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Administrative Stuff

« We are now starting with Chapter 3



Administrative Stuff

« HWS is due today @ 10 pm



Administrative Stuff

* No homework due next week

« HWG6 will be due on Monday, Oct 13



Administrative Stuff

* The first midterm exam was last Friday



Quick Review



Number Systems

N=d,B"+d, {B" !+ ...4+d;B! + dyB°



Number Systems

N=d,B"+d, {B" !+ ...+ d;B! + doB°

n-th digit 0-th digit
(most significant) (least significant)



Number Systems

base power

N=d,B"+d, {B" !+ ...+d;B! + doyB°

n-th digit 0-th digit
(most significant) (least significant)



The Decimal System (Base 10)

52410 = 5x10%+2x10'+4x 10"



The Decimal System

52410 = 5x10%+2x10'+4x 10"

= Hx1004+2x10+4x1

= 500+20+4

= 52410



Another Way to Look at This




Another Way to Look at This

102 10t 109

S(12 |4




Another Way to Look at This

102 10! 109 < labels

boxes > 51214

Each box can contain only one digit and has only one label. From right
to left, the labels are increasing powers of the base, starting from O.



Binary Numbers (Base 2)

100l = 1x2% 4+ 0x2%2 4+ 0x2 + 1x2Y



Binary Numbers (Base 2)

base power

N/

100l = 1x2% 4+ 0x2%2 4+ 0x2 + 1x2Y

most significant bit least significant bit



10015

Binary Numbers (Base 2)

1x22 + 0x2%2 + 0x28 4+ 1x2°
1x8 4+ 0x4 + 0O0x2 + 1x1
8 + 0 + 0 + 1

910



111015 =

1 x 24

Another Example

+ 1x22 + 1x22 + 0x2t

1x16 + 1x8 + 1x4 + 0x2

16

+ 8 + 4 + 0

+ 1x20°
+ 1x1
+ 1




Powers of 2

210 — 1024
29 = 512
28 = 256
27 = 128
2 = 64
2 = 32
24 = 16
23 = 8
22 = 4
P A— 2
20 — 1



What is the value of this binary number?

00101100

0*27 + 0*26+ 1*25 + 0*24 + 1*23 + 1*22 + 0*21 + 0*20
0*128 + 0*64 + 1*32 + 0*16 + 1*8 + 1*4 + 0*2 + 0*1
0*128 + 0*64 + 1*32 + 0*16 + 1*8 + 1*4 + 0*2 + 0*1

32+ 8 + 4 = 44 (in decimal)



Another Way to Look at This

270260 25 24 23 22 20 20




Another Way to Look at This

270260 25 24 23 22 20 20




Signed v.s. Unsigned Numbers



Signhed v.s. Unsigned Numbers

\ J \ J
Y Y
positive only
and positive
negative integers

integers



Signhed v.s. Unsigned Numbers

\ Y J 1\ Y J
positive only
and positive
negative integers
integers

and zero and zero



Two Different Types of Binary Numbers

Unsighed numbers
e All bits jointly represent a positive integer.
e Negative numbers cannot be represented this way.

Signhed numbers
e The left-most bit represents the sign of the number.
e If that bit is 0, then the number is positive.
e If that bit is 1, then the number is negative.

e The magnitude of the largest number that can be
represented in this way is twice smaller than the
largest number in the unsigned representation.



Two Different Types of Binary Numbers

Unsighed numbers
e All bits jointly represent a positive integer.

e Negative numbers cannot be represented this way.
There are 3 different ways

to represent signed numbers.
They will be introduced next time.
e The left-most bit represents the sign of the number.

Signhed numbers

e If that bit is 0, then the number is positive.
e If that bit is 1, then the number is negative.

e The magnitude of the largest number that can be
represented in this way is twice smaller than the
largest number in the unsigned representation.



Unsignhed Representation

270260 25 24 23 22 20 20

This represents + 44.



Unsignhed Representation

270260 25 24 23 22 20 20

This represents + 172.



Sign-and-Magnitude Representation
(using the left-most bit as the sign)

sigh 26 925 924 93 92 9l 90

Ojo0(1j0(1{1(0]0

This represents + 44.



Sign-and-Magnitude Representation
(using the left-most bit as the sign)

sigh 26 925 924 93 92 9l 90

110 1{0(1]1]0]0

This represents — 44.



Three ways to represent negative numbers

Sign and magnitude

1’s complement

2’s complement

sign 26 925 924 93 92 9l 90
110]1110]1]1]070
sign 26 925 24 93 92 9l 90
1117011 ]0]0]1]1
sign 26 925 924 93 92 9l 90
1117011701 1]070

- 44

- 44

- 44



Today’s Lecture is About
Addition of Unsigned Numbers



Important Clarification:
There are two types of addition

- Addition of Boolean variables, e.g.,

X+y where x, y € {0, 1}

« Addition of n-bit Binary numbers, e.g.,

X4X3X2X1Xo + Yay3Y2¥1Yo  Where each xy, yi € {0, 1}



Important Clarification:
There are two types of addition

- Addition of Boolean variables, e.g.,

1+0=1

« Addition of n-bit Binary numbers, e.g.,

00101 + 00110 = 01011



Important Clarification:
There are two types of addition

- Addition of Boolean variables, e.g.,

L X xn x X \/ Yo Y3 Vo N N
0 cs 5-bit adder % 0
S4 5'3 S2 Sl SO




Important Clarification:
There are two types of addition

- Addition of Boolean variables, e.g.,

1 1
o:D_

« Addition of n-bit Binary numbers, e.g.,

0o o0 1 0 1 0O o0 1 1 0
LLLLL L e civeait tod
55 x5 N % B h % adder circuit today
0 cs 5-bit adder % 0
S

we will derive this




Important Clarification:
There are two types of addition

« Addition of two Boolean variables, e.g.,

1+1=1 (according to the rules of Boolean algebra)

« Addition of two 1-bit Binary numbers, e.g.,

1+1=10 (because indecimal1+1=2)



Important Clarification:
There are two types of addition

« Addition of two Boolean variables, e.g.,

1 1
1:D_

« Addition of two 1-bit Binary numbers, e.g.,

In this case, the
1 4—} adder circuit simplifies
1 ,} > 0 to the half-adder.

1




Addition of 1-bit Unsigned Numbers



Addition of two 1-bit numbers

Carry

Sum

[ Figure 3.1a from the textbook ]



Addition of two 1-bit numbers
(there are four possible cases)

X 0 0 | |
+y + 0 1 +0 + 1
C S 00 01 01 10
A\

[ Figure 3.1a from the textbook ]



Addition of two 1-bit numbers
(there are four possible cases)

X 0 0 1 1
+y + 0 1 0 + 1
C S 00 01 01 10

Y~
A\ 019 Lo Lo 210

Carry Sum

[ Figure 3.1a from the textbook ]



Addition of two 1-bit numbers
(the truth table)

Carry Sum
X Yy C )
0 O 0 0
0 1 0 1
1 0 0 1
1 1 1 0

[ Figure 3.1b from the textbook |



Addition of two 1-bit numbers

1
+ 1

C S 00 O1 OI1 1

0
+y + 0 _l

[ Figure 2.12 from the textbook |



Addition of two 1-bit numbers

0 0 | 1
+ 0 | + 1
00 01 01 |
X 'y C S
0 0 0 0
0 1 0 |
1 0 0 1
11 1 0




Addition of two 1-bit numbers

0 0 | |
+ 0 | + 1
00 01 01 |
X 'y C S
0 0 0 0
0 1 0 |
1 0 0 1
11 1 0




Addition of two 1-bit numbers

X 0 0 1 1
+y + 0 1 + 1
C S 00 01 Ol 1

Ny c )
0 O 0 0
0 1 0 1
1 0 0 1
1 1 1 0




Addition of two 1-bit numbers

0 0 | 1
+ 0 | + 1
00 01 01 |
X 'y C S
0 0 0 0
0 1 0 |
1 0 0 1
11 1 0




Addition of two 1-bit numbers

0 0 | 1
+ 0 | + 1
00 01 01 |
X Yy C )
0 0 0 0
0 1 0 |
1 O 0 |
| | | 0




Addition of two 1-bit numbers

0 0 | 1
+ 0 | + 1
00 01 01 |
X |y C )
0 0 0 0
0 1 0 |
1 0 0 |
1 1 1 0




Addition of two 1-bit numbers

0 0 | 1
+ 0 | + 1
00 01 01 |
X 'y C S
0 0 0 0
0 1 0 |
1 0 0 1
11 1 0




Addition of two 1-bit numbers

X 0 0 | |
+y + 0 | +0 + 1
C S 00 01 01 1

X 9 c )
0O O 0 0
0 1 0 1
1 0 0 1
1 1 1 0




Addition of two 1-bit numbers

X 0 0 | |
+y + 0 | +0 + 1
C S 00 01 01 1

X 9 é )
0O O 0 0
0 1 0 1
1 0 0 1
1 1 1 0




Addition of two 1-bit numbers

0 0 | 1
+ 0 | + 1
00 01 01 |
X 'y C S
0 0 0 0
0 1 0 |
1 0 0 1
11 1 0




Addition of two 1-bit numbers

0 0 | 1
+ 0 | + 1
00 01 01 |
X 'y C S
0 0 0 0
0 1 0 |
1 0 0 1
11 1 0




Addition of two 1-bit numbers

0 0 | 1
+ 0 | + 1
00 01 01 |
X 'y C S
0 0 0 0
0 1 0 1
1 0 0 I
11 1 0




Addition of two 1-bit numbers

0 0 | 1
+ 0 | + 1
00 01 01 |
X 'y C S
0 0 0 0
0 1 0 |
1 0 0 1
11 1 0




Addition of two 1-bit numbers




Addition of two 1-bit numbers

X Yy C S

O+O — O O :()10
0+1 |= 0 1 =1y
1 +0 — O | :110
14+1 |=] 1 0 =2




Addition of two 1-bit numbers

AND

=
-
9
=)

-
_-O O O
O = = O




Addition of two 1-bit numbers

XOR

-
-
C = = O




Addition of two 1-bit numbers




Addition of two 1-bit numbers
(the logic circuit)

) .
./

[ Figure 3.1c from the textbook ]



X

y

The Half-Adder

T—
D—

(c) Circuit

X —b

—

HA

—

(d) Graphical symbol

[ Figure 3.1c-d from the textbook ]



Addition of Multibit Unsighed Numbers



Analogy with addition in base 10

X, X; X

Y Y1 Yo
S, S1 Sy




Analogy with addition in base 10

Ol - W
= U1 00
oY J O



Analogy with addition in base 10

+

Ol - W
= U1 OO0
oY J O



Example in base 2

+
=
= O

o =




Example in base 2

+

O L -
== o
Rl o



Example in base 2




The general case in base 2

Ci; C, C; Cy
X, X; X,

Yo Y1 Yo
S, S1 Sy

+




The general case in base 2

Ci; Cy
X5
Yo

+

Ci
X4
Yi

Co

S,

S,

given these
3 inputs



The general case in base 2

Ci; Cy
X5
Yo

+

Ci

X4
Y1

Co

S,

S,

given these
3 inputs

compute these
2 outputs



The general case in base 2

C; Cy C; Cy
Xy, X1 Xj

Yo Y1 Yo
Sy, S Sy

+




The general case in base 2

Ci3 C; C; Cy
Xy, X1 Xj

Yo Y1 Yo
Sy S; Sy

+




Addition of multibit numbers

F = os 38 = Be =
X = X4 XaX5 XX,

Y =y, 03000

S = 54515785

01111
+01010

11001

(15,
+(10)y,

) Ci+l Ci

Bit position i

[ Figure 3.2 from the textbook ]



Problem Statement and Truth Table

Ci X Vi ikl 8
1Y
00 1 | 0 |
Yi 0O 1 O 0 1
0 1 1 1 0
5 100 | 0 | 1
1 0 1 1 0
1 1 O 1 0
1 1 1 1 1

[ Figure 3.2b from the textbook | [ Figure 3.3a from the textbook ]



Problem Statement and Truth Table

[ Figure 3.2b from the textbook |

Ci Xi )i

0+0+0
0+0+1
0+1+0
O+1+1
1+0+0
1+0+1
1+1+0
1+1+1

®
+
e

— (O OO OO
—t O D e O i e O
I
(\&]
o

[ Figure 3.3a from the textbook ]



R

— e O O O O

N-H

e (O OO = = O O

Let’s fill-in the two K-maps

XiYi
| ¢ N\_ 00 01 11 10
Y; Citvl S;
0
0 0 0 1
1 0 1
0 0 1 §; =
1 1 0 Xy,
0 0 1 ¢ \_ 00 01 11 10
1 1 0
0 1 0 0
1 1 1 |
Civ1 =

[ Figure 3.3a-b from the textbook ]



Let’s fill-in the two K-maps

Note that the textbook switched
to the other way to draw a K-Map X;y;

Ci Xi Vi | Civl | 8
0
O O O 0] 0 1
O 0 1 0 1
O 1 O 0 1 S; =
0O 1 1 1 0 .y
100 0 I ¢\ 00 01 11 10
1 0 1 1 0
1 1 0 1 0 0
I 1 1 | 1 1
Civ1 =

[ Figure 3.3a-b from the textbook ]



Let’s fill-in the two K-maps

Note that the textbook switched
to the other way to draw a K-Map X;y;

Ci X; yi | G+l | S
0
O 0 O 0 0 1
0 0 1 0 1
O 1 O 0 1 S =
01 1 1 0 o
00 0 1 ¢i\/00 01 11 10
1 0 1 1 0
1 1 0 1 0 0
1 1 1 1 1 1
Civ1 =

[ Figure 3.3a-b from the textbook ]



R

— e O O O O

N-H

e (O OO = = O O

Let’s fill-in the two K-maps

~

—_—O = O = O = O

RS

— e e (O = O O O

S~

— O O e O e = O

XiYi
C 00 01 11 10
0 1 1
1] 1 1
§; = X, @Yy, ® ¢
XiYi
C; 00 O01 11 10
0 1
1 1 1 1
Ciyl = XYt X6+ YiC;

[ Figure 3.3a-b from the textbook ]



R

— e O O O O

N-H

e (O OO = = O O

Let’s fill-in the two K-maps

~

—_—O = O = O = O

+.

— e e (O = O O O

e

— O O e O e = O

XiYi

Ci 00 01 11 10
0 1 1
1 1 1

3-input XOR 5= 5@y ®c,

[

= Xy, Xty

[ Figure 3.3a-b from the textbook ]



The circuit for the two expressions

.xl .
y; . :)) > S; = x,-@ y,-@ C;
Cl <

[ ;

D— Ciy1 = XY T X6+ Y€

L]

[ Figure 3.3c from the textbook ]



This is called the Full-Adder

.xl
y; R _/) > §; = X;®DYy; D¢
Cl N
1 —
\ C. = x.’.+x.c.+y.c.
)| / D_ I+ 1 iVi IR A A

[ Figure 3.3c from the textbook ]



This is called the Full-Adder

Let's take a closer look at this.

D— Ciy1 = XY T X6+ Y€

L]

[ Figure 3.3c from the textbook ]



XOR Magic

—'T_ '\.I.K:I.Z.{ & F -—\-f\ (
XiYi

o0 O1 11 10
0 | 1
| 1 1




XOR Magic

§; = X;®Yy;® ¢



XOR Magic

(fz’,\'i i -\.1'_-\-',' )Ci + (—\-1\—, + X;Vi)Ci

(x; @ yi)ci + (xi D yi)ci

(-\‘i D ,\'i) @ Ci



XOR Magic

S = .Y,’.\','-(-:,' -1 XiY;Ci + XiY:Ci + X;ViCi

Can you prove this?

S = (.:{:i,\‘i -+ .\.1'_-\-.1')?1' = -\-1'.\—',' -+ XiVi)Ci

—
P
<
~—
m
P

1
—
N
D
) -
et
™



XOR Magic

X, Vi + X%y = 50y,



XOR Magic

XNOR




XOR Magic

X; Vi + Xy

XOR



XOR Magic

N\

;iyz' T X Y £ XD y;




XOR Magic

X, Vi + X%y = 50y,

You can also prove this using the theorems of Boolean algebra.
Try that at home.



The Full-Adder Circuit

§; = X;®DYy; D¢

Therefore, a 3-input XOR gate can be
implemented with two 2-input XOR gates.

D— Ciy1 = XY T X6+ Y€

L]

[ Figure 3.3c from the textbook ]



s; can be implemented in two different ways

original version

T

alternative version
Ci § >
} si
_ /4




The Full-Adder Circuit
(alternative drawing)

) >

\D' /
—
|/

[ Figure 3.4b from the textbook ]



The Full-Adder Circuit
(alternative drawing)

U U

HA

L
v

HA

i+1

[ Figure 3.4b from the textbook ]



The Full-Adder Circuit
(alternative drawing)

s HA c !
—
HA c Dﬁ Civ1

(a) Block diagram

| J
\D—" ID
)
/

(b) Detailed diagram
[ Figure 3.4 from the textbook ]



The Full-Adder Circuit
(alternative drawing)

HA C i+1

(a) Block diagram

CI- '

D' | (xi@yis)jci-l_xiyi
B

—

|/

C-

/' )
Let's take a closer look at this.

(b) Detailed diagram

[ Figure 3.4 from the textbook ]



The Full-Adder Circuit

L

§; = X;®DYy; D¢

—/

\

D— Ciy1 = XY T X6+ Y€

L]

It must be equivalent to this.

Figure 3.3c from the textbook ]



Let’s Prove This

(x,@y;))c;+x;y;, = Xy +Xx;¢ +C; Y,



Let’s Prove This

(X, @y;)c; +x;y; =



Let’s Prove This

(X, @y;)c;i+x;y; = (X, y;+X; 5, )c; + X; Y,



Let’s Prove This

(X, @y;)c;i+x;y; = (X, y;+X; 5, )c; + X; Y,

= XV, Ci X Y, C; Xy + XY,

double
this term



Let’s Prove This

(X, @y;)c;i+x;y; = (X, y;+X; 5, )c; + X; Y,

=X Y CiHX; Y, i+ X Y+ XY,




Let’s Prove This

(X, @y;)c;i+x;y; = (X, y;+X; 5, )c; + X; Y,

=X Y CiHX; Y, i+ X Y+ XY,

= (;ici'l'xi) Vi + X (Y Ci+yy)



Let’s Prove This

(X, @y;)c;i+x;y; = (X, y;+X; 5, )c; + X; Y,

XiViCi X Y €+ X; ¥y + X; Y,

(X Ci+X) Yy +x(Yici+y)

use Theorem 16a twice

=(c;+x)y;, +xi(c;+y;)



Let’s Prove This

(X, @y;)c;i+x;y; = (X, y;+X; 5, )c; + X; Y,

= XV, G+ XY, G+ Xy + X Y,
=(x;¢c;+x)y;, +x;(y;c;+y)

=(c;+x)y;, +xi(c;+y;)

=C Yy T X))

l

+ X;C; + X,



Let’s Prove This

(X, @y;)c;i+x;y; = (X, y;+X; 5, )c; + X; Y,

XiViCi X Y €+ X; ¥y + X; Y,

(;ici'l'xi) Vi + X (Y Ci+yy)

=(C;i+Xx)y; +x(¢c;+y)
=C Yy T XY, T X C XY,

remove one copy of
this doubled term



Let’s Prove This

(X, @y;)c;i+x;y; = (X, y;+X; 5, )c; + X; Y,

XiViCi X Y €+ X; ¥y + X; Y,

(X Ci+X) Yy +x(Yici+y)

=(c;+x)y;, +xi(c;+y;)

=C;y; + X;y; +X,¢ + X;y;

=C; Yy, + Xy, +X;C



Therefore, these circuits are equivalent

X

Vi IA\ SI'= .XI@)'I@CI
F’D
)ﬂ —— Cip = Xyt Xy

$;i =X @®yi® ¢

K '> \f S

X

7 Civ1 =(X;@DYi)C; + X y;
Civl

)

J U /




The Full-Adder Abstraction

= _ .
€ —> I_’D o —>
T — —1 > s
y1—9 —I_\ —N N = + +
|1




The Full-Adder Abstraction

V| e




The Full-Adder Abstraction

i
Si
i X;
X; i 7 L
—> D?D— b @
yjé i+1
___\
|/




The Full-Adder Abstraction

V| e




Sa

The Full-Adder Abstraction

LI |

HA c




The Full-Adder Abstraction

V| e




We can place the arrows anywhere

||

Civl €—— FA — ¢




n-bit ripple-carry adder

Xn-1 V-1 1N X Y
Y Y y v
‘1
C,) -— FA - €, | eee () wa— FA --— FA -— ()
' ' '
Sp—1 5 50
MSB position LSB position

[ Figure 3.5 from the textbook ]



n-bit ripple-carry adder abstraction

XN

|
A

|
L

I 1
| | NV v
C
1
Cn FA -+ C; | eee (O w— FA <+— FA
' ' Y
Sp—1 51 50

MSB position

LSB position



n-bit ripple-carry adder abstraction




The x and y lines are typically
grouped together for better visualization,
but the underlying logic remains the same




Example:
Computing 5+6 using a 5-bit adder

O o0 1 o0 1 0O o0 1 1 0

X, X3 X X Xo\/}’4 Y3 Y2 N N

5-bit adder p




Example:
Computing 5+6 using a 5-bit adder

5 in decimal 6 1in decimal
A A
[ \ [ \
o 0o 1 0 1 0 0o 1 1 0

I, X I X Xo\/ Yo V3 V2 N N

0 05 S-bit adder ) 0 in decimal
s, s, s, s, s,
]
L0 1 0 1 g
Y

11 in decimal



Example:
Computing 5+6 using a 5-bit adder

5 in decimal 6 1in decimal
A A
[ \ [ \
o 0o 1 0 1 0 0o 1 1 0

I, X I X Xo\/ Yo V3 V2 N N

0 cs 5-bit adder c 0
s, S, s, s, s,
T 0
0 1 0 1 g + 00101
Y 00110

11 in decimal 001011



Design Example:

Create a circuit that multiplies a number by 3



How to Get 3A from A?

- 3A=A+A+A

. 3A=(A+A) + A

« 3A=2A +A



A:a7."a0

X7 X0 v Y7 Yo
Cq
57 So
0 | —
|
\ A | y | | Y
xg X7 X0 A yg Y7 Yo
Cg
S8 So

[ Figure 3.6a from the textbook |



7 x0, ¥ 7 Y0,
€7 /31 AI
57 So
0 | —
|
\ A | y | | Y
xg X7 X0 A yg Y7 Yo
Cg
S8 So

[ Figure 3.6a from the textbook |



7 x0, ¥ 7 Y0,
€7 AI AI
57 So
0 | —
|
\ B | Y | I | Y
‘xs X7 xo, A yg Y7 Yo
s oA
S8 So

[ Figure 3.6a from the textbook |



7 x0, ¥ 7 Y0,
€7 AI AI
57 So
0 | —
|
\ B | Y | I | |
8 17 X0, v '8 V7 Y0,
|
s DA A
S8 So

[ Figure 3.6a from the textbook |



*7 xo, VY 27 Y0,
& A A
S7 SO
0 |
| —
\ B | Y | I | |
8 17 X0, v '8 V7 Y0,
|
s 2A A
S8 SO

|
3 A [ Figure 3.6a from the textbook |



Decimal Multiplication by 10

What happens when we multiply a number by 10?

4x10="7

542 x 10 = ?

1245 x10=7?



Decimal Multiplication by 10

What happens when we multiply a number by 10?

4x10 =40

542 x 10 = 5420

1245 x 10 = 12450



Decimal Multiplication by 10

What happens when we multiply a number by 10?

4 x10 =40

542 x 10 = 5420

1245 x 10 = 12450

You simply add a zero as the rightmost number



Binary Multiplication by 2

What happens when we multiply a number by 2?

011 times 2 =7

101 times 2 =7

110011 times 2 = ?



Binary Multiplication by 2

What happens when we multiply a number by 2?

011 times 2 = 0110

101 times 2 = 1010

110011 times 2 = 1100110



Binary Multiplication by 2

What happens when we multiply a number by 2?

011 times 2 = 0110

101 times 2 = 1010

110011 times 2 =1100110

You simply add a zero as the rightmost number



[ Figure 3.6b from the textbook ]



[ Figure 3.6b from the textbook ]



3A [ Figure 3.6b from the textbook ]



Questions?



THE END



