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Administrative Stuff

 This week we will start with Lab2

 Read the lab assignment and do the prelab at home.

« Complete the prelab on paper before you go to the lab.
Otherwise, you’ll lose 20% of your grade for that lab.



Quick Review



Minterms
(a set of basis functions)



The Four Basis Functions
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The Four Basis Functions
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The Four Basis Functions

foo(x, y) for(x,y) | fro(x,y) | fu(x,y)
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




The Four Basis Functions

Xy Xy Xy Xy
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




Expressions for the minterms
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Expressions for the minterms

0 My = XYy
_ The bars coincide
1 m; =Xy with the 0’s
— in the binary expansion
0 m; = XYy

of the minterm sub-index
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Circuits for the four basis functions
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The Four Basis Functions
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The Four Basis Functions
(alternative names)

x |y | foo x|y | for X |y | fio x|y | fi
0|0 1 0/0| O 000 00| O
0(1] 0 01| 1 010 0|10
110] 0 110 0 110 1 1100
111 0 1111 0 111] 0 111 1

foo% V) = XY for(X, y) =Xy Fro(x, ¥) =Xy (X, y) =Xy

M 10081 m, M3



The Four Basis Functions
( minterms )

X1y | Mg X |y | my X|y | M XYy | m
0(0] 1 0(0| O 0(0O0 0(0| O
0(1] 0 0(1] 1 0O(1(10 0(1|0
1101 0 110] 0 110 1 11010
111 0 1111 0 11110 11111

foo% V) = XY for(X, y) =Xy Fro(x, ¥) =Xy (X, y) =Xy

M M m, M3



Maxterms
(an alternative set of basis functions)



The Four Maxterms
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The Four Maxterms
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The Four Maxterms

MO(X’ y)

M1(X, y)
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The Four Maxterms

X+y




Expressions for the Maxterms
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Expressions for the Maxterms

My = x+y

M, = x+y Note that these are now
— sums, not products.
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Expressions for the Maxterms

0 Mo = x+y
_ The bars coincide
1 M; = x+y with the 1°s
— in the binary expansion
0 M, = x+y of the maxterm sub-index
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Circuits for the four Maxterms

;C :D7 Mo(x, y) =x+y
L Toe ) O— Milky)=x+y

Ma(x, y) =x +y

et
=T



Minterms and Maxterms

Row
number 1 X9 Minterm Maxterm
0 0 0 mo = flfg MO =T + T2
1 0 1 mi 251332 M1:£131 ‘|‘CU_2
2 1 0 mQZZClQTQ M2:33_1+5132
3 1 1 ms = X1I2 MgZZC_l—i—ZITQ




Minterms and Maxterms

Row
number 1 X9 Minterm Maxterm
0 0 0 mo = flfz MO =T + T2
1 0 1 mi :flxg Mlle ‘|‘33_2
2 1 0 mQZZClQTQ M2:33_1+5132
3 1 1 ms = X1I2 MgZZC_l—i—ZITQ

Use these for
Sum-of-Products
Minimization
(1’s of the function)

Use these for
Product-of-Sums
Minimization
(0’s of the function)



Sum-of-Products Form

(uses the ones of the function)



Sum-of-Products Form

Row
number 1 T Minterm S (xp,x2)
0 0 0 mo = 51?2 1
1 0 1 my = Tl L9 1
2 1 0 mo = 3315172 0
3 1 1 M3 = 1> 1




Sum-of-Products Form

Row
number 1 T Minterm S (xp,x2)
0 0 0 mo = 51?2 1
1 0 1 my = Tl L9 1
2 1 0 mo = 3315172 0
3 1 1 M3 = 1> 1




Sum-of-Products Form

Row
number 1 T Minterm S (xp,x2)
0 0 0 mo = 5152 1
1 0 1 my = il L9 1
2 1 0 mo = 3315172 0
3 1 1 M3 = 1> 1




Product-of-Sums Form

(uses the zeros of the function)



Product-of-Sums Form
(for this logic function)

Row
number T T Maxterm f(x;, x5)
0 0 O My = x1 4+ x5 0
1 0 1 M1 = + 213_2 1
2 1 0 MQ = .’13_1 + o 0
3 ]_ 1 M3 — .”13_1 + .”172 1




Product-of-Sums Form
(for this logic function)

Row
number T T Maxterm f(x;, x5)
0 0 O My = x1 4+ x5 0
1 0 1 M1 = + 213_2 1
2 1 0 MQ = .’13_1 + o 0
3 ]_ 1 M3 — .”13_1 + .”172 1




Product-of-Sums Form
(for this logic function)

Row
number T T Maxterm f(x;, x5)
0 0 O My = x1 4+ x- 0
1 0 1 M1 = + 213_2 1
2 1 0 MQ = 33_1 + o 0
3 ]_ 1 M3 — .”13_1 + .”172 1

flxp,x) =Moo My =(x;+x)*(x; +x5)



Shorthand Notation

« Sum-of-Products (SOP)
L.
or

* Product-of-Sums (POS)

or



Shorthand Notation for SOP

or



Shorthand Notation

Row
number | 1 s I3 Minterm Maxterm
0 0 0 0 Mo = T1T2T3 MO =1 + T2+ T3
1 0 0 1 mi = 71§2$3 M1 =X + T2 + fg
2 0 1 0 mo — flxgig Mg =1 + T2 + I3
3 0 1 1 ms = 715132333 M3 =21 +7T2 + fg
4 1 0 0 myg = T1Toxz | My =71 + 29 + 23
5) 1 0 1 My = X1T2X3 M5 =71+ X2 + T3
0 1 1 0 Mg = L1X2X3 M6 =71 +T2 + T3
7 1 1 1 mr = X1T92T3 M7 =71 +7T2 + T3




Shorthand Notation for POS
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Shorthand Notation

Row
number | 1 s I3 Minterm Maxterm
0 0 0 0 Mo = T1T2T3 MO =21 + Ty + T3
1 0 0 1 mi = Tlﬁgwg M1 =1 + T2 + fg
2 0 1 0 mo — flxgig M2 = X1 + Ty + I3
3 0 1 1 ms = 715132333 M3 =21 +7T2 + fg
4 1 0 0 myg = T1Toxz | My =T1 + 20 + 23
5) 1 0 1 My = X1T2X3 M5 =71+ X2 + T3
0 1 1 0 Mg = L1X2X3 M6 =71 +T2 + T3
7 1 1 1 mr = X1T92T3 M7 =71 +7T2 + T3

3, M7)



Shorthand Notation

Row
number | 1 s I3 Minterm Maxterm
0 0 0 0 Mo = T1T2T3 MO =21 + Ty + T3
1 0 0 1 mi = 71§2$3 M1 =1 + T2 + fg
2 0 1 0 mo — flxgig M2 = X1 + Ty + I3
3 0 1 1 ms = 715132333 M3 =21 +7T2 + fg
4 1 0 0 myg = T1Toxz | My =71 + 29 + 23
5) 1 0 1 My = X1T2X3 M5 =71+ X2 + T3
0 1 1 0 Mg = L1X2X3 M6 =71 +T2 + T3
7 1 1 1 mr = X1T92T3 M7 =71 +7T2 + T3

Notice that the red and the green are nicely separated
and that they cover all possible rows (no gaps).



Two New Logic Gates



The Three Basic Logic Gates

NOT gate AND gate OR gate

[ Figure 2.8 from the textbook ]



NAND Gate
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NOR Gate
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AND vs NAND
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AND followed by NOT = NAND

x; x, |f f x; x, |f
0 0 |0 1 0 0 |1
0 110 1 0 1 |1
1 010 1 1 0 |1
1 1 |1 0 1 110




NAND followed by NOT = AND

x; x, |f f x; x, |f
0 0 |1 0 0 0 |0
0 1 |1 0 0 110
1 0 |1 0 1 010
1 110 1 1 1 |1




OR vs NOR

X1+X2

X1+X2
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OR followed by NOT = NOR

x; x|t f x; x|t
0 0 |0 1 0 0 |1
0 1 |1 0 0 110
1 0 |1 0 1 010
1 1 |1 0 1 110




NOR followed by NOT = OR

X+ X
X +x X +tx X, 175

x; x|t f x; x|t
0 0 |1 0 0 0 |0
0 110 1 0 1 |1
1 010 1 1 0 |1
1 110 1 1 1 |1




Why do we need two more gates?



Why do we need two more gates?

They can be implemented with fewer transistors.



They are simpler to implement,
but are they also useful?



Building a NOT Gate with NAND

x>0 X X{};
B x x |f
x | X 0 0 |1
0 ; 0 1 |1
1 0 |1
1 0 1 1 1]0




Building a NOT Gate with NAND
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Building a NOT Gate with NAND

Dot

¥
;

impossible
combinations

-
S = | X

Thus, the two truth tables are equal!



Building a NOT Gate with NAND

>

x> 3 ]

Another way to think about this.



Building an AND gate with NAND gates

Desired AND Gate NAND Construction
A A
Q=AANDB =NOT(NOT(A AND B))
Truth Table
Input A Input B| Output Q

0 0 0

0 1 0

1 0 0

1 1 1

[http://en.wikipedia.org/wiki/NAND_logic]



Building an OR gate with NAND gates

Desired OR Gate NAND Construction

D R D

= NOT[ NOT( A AND A ) AND

Q=AORB NOT( B AND B )]
Truth Table
Input A Input B |Output Q
0 0 0

0 1 1
1 0 1

[http://en.wikipedia.org/wiki/NAND_logic]



Implications



Implications

Any Boolean function can be implemented
with only NAND gates!



NOR gate with NAND gates

Desired NOR Gate

Q=NOT(AORB)

Input A Input B |Output Q

0
0
1

NAND Construction

= NOT{ NOT[ NOT( A AND A ) AND
NOT( B AND B )]}

Truth Table

0
1
0

1
0
0

[http://en.wikipedia.org/wiki/NAND_logic]



XOR gate with NAND gates

Desired XOR Gate NAND Construction
A—.

A
B —&

= NOT[ NOT{A AND NOT(A AND B)} AND
NOT{B AND NOT(A AND B)} ]

Truth Table
Input A Input B |Output Q

0 0 0

Q=AXORB

[http://en.wikipedia.org/wiki/NAND_logic]



XNOR gate with NAND gates

Desired XNOR Gate

Q = NOT( A XOR B)

A—e

0
0
1

Truth Table
Input A Input B Output Q

0
1
0

1

0
0

NAND Construction

= NOT[ NOT[ NOT{A AND NOT(A AND B)} AND
NOT{B AND NOT(A AND B)}]]

[http://en.wikipedia.org/wiki/NAND_logic]






Building a NOT Gate with NOR
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Building a NOT Gate with NOR

-
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Building a NOT Gate with NOR

X_D_;

j

impossible
combinations

-
S = | X

Thus, the two truth tables are equal!



Building a NOT Gate with NOR

Another way to think about this.



Building an OR gate with NOR gates

Desired Gate NOR Construction

A A

Truth Table
Input A Input B | Output Q

0 0 0

[http://en.wikipedia.org/wiki/NOR_logic]



Let’s build an AND gate with NOR gates



Let’s build an AND gate with NOR gates

Desired Gate NOR Construction
A
A
D R
B
Truth Table

Input A InputB  Output Q

0 0 0
0 1 0
1 0 0

[http://en.wikipedia.org/wiki/NOR_logic]



Implications



Implications

Any Boolean function can be implemented
with only NOR gates!



NAND gate with NOR gates

Desired Gate

Truth Table

NOR Construction

Input A Input B Output Q

0
0
1
1

0

1
0
1

1

1
1
0

[http://en.wikipedia.org/wiki/NOR_logic]



XOR gate with NOR gates

A

Truth Table
Input A Input B Output Q
0 0 0
0 1 1
1 0 1
1 1 0

[http://en.wikipedia.org/wiki/NOR_logic]



XNOR gate with NOR gates

Desired XNOR Gate NOR Construction
A—e
A
B—+&
Truth Table
Input A Input B| Output Q
0 0 1
0 1 0
1 0 0

[http://en.wikipedia.org/wiki/NOR_logic]



The following examples came from this book

Click to LOOK INSIDE!
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[ Platt 2009 ]



[ Platt 2009 ]



[ Platt 2009 ]



[ Platt 2009 ]



[ Platt 2009 ]



[ Platt 2009 ]



DeMorgan’s Theorem Revisited



DeMorgan’s theorem
(in terms of logic gates)

D LD

Y



The other DeMorgan’s theorem
(in terms of logic gates)

X

X >o—_
DR =D

Y

X Ty Z;-y



Shortcut Notation



DeMorgan’s theorem in terms of logic gates

) ii[} DS

(Theorem 15.a) Xy =x+y



DeMorgan’s theorem in terms of logic gates




Two NOTs in a row



Two NOTs in a row




Two NOTs in a row




NAND-NAND Implementation of
Sum-of-Products Expressions



NAND followed by NOT = AND

x| — 1

° ° ) X ] X1 ° X2
1 >__
X2 —_— X2 p—

x; x, |f f x; x, |f
0 0 |1 0 0 0 |0
0 1 |1 0 0 110
1 0 |1 0 1 010
1 110 1 1 1 |1




DeMorgan’s Theorem

15a. x°y=;+§



DeMorgan’s Theorem

15a. x°y=;+§

|

:




sl

Sum-Of-Products



sl

Sum-Of-Products

X0 X, + X3t xy




Sum-Of-Products

AND
X; O\
X2 _/
b 0\
X4 _/

AND

OR

Xl_

X, * X

2

X2—

X3—

X, * X

2

X0 X, + X3t xy

3% 4y



Sum-Of-Products

AND
X7 \
Xo _/
X3 \
Xy _/

AND

OR

Xl_

X2—

OR

XX, + X3t Xy

X3—




Sum-Of-Products

AND
X; O\
X2 _/
b 0\
X4 _/

AND

OR

Xl_

X, * X

2

X2—

X3—

X, * X

2

X0 X, + X3t xy

3% 4y



Sum-Of-Products

AND
X; O\
X2 _/
b 0\
X4 _/

AND

OR

Xl_

X2—

X3—

NAND

XX, + X3t X,




Sum-Of-Products

AND
Xp \
Xo _/
X3 \
Xy _/

AND

OR

| —

X2—

X3—

Xy —




Sum-Of-Products

AND
X \
Xo _/
X3 \
Xy _/

AND

OR

Xl_

X2—

Xy —

NAND

This circuit uses only NANDs




sl

Sum-Of-Products

X — : X1° %
Xy —

X,® X
X3 — 3 4
X, — )

This circuit uses only NANDs




Another SOP Example

X1
X2

X

Xy —
A3 _l_—>7 X3 /1
X Xy, —
4 — 4 —
X5 X5

This circuit uses ANDs & OR

X4
Xs —

L
v Ds

This circuit uses only NANDs

[ Figure 2.27 from the textbook ]



NOR-NOR Implementation of
Product-of-Sums Expressions



NOR followed by NOT = OR

X+ X
X +x X +tx X, 175

x; x|t f x; x|t
0 0 |1 0 0 0 |0
0 110 1 0 1 |1
1 010 1 1 0 |1
1 110 1 1 1 |1




DeMorgan’s Theorem

15b. x+y=;'§



DeMorgan’s Theorem

15b. X +y=x°y

< X
S
+
<
1




Product-Of-Sums

-



Product-Of-Sums

-

X1+X2 X1+X2

Xy +X2)

°(X3+ Xy

X3+X4 X3+X4




Xy

X2

X3

X4

OR

Product-Of-Sums

AND

OR

X3+X4
ii >0—| >0

_\ (X1 +X2) ®(X3+ Xy)
J




Xy

X2

X3

X4

Product-Of-Sums

AND

X, + X

AND

_\ (X1 +X2) ® (X3 + Xy)

J

X3 ' X3+X4 X3+X4
X4 E I:




Xy

X2

X3

X4

OR

Product-Of-Sums

AND

OR

X3+X4
ii >0—| >0

_\ (X1 +X2) ®(X3+ Xy)
J




OR

Product-Of-Sums

AND

OR

NOR

_\ (X1 +X2) ® (X3 + Xy)
J




OR

Product-Of-Sums

AND

-

OR




Xy

X2

X3

X4

Product-Of-Sums

OR
) AND
-

OR

NOR

NOR

(X1 +X2) ® (X3 + Xy)

This circuit uses only NORs




Product-Of-Sums

AND

(X1 +X2) ®(X3+ Xy)

This circuit uses only NORs



Another POS Example

v T) > ) L
- ’
|

X3 X3
X X5

This circuit uses ORs & AND
) >
X
A3
=D
X5

This circuit uses only NORs

[ Figure 2.28 from the textbook ]



Summary

Sum-of-Products (SOP) expressions are directly mappable to
NAND-NAND implementation.

Product-of-Sums (POS) expressions are directly mappable to
NOR-NOR implementation.

Going from SOP to NOR-NOR is not that easy.

Similarly, converting from POS to NAND-NAND
implementation requires extra work.



Questions?



THE END



