

CprE 2810: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Latches

CprE 2810: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

• **HW 7 is due on Monday (Oct 21) @ 10pm**

• **Midterm grades submitted to the registrar's office**

Administrative Stuff

- **Midterm 2 is in two weeks**
- **Sample exams are posted on the class web page**

Administrative Stuff

- **Midterm Exam #2**
- **When: Friday November 1 @ 4:20pm.**
- **Where: This room**
- **What: Chapters 1, 2, 3, 4 and 5**
- **The exam will be closed book but open notes (you can bring up to 3 pages of handwritten notes).**

Chapter 5

Control of an alarm system

[Figure 5.1 from the textbook]

Motivation

• **So far, our circuits have been converting inputs to outputs without storing any data.**

- **To do more advanced things (e.g., to build computers) we need components that can store data.**
- **Can we make a component that "remembers" using the components that we know already?**

A simple memory element

[Figure 5.2 from the textbook]

The circuit will stay in this state indefinitely.

The circuit will stay in this state indefinitely.

A Strange Loop

[http://animalsiadmire.blogspot.com/2011/07/stupid-snake-eating-itself.html]

This circuit can be in two possible states

This circuit can be in two possible states

used to store a 1 used to store a 0

This circuit can be in two possible states

Building a NOT gate with a NAND gate

Thus, the two truth tables are equal!

Building a NOT gate with a NOR gate

Thus, the two truth tables are equal!

Basic Latch

What is a latch?

http://luxuriahardware.com/images/detailed/13/P111408_m.jpg

A memory element with NOR gates

[Figure 5.3 from the textbook]

Two Different Ways to Draw the Same Circuit

[Figure 5.3 & 5.4 from the textbook]

Two Different Ways to Draw the Same Circuit

[Figure 5.3 & 5.4 from the textbook]

Before We Analyze the Basic Latch Let's Look at Two Simpler Examples with Feedback

Let's Try to Analyze This Circuit

Let's Try to Analyze This Circuit

Let's Try to Analyze This Circuit

If $x = 0$, then *f* is negated. If $x = 1$, then *f* is driven to 0.

Key Observation

If a NOR's control line is 0, then that NOR just *negates* **its data line. If the control line is 1, then the NOR's output is** *driven* **to 0, ignoring its data line.**

If $x = 0$, then *g* is driven to one. If $x = 1$, then *g* is negated.

Key Observation

If a NAND's control line is 1, then that NAND just *negates* **its data line. If the control line is 0, then the NAND's output is** *driven* **to 1, ignoring its data line.**

Output Oscillations

What would happen to *g* **if we keep x=1 for a long time?**

Output Oscillations

What would happen to *g* **if we keep x=1 for a long time?**

Output Oscillations

What would happen to *g* **if we keep x=1 for a long time?**

 t_{pd} is the propagation delay through the NAND gate, which is small, but not zero.

Back to the Basic Latch

The Basic Latch

[Figure 5.3 from the textbook]

The Basic Latch

[Figure 5.3 from the textbook]

Latch Reset Set Undesirable

Circuit and Characteristic Table

(a) Circuit (b) Characteristic table

[Figure 5.4a,b from the textbook]

Circuit and Characteristic Table

 $\overline{x_1 + x_2}$

(b) Characteristic table

A truth table should take the state into account. A characteristic table takes only the inputs into account.

 x_1

 x_2

[Figure 5.4a,b from the textbook]

Circuit and Characteristic Table

(b) Characteristic table

[Figure 5.4a,b from the textbook]

$$
\begin{array}{c|c}\nx_1 & x_2 & f \\
\hline\n0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0\n\end{array}
$$

Oscillations and Undesirable States

- **When S=1 and R=1 both outputs of the latch are equal to 0, i.e.,** $Q_a = 0$ **and** $Q_b = 0$ **.**
- **Thus, the two outputs are no longer complements of each other.**
- **This is undesirable as many of the circuits that we will build later with these latches rely on the assumption that the two outputs are always complements of each other.**
- **(This is obviously not the case for the basic latch, but we will patch it later to eliminate this problem).**

Oscillations and Undesirable States

- **An even bigger problem occurs when we transition from S=R=1 to S=R=0.**
- When S=R=1 we have Q_a=Q_b=0. After the transition to S=R=0, however, we get $Q_a=Q_b=1$, which would **immediately cause** $Q_a = Q_b = 0$ **, and so on.**
- **If the gate delays and the wire lengths are identical, then this oscillation will continue forever.**
- **In practice, the oscillation dies down and the output** settles into either $Q_a=1$ and $Q_b=0$ or $Q_a=0$ and $Q_b=1$.
- **The problem is that we can't predict which one of these two it will settle into.**

(a) Circuit (b) Characteristic table

(a) Circuit (b) Characteristic table

For a brief moment the latch goes through the undesirable state $Q_a=0$ and $Q_b=0$.

But these zeros loop around ...

... and set it to $Q_a=1$ and $Q_b=0$.

The new values also loop around ...

... but they leave the outputs the same.

For a brief moment the latch goes through the undesirable state $Q_a=0$ and $Q_b=0$.

But these zeros loop around ...

... and set it to $Q_a=0$ and $Q_b=1$.

The new values also loop around ...

... but they leave the outputs the same.

Basic Latch with NAND Gates

Circuit for the Basic Latch with NAND Gates

Notice that in the NAND case the two inputs are swapped and negated.

The labels of the outputs are the same in both cases.

Basic Latch (with NOR Gates)

Basic Latch (with NAND Gates)

SR Latch SR Latch

Circuit and Characteristic Table

Basic Latch (with NOR Gates)

Basic Latch (with NAND Gates)

Basic Latch (with NOR Gates)

Basic Latch

(with NAND Gates)

The two characteristic tables are the same (except for the last row, which is the undesirable configuration).

Oscillations and Undesirable States

• **The basic latch with NAND gates also suffers form oscillation problems, similar to the basic latch implemented with NOR gates.**

• **Try to do this analysis on your own.**

Gated SR Latch

Motivation

- **The basic latch changes its state when the input signals change.**
- **It is hard to control when these input signals will change and thus it is hard to know when the latch may change its state.**
- **We want to have something like an Enable input.**
- **In this case it is called the "Clock" input because it is desirable for the state changes to be synchronized**

Circuit Diagram for the Gated SR Latch

[Figure 5.5a from the textbook]

Circuit Diagram for the Gated SR Latch

This is the "gate" of the gated latch

Circuit Diagram for the Gated SR Latch

This is the "snake" of the gated latch
Circuit Diagram for the Gated SR Latch

The outputs are complements of each other

When $Clk = 0$ this circuit holds the previous output values, regardless of the current inputs S and R because S' and R' are 0.

[Figure 5.5a-b from the textbook]

When $Clk = 1$ this circuit behaves like a basic latch.

[Figure 5.5a-b from the textbook]

When $Clk = 1$ this circuit behaves like a basic latch. As if this part in gray were not even there.

[Figure 5.5a-b from the textbook]

Circuit Diagram and Graphical Symbol for the Gated SR Latch

[Figure 5.5a,c from the textbook]

Timing Diagram for the Gated SR Latch

[Figure 5.5c from the textbook]

[Figure 5.6 from the textbook]

In this case, the "gate" is constructed using NAND gates! Not AND gates.

The "snake" is also constructed with NANDs.

Also, notice that the positions of S and R are now swapped.

Notice that when Clk=1 this turns into the basic latch with NAND gates, i.e., the SR Latch.

When Clk=0 this circuit holds the previous output values.

Gated SR latch with NAND gates

Gated SR latch with NAND gates

Graphical symbols are the same

Gated SR latch with NAND gates

Characteristic tables are the same

Gated D Latch

Motivation

- **Dealing with two inputs (S and R) could be messy. For example, we may have to reset the latch before some operations in order to store a specific value but the reset may not be necessary depending on the current state of the latch.**
- **Why not have just one input and call it D.**
- **The D latch can be constructed using a simple modification of the SR latch.**

Circuit Diagram for the Gated D Latch

[Figure 5.7a from the textbook]

Circuit Diagram for the Gated D Latch

This is the only new thing here.

[Figure 5.7a from the textbook]

Note that it is now impossible to have $S=R=1$.

[Figure 5.7a,b from the textbook]

When Clk=1 the output follows the D input. When Clk=0 the output cannot be changed.

[Figure 5.7a,b from the textbook]

Circuit Diagram and Graphical Symbol for the Gated D Latch

[Figure 5.7a,c from the textbook]

Timing Diagram for the Gated D Latch

[Figure 5.7d from the textbook]

Setup and hold times

Setup time (t_{su}) – the minimum time that the D signal must be stable prior to the negative edge of the Clock signal.

Hold time (t_h) – the minimum time that the D signal must remain stable after the negative edge of the Clock signal.

[Figure 5.8 from the textbook]

Circuit Diagram for the Gated D Latch (with the latch implemented using NORs)

[https://en.wikibooks.org/wiki/Digital_Circuits/Latches]

Circuit Diagram for the Gated D Latch (with the latch implemented using NORs)

[https://en.wikibooks.org/wiki/Digital_Circuits/Latches]

Circuit Diagram for the Gated D Latch (with the latch implemented using NORs)

Also, S and R are swapped.

[https://en.wikibooks.org/wiki/Digital_Circuits/Latches]

Some Practical Examples

Different Types of Switches

(a) Single-polesingle-throw switch

(b) Single-poledouble-throw switch

(c) Double-polesingle-throw switch

(d) Double-poledouble-throw switch

http://www.industrial-electronics.com/Electricity-Refrigeration-Heating-Air-Conditioning_5b.html

Different Types of Switches

If you are building a circuit with latches you'll need to use this type of switch.

Single Pole, Double Throw = SPDT

[http://electronicsclub.info/images/swabc.gif]

Single Pole, Double Throw = SPDT

[http://www.cubisteffects.com/images/MIY/Pt3_Throw.jpg]

Single-pole—single-throw manual switch

http://www.industrial-electronics.com/Electricity-Refrigeration-Heating-Air-Conditioning_5b.html

Double-pole—double-throw manual switch

http://www.industrial-electronics.com/Electricity-Refrigeration-Heating-Air-Conditioning_5b.html

The following examples came from this book

A Simple Circuit

[Platt 2009]

Let's Take a Closer Look at This

[Platt 2009]

A Similar Example with NAND Gates

[Platt 2009]

Questions?

THE END