CprE 281 HW03 ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Design Examples, Intro to Verilog Assigned Date: Third Week Finish by: Sep. 15, 2025

P1. (10 points) Write the following expressions as Verilog behavioral assign statements without simplifying:

E.g., $F = \overline{A}$ as a Verilog assign statement would be "assign F = "A"

A.
$$F = \overline{(A+B)} \cdot (A+\overline{B})$$

B.
$$F = \overline{(A \cdot B)} + \overline{C} + \overline{(A \cdot B \cdot C)}$$

P2. (10 points) Give the structural Verilog code for the circuit shown below. The Verilog module name should be "P2".

P3. (10 points) Given the Behavioral-continuous Verilog code below:

- A. Rewrite using structural Verilog
- B. Convert the Verilog code into a Boolean algebra expression in the form $f(a,b,c)=\cdots$
- P4. (20 points) Consider the Boolean algebra expression

$$f(A,B,C) = \left(A + \overline{B} \cdot C\right) + \left(AB\overline{C}\right) + \overline{(C+B)}.$$

- A. Draw a truth table for this expression.
- B. Represent the function as both a minterm and maxterm expression.
- C. From the maxterm expression derive the canonical POS expression.
- D. Draw an unsimplified circuit diagram for the canonical POS expression.

CprE 281 HW03 ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Design Examples, Intro to Verilog Assigned Date: Third Week Finish by: Sep. 15, 2025

P5. (15 points) Show how to implement the following:

- A. XOR with only 5 NOR gates.
- B. 2-to-1 MUX with only 4 NAND gates.
- C. 8-to-1 MUX using only 2-to-1 MUX's.

P6. (15 points): Consider the 3-input logic circuit with truth table:

A	В	C	f
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- A. Find the minterm summation expression for the truth table.
- B. Write the canonical SOP equation corresponding to the minterm expression.
- C. Using Boolean algebra, simplify the canonical SOP equation.

P7. (20 points):

- A. Given the expression $F(A, B, C) = \sum m(2,3,5,7)$. Use Boolean algebra to derive a simplified SOP expression.
- B. Given the expression $F(A, B, C) = \prod M(0,1,4,6)$. Use Boolean algebra to derive a simplified POS expression.
- C. Prove that the answer in B is equivalent to the answer in A. Hint: start with the POS expression and use Boolean Algebra to derive the SOP expression.
- D. You have to implement a Boolean expression using only NOR gates. Would using NOR gates be more efficient for a Product of-Sums (POS) expression or a Sum-of Products (SOP) expression? Why?