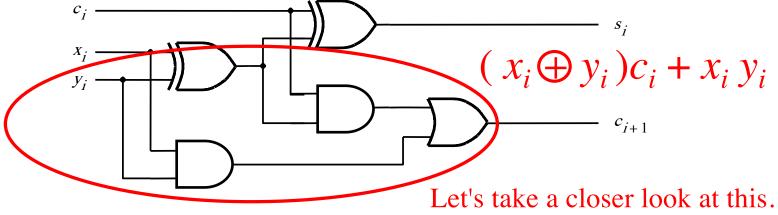


(b) Detailed diagram

[Figure 3.4 from the textbook]

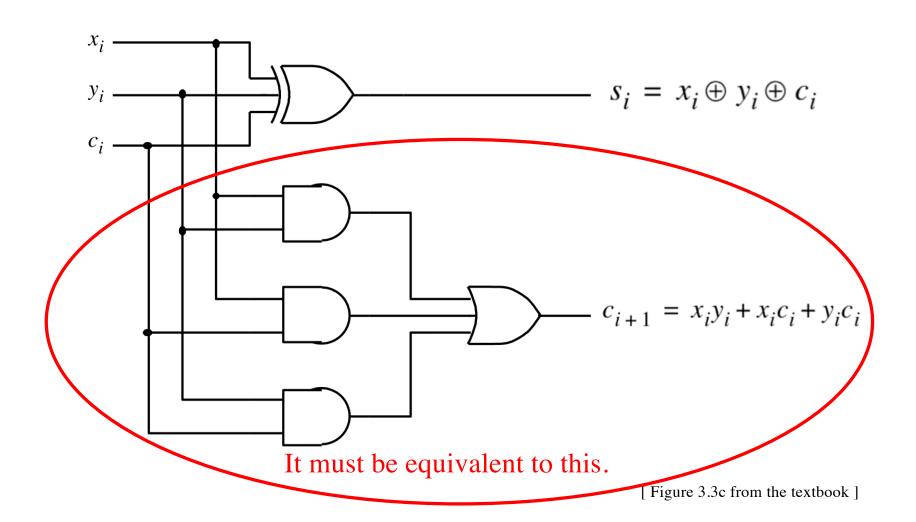


(a) Block diagram



(b) Detailed diagram

The Full-Adder Circuit



Let's Prove This

$$(x_i \oplus y_i)c_i + x_i y_i = x_i y_i + x_i c_i + c_i y_i$$

Let's Prove This

$$(x_i \oplus y_i)c_i + x_i y_i =$$

Let's Prove This

$$(x_i \oplus y_i)c_i + x_i y_i = (\overline{x_i} y_i + x_i \overline{y_i})c_i + x_i y_i$$

$$(x_i \oplus y_i)c_i + x_i y_i = (\overline{x_i} y_i + x_i \overline{y_i})c_i + x_i y_i$$

$$= \overline{x_i} y_i c_i + x_i \overline{y_i} c_i + x_i y_i + x_i y_i$$
double this term

$$(x_i \oplus y_i)c_i + x_i y_i = (\overline{x_i} y_i + x_i \overline{y_i})c_i + x_i y_i$$
$$= \overline{x_i} y_i c_i + \overline{x_i} \overline{y_i} c_i + \overline{x_i} y_i + \overline{x_i} y_i$$

$$(x_i \oplus y_i)c_i + x_i y_i = (\overline{x_i} y_i + x_i \overline{y_i})c_i + x_i y_i$$

$$= \overline{x_i} y_i c_i + \overline{x_i} \overline{y_i} c_i + \overline{x_i} y_i + \overline{x_i} y_i$$

$$= (\overline{x_i} c_i + x_i) y_i + x_i (\overline{y_i} c_i + y_i)$$

$$(x_i \oplus y_i)c_i + x_i y_i = (\overline{x_i} y_i + x_i \overline{y_i})c_i + x_i y_i$$

$$= \overline{x_i} y_i c_i + x_i \overline{y_i} c_i + x_i y_i + x_i y_i$$

$$= (\overline{x_i} c_i + x_i) y_i + x_i (\overline{y_i} c_i + y_i)$$
use Theorem 16a twice
$$= (c_i + x_i) y_i + x_i (c_i + y_i)$$

$$(x_i \oplus y_i)c_i + x_i y_i = (\overline{x_i} y_i + x_i \overline{y_i})c_i + x_i y_i$$

$$= \overline{x_i} y_i c_i + x_i \overline{y_i} c_i + x_i y_i + x_i y_i$$

$$= (\overline{x_i} c_i + x_i) y_i + x_i (\overline{y_i} c_i + y_i)$$

$$= (c_i + x_i) y_i + x_i (c_i + y_i)$$

$$= c_i y_i + x_i y_i + x_i c_i + x_i y_i$$

$$(x_i \oplus y_i)c_i + x_i y_i = (\overline{x_i} y_i + x_i \overline{y_i})c_i + x_i y_i$$

$$= \overline{x_i} y_i c_i + x_i \overline{y_i} c_i + x_i y_i + x_i y_i$$

$$= (\overline{x_i} c_i + x_i) y_i + x_i (\overline{y_i} c_i + y_i)$$

$$= (c_i + x_i) y_i + x_i (c_i + y_i)$$

$$= c_i y_i + x_i y_i + x_i c_i + x_i y_i$$

remove one copy of this doubled term

$$(x_i \oplus y_i)c_i + x_i y_i = (\overline{x_i} y_i + x_i \overline{y_i})c_i + x_i y_i$$

$$= \overline{x_i} y_i c_i + x_i \overline{y_i} c_i + x_i y_i + x_i y_i$$

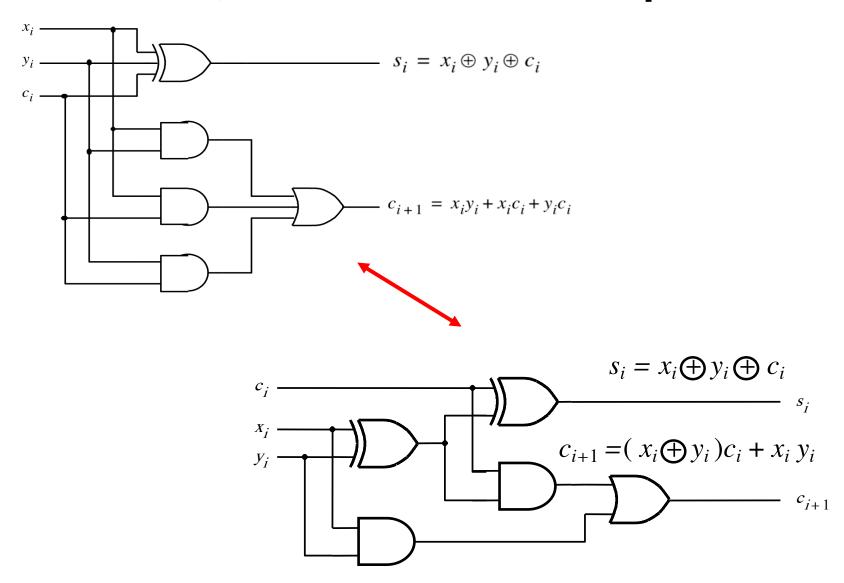
$$= (\overline{x_i} c_i + x_i) y_i + x_i (\overline{y_i} c_i + y_i)$$

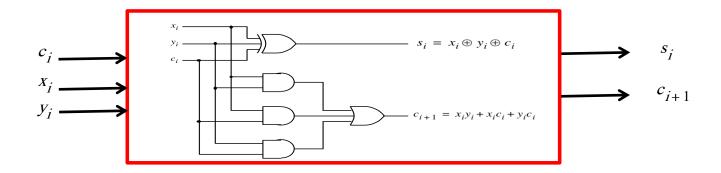
$$= (c_i + x_i) y_i + x_i (c_i + y_i)$$

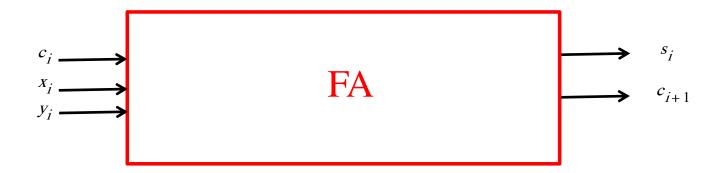
$$= c_i y_i + x_i y_i + x_i c_i + x_i y_i$$

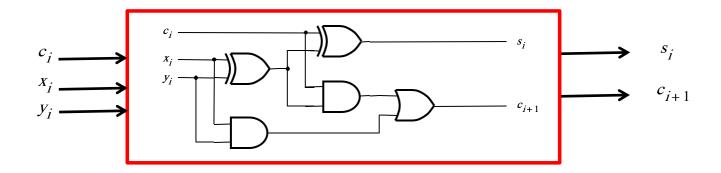
$$= c_i y_i + x_i y_i + x_i c_i$$

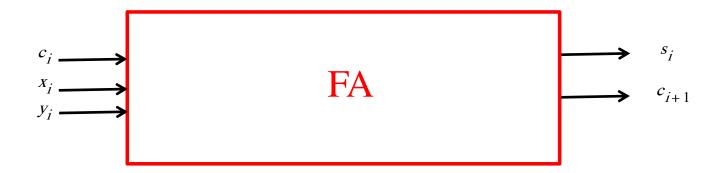
Therefore, these circuits are equivalent

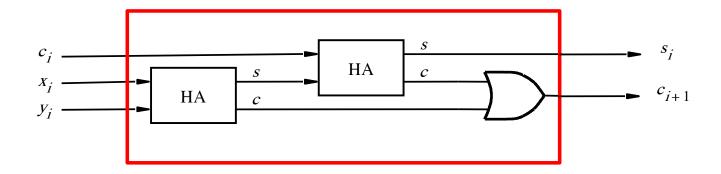


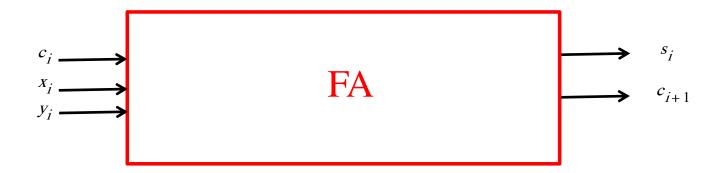




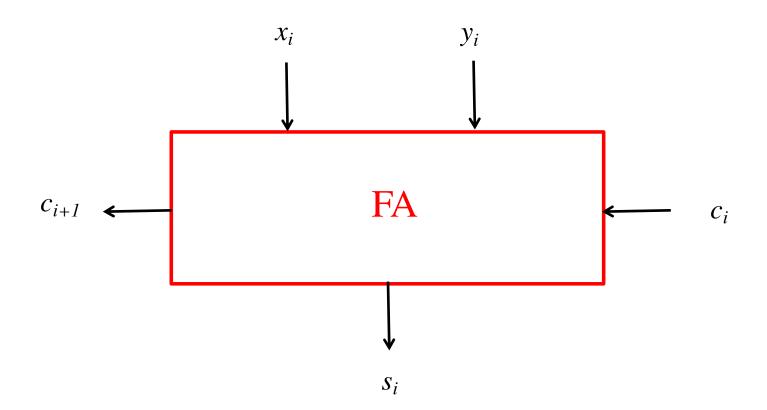




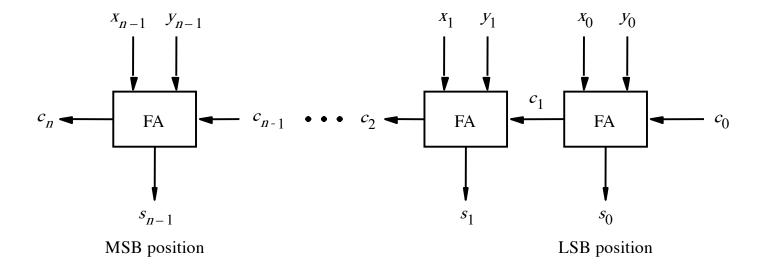




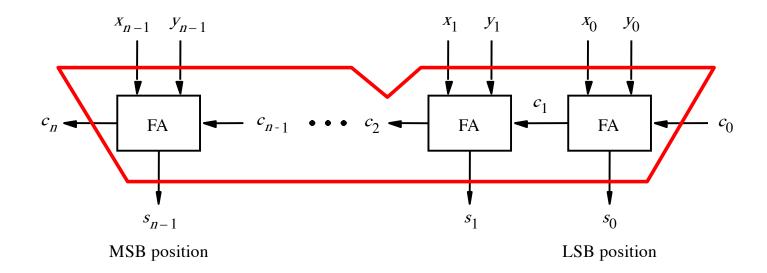
We can place the arrows anywhere



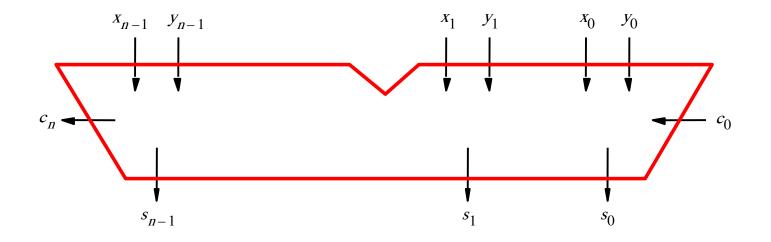
n-bit ripple-carry adder



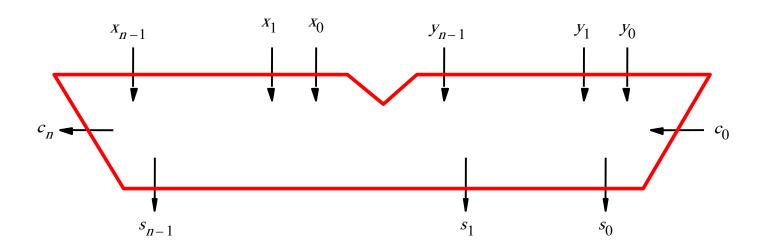
n-bit ripple-carry adder abstraction



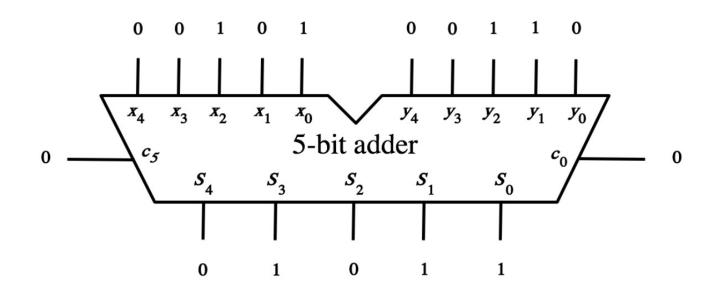
n-bit ripple-carry adder abstraction



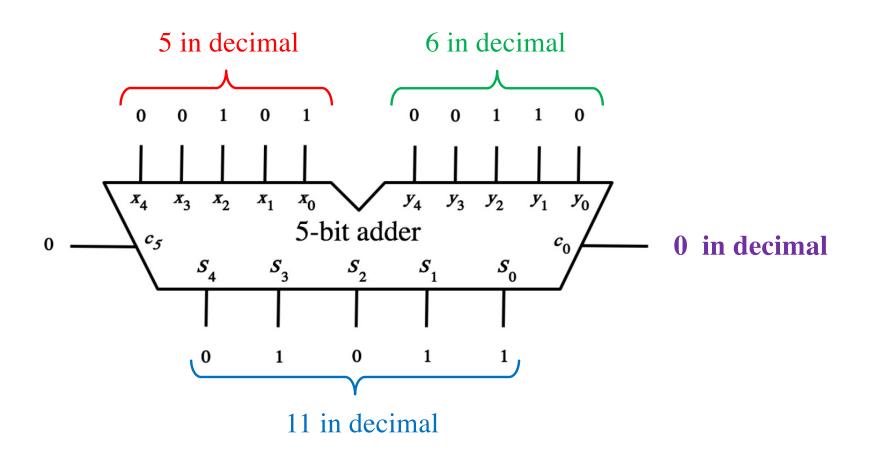
The x and y lines are typically grouped together for better visualization, but the underlying logic remains the same



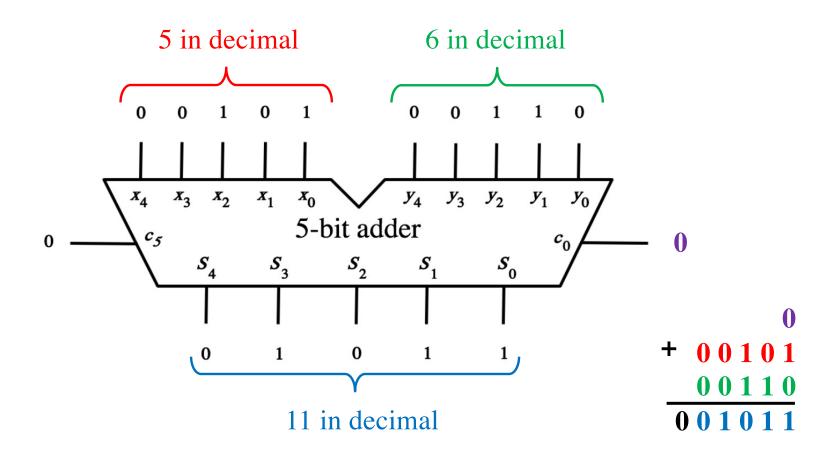
Example: Computing 5+6 using a 5-bit adder



Example: Computing 5+6 using a 5-bit adder



Example: Computing 5+6 using a 5-bit adder



Design Example:

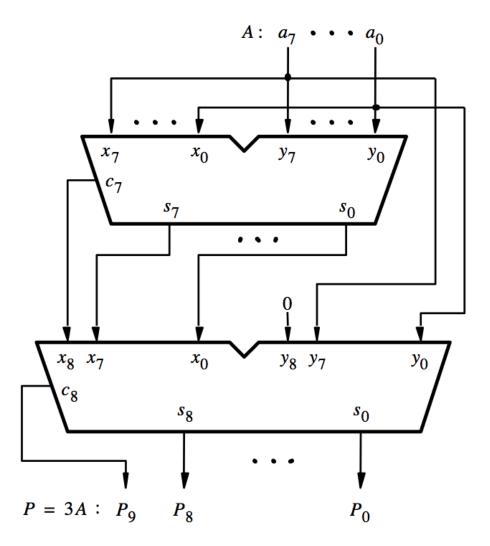
Create a circuit that multiplies a number by 3

How to Get 3A from A?

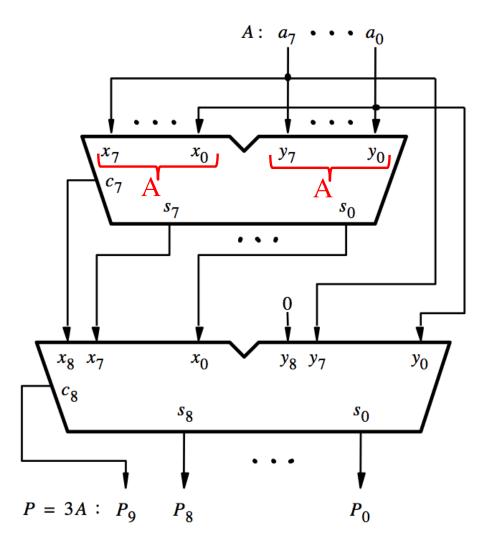
•
$$3A = A + A + A$$

•
$$3A = (A+A) + A$$

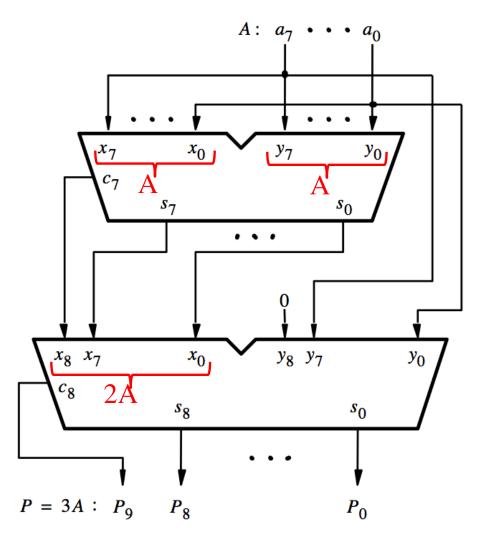
•
$$3A = 2A + A$$



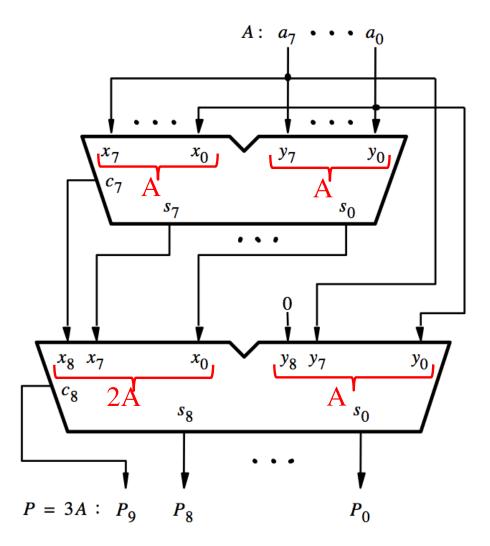
[Figure 3.6a from the textbook]



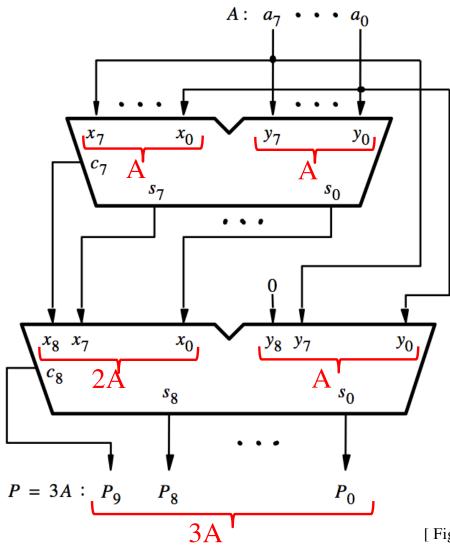
[Figure 3.6a from the textbook]



[Figure 3.6a from the textbook]



[Figure 3.6a from the textbook]



[Figure 3.6a from the textbook]

Decimal Multiplication by 10

What happens when we multiply a number by 10?

$$4 \times 10 = ?$$

$$1245 \times 10 = ?$$

Decimal Multiplication by 10

What happens when we multiply a number by 10?

$$4 \times 10 = 40$$

$$542 \times 10 = 5420$$

$$1245 \times 10 = 12450$$

Decimal Multiplication by 10

What happens when we multiply a number by 10?

$$4 \times 10 = 40$$

$$542 \times 10 = 5420$$

$$1245 \times 10 = 12450$$

You simply add a zero as the rightmost number

Binary Multiplication by 2

What happens when we multiply a number by 2?

011 times 2 = ?

101 times 2 = ?

110011 times 2 = ?

Binary Multiplication by 2

What happens when we multiply a number by 2?

011 times 2 = 0110

101 times 2 = 1010

110011 times 2 = 1100110

Binary Multiplication by 2

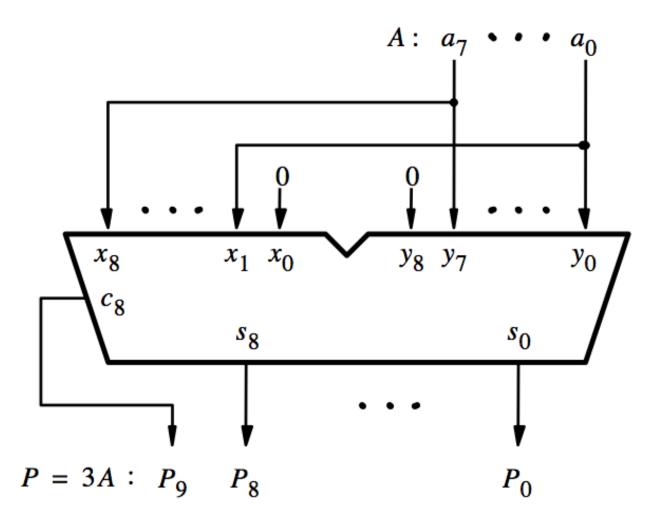
What happens when we multiply a number by 2?

011 times 2 = 0110

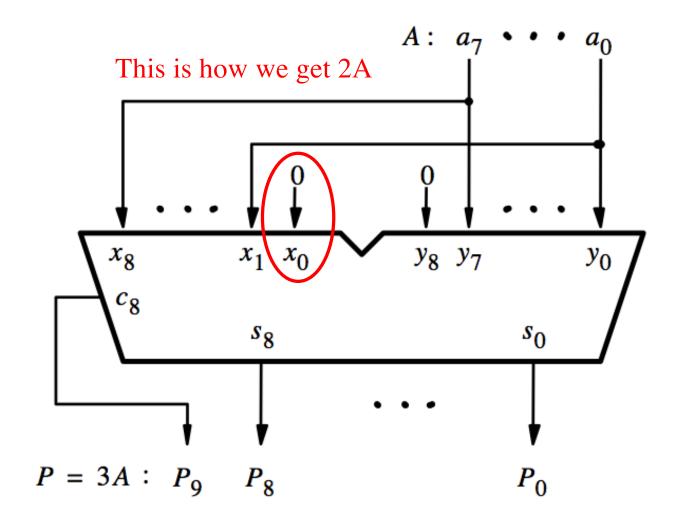
101 times 2 = 1010

110011 times 2 = 1100110

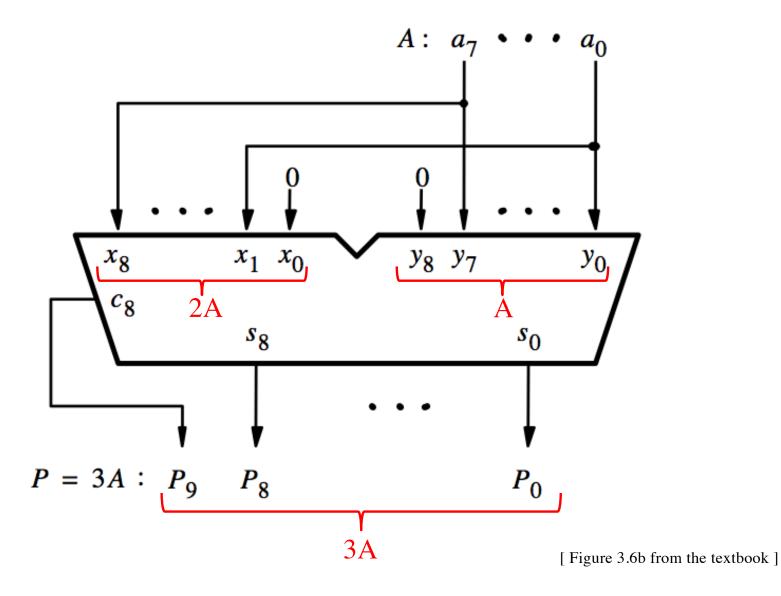
You simply add a zero as the rightmost number



[Figure 3.6b from the textbook]



[Figure 3.6b from the textbook]



Questions?

THE END