

CprE 2810: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Multiplexers

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- HW 6 is due on Monday Oct 14 @ 10pm
- HW 7 is due on Monday Oct 21 @ 10pm

• Next week: Lab 6

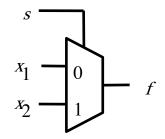
Midterm progress report grades are due next week

2-to-1 Multiplexer

2-to-1 Multiplexer (Definition)

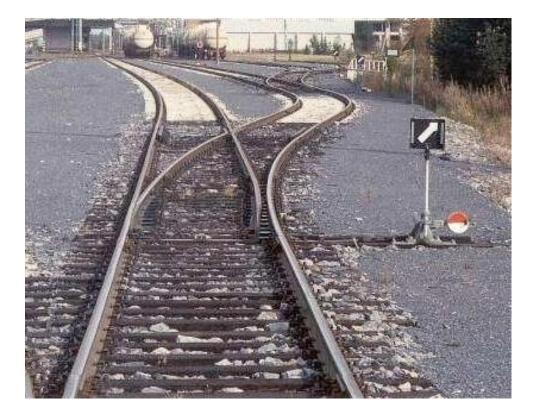
- Has two inputs: x₁ and x₂
- Also has another input line s
- If s=0, then the output is equal to x₁
- If s=1, then the output is equal to x_2

Graphical Symbol for a 2-to-1 Multiplexer



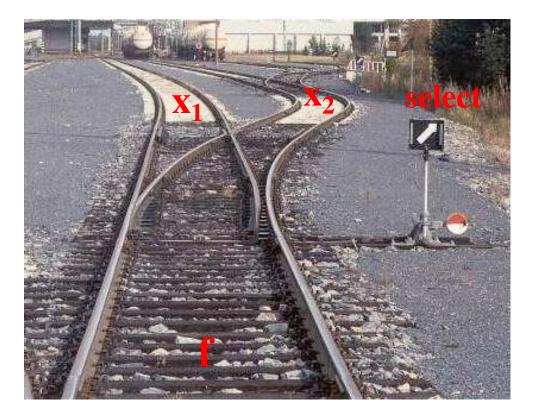
[Figure 2.33c from the textbook]

Analogy: Railroad Switch



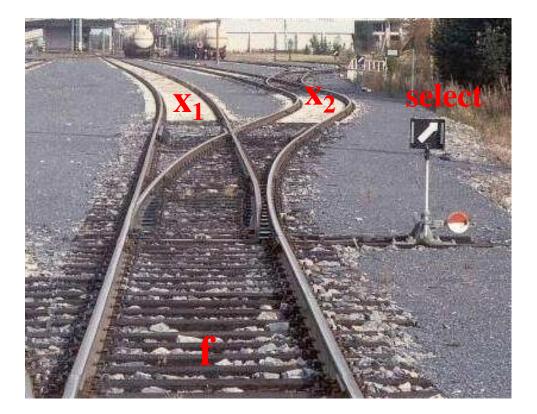
http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switch



http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switch



This is not a perfect analogy because the trains can go in either direction, while the multiplexer would only allow them to go from top to bottom.

http://en.wikipedia.org/wiki/Railroad_switch]

Truth Table for a 2-to-1 Multiplexer

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

[Figure 2.33a from the textbook]

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

Where should we put the negation signs?

 $s x_1 x_2$ $s x_1 x_2$

 $s x_1 x_2$

 $s x_1 x_2$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
011	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
011	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

 $f(s, x_1, x_2) = \overline{s} x_1 \overline{x_2} + \overline{s} x_1 x_2 + s \overline{x_1} x_2 + s x_1 x_2$

Let's simplify this expression

 $f(s, x_1, x_2) = \overline{s} x_1 \overline{x_2} + \overline{s} x_1 x_2 + s \overline{x_1} x_2 + s x_1 x_2$

Let's simplify this expression

 $f(s, x_1, x_2) = \overline{s} x_1 \overline{x_2} + \overline{s} x_1 x_2 + s \overline{x_1} x_2 + s x_1 x_2$

 $f(s, x_1, x_2) = \overline{s} x_1 (\overline{x_2} + x_2) + s (\overline{x_1} + x_1) x_2$

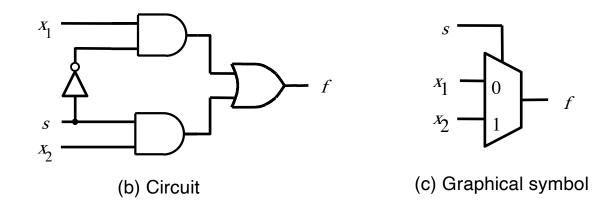
Let's simplify this expression

 $f(s, x_1, x_2) = \overline{s} x_1 \overline{x_2} + \overline{s} x_1 x_2 + s \overline{x_1} x_2 + s x_1 x_2$

 $f(s, x_1, x_2) = \overline{s} x_1 (\overline{x_2} + x_2) + s (\overline{x_1} + x_1) x_2$

 $f(s, x_1, x_2) = \overline{s} x_1 + s x_2$

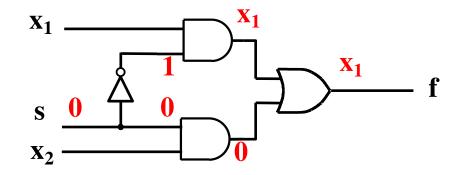
Circuit for 2-1 Multiplexer



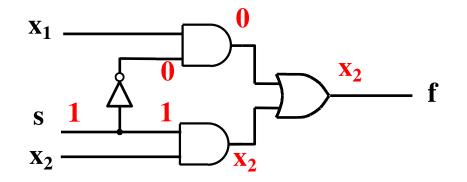
$$f(s, x_{1}, x_{2}) = \overline{s} x_{1} + s x_{2}$$

[Figure 2.33b-c from the textbook]

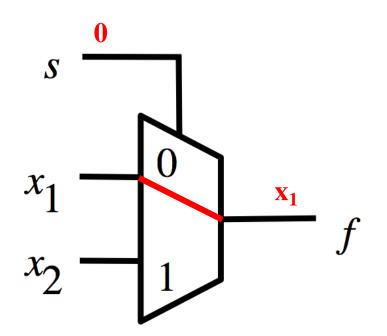
Analysis of the 2-to-1 Multiplexer (when the input s=0)



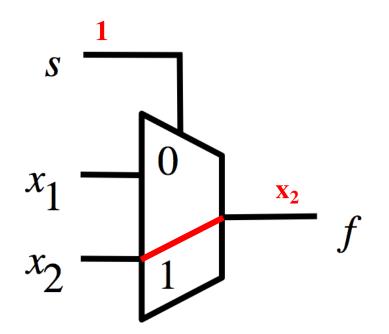
Analysis of the 2-to-1 Multiplexer (when the input s=1)



Analysis of the 2-to-1 Multiplexer (when the input s=0)



Analysis of the 2-to-1 Multiplexer (when the input s=1)



More Compact Truth-Table Representation

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

S	$f(s, x_1, x_2)$
0	<i>x</i> ₁
1	<i>x</i> ₂

(a)Truth table

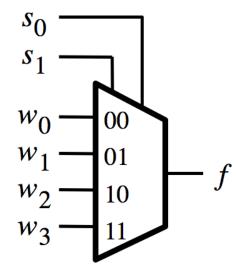
[Figure 2.33 from the textbook]

4-to-1 Multiplexer

4-to-1 Multiplexer (Definition)

- Has four inputs: w_0 , w_1 , w_2 , w_3
- Also has two select lines: s₁ and s₀
- If $s_1=0$ and $s_0=0$, then the output f is equal to w_0
- If $s_1=0$ and $s_0=1$, then the output f is equal to w_1
- If $s_1=1$ and $s_0=0$, then the output f is equal to w_2
- If $s_1=1$ and $s_0=1$, then the output f is equal to w_3

Graphical Symbol and Truth Table



<i>s</i> ₁	<i>s</i> ₀	f
0	0	w ₀
0	1	w_1
1	0	w_2
1	1	<i>w</i> ₃

(a) Graphic symbol

(b) Truth table

$S_1 S_0$	I ₃ I ₂ I ₁ I ₀	F S1 S0	I ₃ I ₂ I ₁ I ₀	F S1 S0	I3 I2 I1 I0 F	$S_1S_0 \hspace{0.1in} I_3 \hspace{0.1in} I_2 \hspace{0.1in} I_1 \hspace{0.1in} I_0 \hspace{0.1in} F$
0 0	0 0 0 0	0 0 1	0 0 0 0	0 1 0	0 0 0 0 0	1 1 0 0 0 0 0
	0 0 0 1	1	0 0 0 1	0	0 0 0 1 0	0 0 0 1 0
	0 0 1 0	0	0 0 1 0	1	0 0 1 0 0	0 0 1 0 0
	0 0 1 1	1	0 0 1 1	1	0 0 1 1 0	0 0 1 1 0
	0 1 0 0	0	0 1 0 0	0	0 1 0 0 1	0 1 0 0 0
	0 1 0 1	1	0 1 0 1	0	0 1 0 1 1	0 1 0 1 0
	0 1 1 0	0	0 1 1 0	1	0 1 1 0 1	0 1 1 0 0
	0 1 1 1	1	0 1 1 1	1	0 1 1 1 1	0 1 1 1 0
	1000	0	1 0 0 0	0	10000	1 0 0 0 1
	1001	1	1 0 0 1	0	1 0 0 1 0	1 0 0 1 1
	1010	0	1010	1	10100	10101
	1 0 1 1	1	1 0 1 1	1	1 0 1 1 0	10111
	1 1 0 0	0	1 1 0 0	0	1 1 0 0 1	1 1 0 0 1
	1 1 0 1	1	1 1 0 1	0	1 1 0 1 1	1 1 0 1 1
	1 1 1 0	0	1 1 1 0	1	1 1 1 0 1	1 1 1 0 1
	1 1 1 1	1	1 1 1 1	1	1 1 1 1 1	1 1 1 1 1

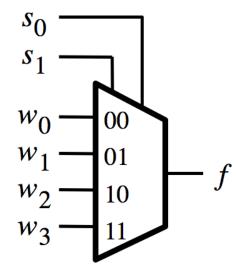
S_1S_0	I ₃ I ₂ I	ı Io	F	$\mathbf{S}_1 \mathbf{S}_0$	I3	I_2	I_1	I_0	F	S	${}_{1}S_{0}$	I3	I_2	I_1	Io	F	S_1S_0	I	3)	I2	I_1	I ₀	F
0 0	0 0 0	0	0	0 1	0	0	0	0	0	1	0	0	0	0	0	0	1 1	0)	0	0	0	0
	0 0 0	1	1		0	0	0	1	0			0	0	0	1	0)	0	0	т	0
	0 0 1	0	0		0	0	1	0	1			0	0	1	0	0		0)	0	1	0	0
	0 0 1	1	1		0	0	1	1	1			0	0	1	1	0		0)	0	1	1	0
	0 1 0	0	0		0	1	0	0	0			0	1	0	0	1		0)	1	0	0	0
	0 1 0	1	1		0	1	0	1	0			0	1	0	1	1)	1	0	т	0
	0 1 1	0	0		0	1	1	0	1			0	1	1	0	1		0)	1	1	0	0
	0 1 1	1	1		0	1	1	1	1			0	1	1	1	1		0)	1	1	1	0
	1 0 0	0	0		1	0	0	0	0			т	0	0	0	0				0	0	0	1
	1 0 0	Т	1		1	0	0	1	0			Т	0	0	1	0				0	0	1	1
	1 0 1	0	0		1	0	1	0	1			1	0	1	0	0				0	1	0	1
	1 0 1	1	1		1	0	1	1	1			1	0	1	1	0				0	1	1	1
	110	0	0		1	1	0	0	0			1	1	0	0	1				1	0	0	1
	110	1	1		1	1	0	1	0			1	1	0	1	1				1	0	1	1
	1 1 1	0	0		1	1	1	0	1			1	1	1	0	1				1	1	0	1
	1 1 1	1	1		1	1	1	1	1			1	1	1	1	1				1	1	1	1
	id	ent	ical	1								ſ	http	://wv	ww.a	bsolute	astronomy	.com	/tor	oics	/Mu	ltiple	exerl

S_1S_0	I ₃ I ₂ I ₁ I ₀	F S1 S0	I3 I2 I	$I_1 I_0$	F S1 S0	I ₃ I ₂ I ₁ I ₀	F S1 S0	$I_3 \ I_2 \ I_1 \ I_0 \ F$
0 0	0 0 0 0	0 0 1	0 0	0 0	0 1 0	0 0 0 0	0 1 1	0 0 0 0 0
	0 0 0 1	1	0 0	0 1	0	0 0 0 1	0	0 0 0 1 0
	0 0 1 0	0	0 0	1 0	1	0 0 1 0	0	0 0 1 0 0
	0 0 1 1	1	0 0	1 1	1	0 0 1 1	0	0 0 1 1 0
	0 1 0 0	0	0 1	0 0	0	0 1 0 0	1	0 1 0 0 0
	0 1 0 1	1	0 1	0 1	0	0 1 0 1	1	0 1 0 1 0
	0 1 1 0	0	0 1	1 0	1	0 1 1 0	1	0 1 1 0 0
	0 1 1 1	1	0 1	1 1	1	0 1 1 1	1	0 1 1 1 0
	1 0 0 0	0	1 0	0 0	0	1 0 0 0	0	1 0 0 0 1
	1001	1	1 0	0 1	0	1 0 0 1	0	1 0 0 1 1
	1010	0	1 0	1 0	1	$1 \ 0 \ 1 \ 0$	0	10101
	1 0 1 1	1	1 0	1 1	1	$1 \ 0 \ 1 \ 1$	0	10111
	1 1 0 0	0	1.1	0 0	0	1 1 0 0	1	1 1 0 0 1
	1 1 0 1	1	1.1	0 1	0	1 1 0 1	1	1 1 0 1 1
	1 1 1 0	0	1.1	1 0	1	$1 \ 1 \ 1 \ 0$	1	1 1 1 0 1
	1 1 1 1	1	1 1	1 1	1	$1 \ 1 \ 1 \ 1$	1	$1 \ 1 \ 1 \ 1 \ 1$
			ide	entic	cal	[http://www.al	osoluteastronomy.c	om/topics/Multiplexer]

S_1S_0	[3]	2	I_1	Io	F	1	S_1	S ₀	I3	I_2	I_1	I ₀	F	5	S_1	S ₀	I_3	I2	I_1	Io	F	S	$1 S_0$	I3	I_2	I_1	I ₀	F
0 0	0 (0	0	0	0		0	1	0	0	0	0	0		1	0	0	0	0	0	0	1	1	0	0	0	0	0
	0	0	0	I.	1				0	0	0	1	0				0	0	0	I.	0			0	0	0	Т	0
	0	0	1	0	0				0	0	1	0	1				0	0	1	0	0			0	0	1	0	0
	0	0	1	1	1				0	0	1	1	1				0	0	1	1	0			0	0	1	1	0
	0	1	0	0	0				0	1	0	0	0				0	1	0	0	1			0	1	0	0	0
	0	1	0	Т	1				0	1	0	1	0				0	1	0	1	1			0	1	0	Т	0
	0	1	1	0	0				0	1	1	0	1				0	1	1	0	1			0	1	1	0	0
	0	1	1	1	1				0	1	1	1	1				0	1	1	1	1			0	1	1	1	0
	1	0	0	0	0				1	0	0	0	0				1	0	0	0	0			1	0	0	0	1
	1	0	0	1	1				1	0	0	1	0				1	0	0	1	0			1	0	0	1	1
	1	0	1	0	0				1	0	1	0	1				1	0	1	0	0			Т	0	1	0	1
	1	0	1	1	1				1	0	1	1	1				1	0	1	1	0			1	0	1	1	1
	1	1	0	0	0				1	1	0	0	0				1	1	0	0	1			1	1	0	0	1
	1	I	0	1	1				1	1	0	1	0				1	1	0	1	1			1	1	0	1	1
	1	1	1	0	0				1	1	1	0	1				1	1	1	0	1			Т	1	1	0	1
	1	I	1	1	1				1	1	1	1	1				1	1	ı ent		1			Т	1	1	1	1

$\mathbf{S}_1 \mathbf{S}_0$	I ₃ I ₂ I ₁ I ₀	F S1 S0	I ₃ I ₂ I ₁ I ₀ F	S1 S0 I3 I2 I1 I0 F	$S_1 S_0 \hspace{0.1in} I_3 \hspace{0.1in} I_2 \hspace{0.1in} I_1 \hspace{0.1in} I_0 \hspace{0.1in} F$
0 0	0 0 0 0	0 0 1	0 0 0 0 0	1 0 0 0 0 0	1 1 0 0 0 0 0
	0 0 0 1	1	0 0 0 1 0	0 0 0 1 0	0 0 0 1 0
	0 0 1 0	0	0 0 1 0 1	0 0 1 0 0	0 0 1 0 0
	0 0 1 1	1	0 0 1 1 1	0 0 1 1 0	0 0 1 1 0
	0 1 0 0	0	0 1 0 0 0	0 1 0 0 1	0 1 0 0 0
	0 1 0 1	1	0 1 0 1 0	0 1 0 1 1	0 1 0 1 0
	0 1 1 0	0	0 1 1 0 1	0 1 1 0 1	0 1 1 0 0
	0 1 1 1	1	0 1 1 1 1	0 1 1 1 1	0 1 1 1 0
	1 0 0 0	0	1 0 0 0 0	1 0 0 0	1 0 0 0 1
	1 0 0 1	1	1 0 0 1 0	1 0 0 1 0	1 0 0 1 1
	1010	0	10101	1 0 1 0 0	1 0 1 0 1
	1 0 1 1	1	1 0 1 1 1	1 0 1 1 0	1 0 1 1 1
	1 1 0 0	0	1 1 0 0 0	1 1 0 0 1	1 1 0 0 1
	1 1 0 1	1	1 1 0 1 0	1 1 0 1 1	1 1 0 1 1
	1 1 1 0	0	1 1 1 0 1	1 1 1 0 1	1 1 1 0 1
	1 1 1 1	1	1 1 1 1 1	1 1 1 1 1	identical

Graphical Symbol and Truth Table

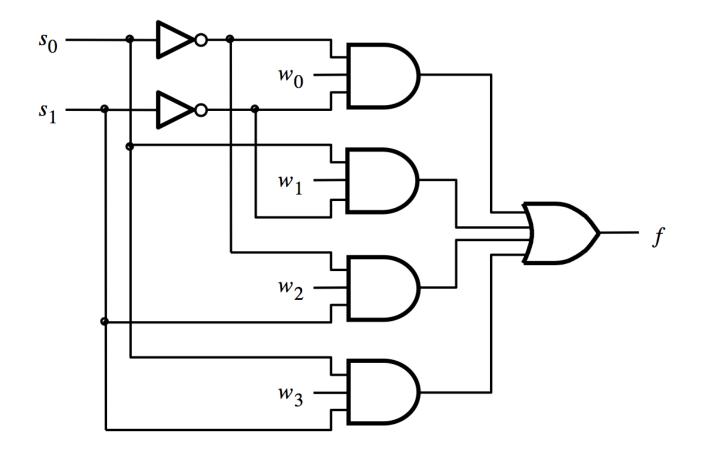


<i>s</i> ₁	<i>s</i> ₀	f
0	0	w ₀
0	1	w_1
1	0	w_2
1	1	<i>w</i> ₃

(a) Graphic symbol

(b) Truth table

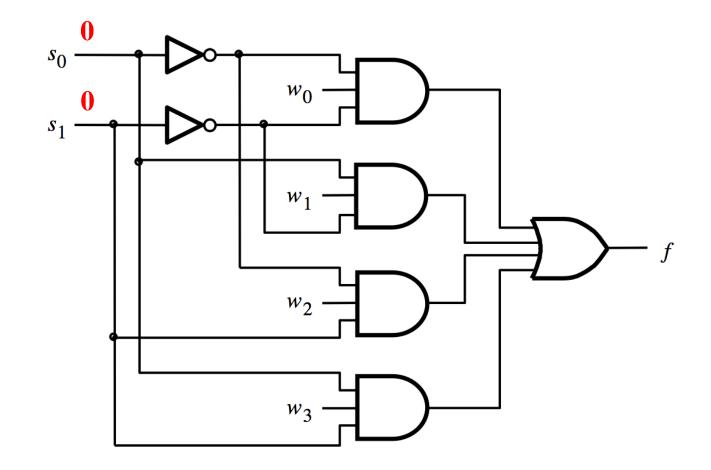
4-to-1 Multiplexer (SOP circuit)

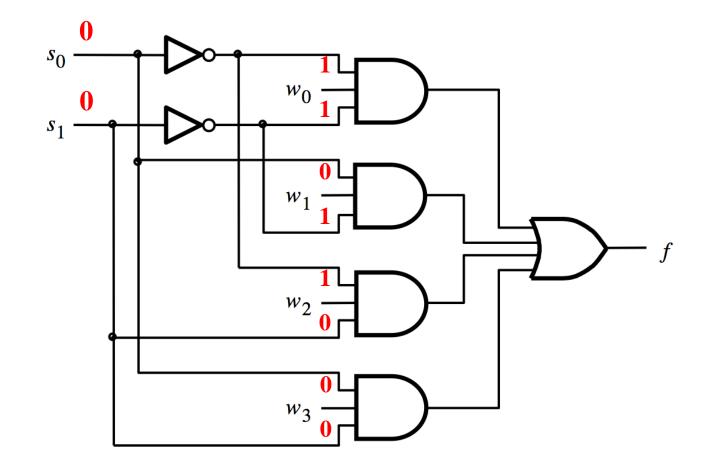


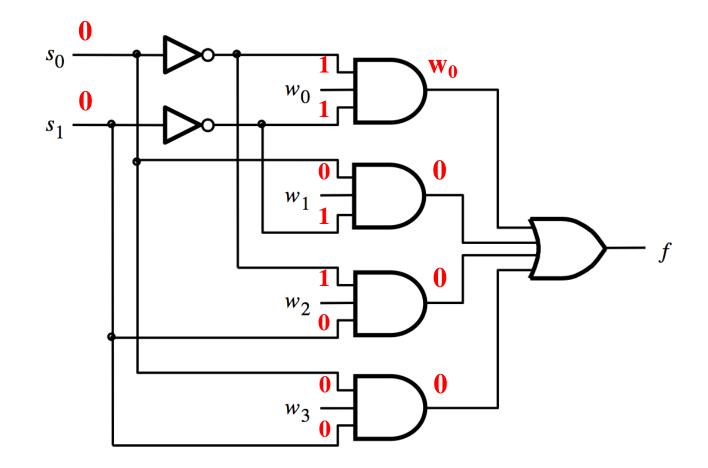
$$f = \overline{s_1} \,\overline{s_0} \,w_0 + \overline{s_1} \,s_0 \,w_1 + s_1 \,\overline{s_0} \,w_2 + s_1 \,s_0 \,w_3$$

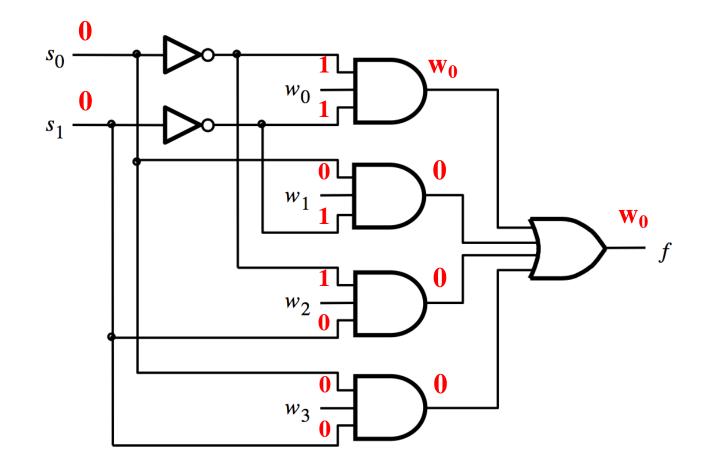
[Figure 4.2c from the textbook]

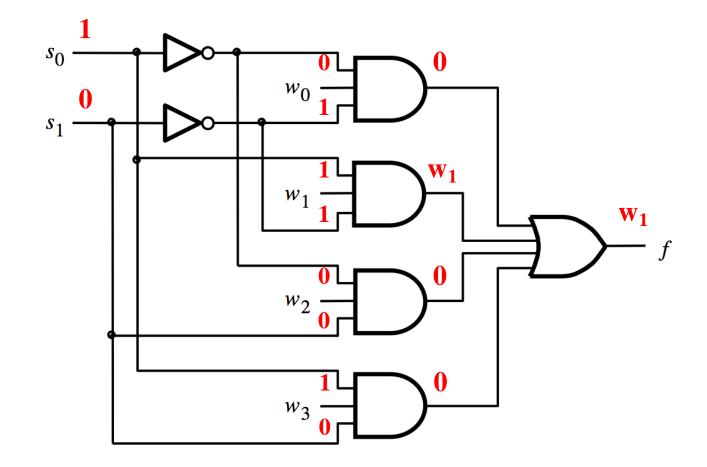
Analysis of the 4-to-1 Multiplexer ($s_1=0$ and $s_0=0$)

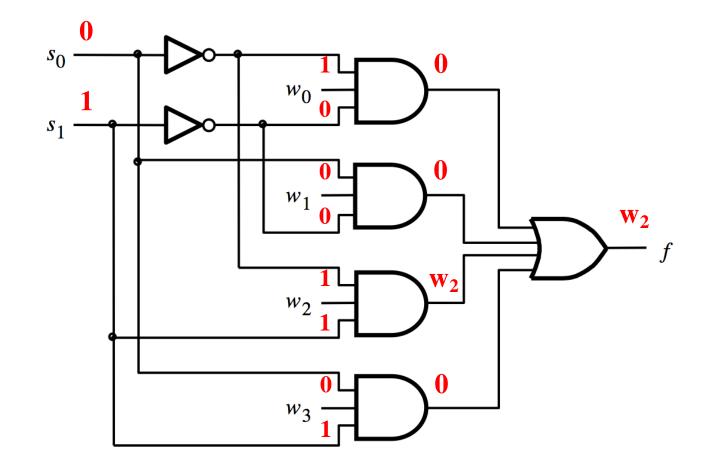


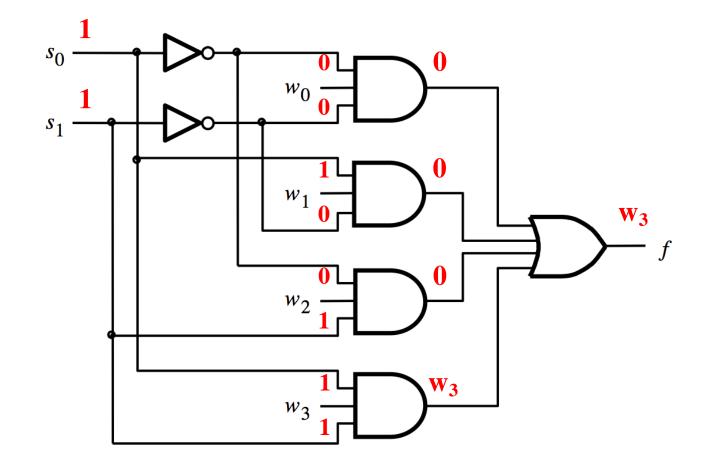


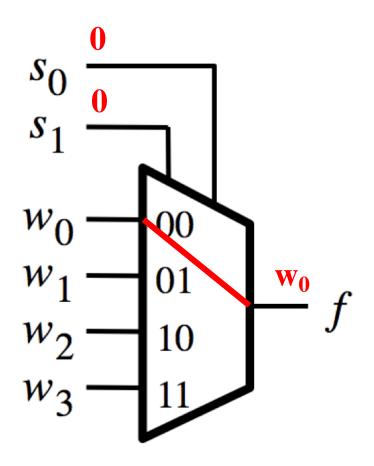


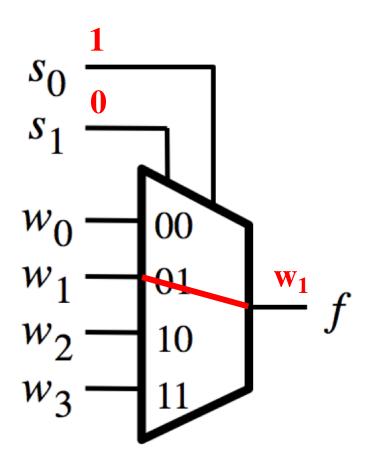


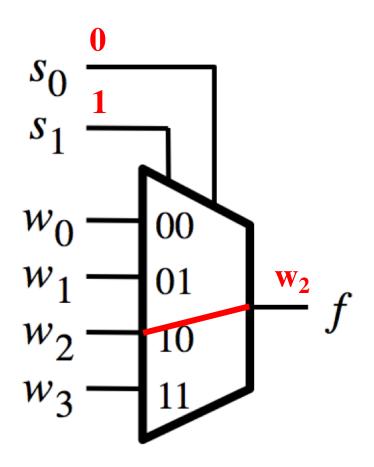


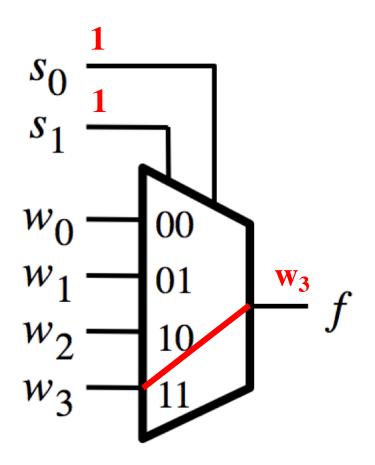


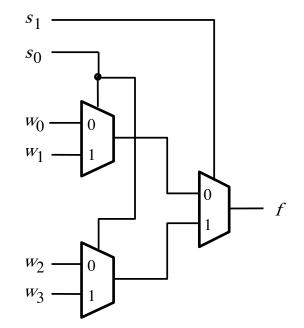








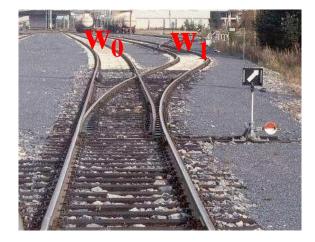


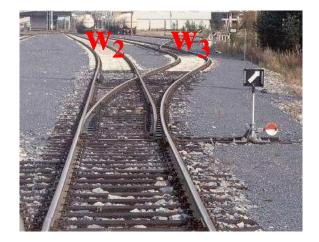


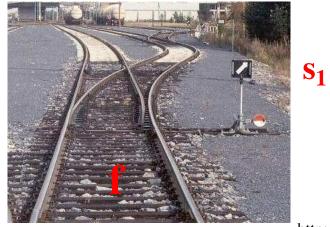
Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switches

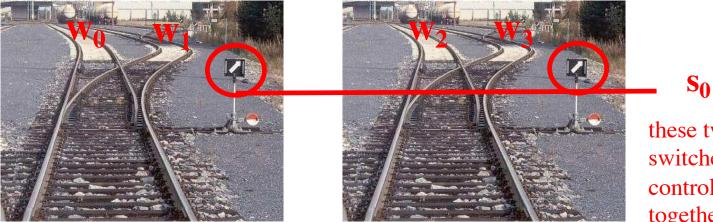




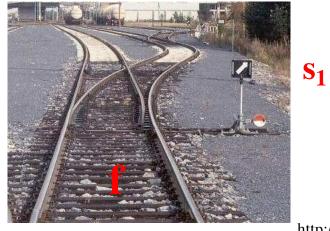


http://en.wikipedia.org/wiki/Railroad_switch]

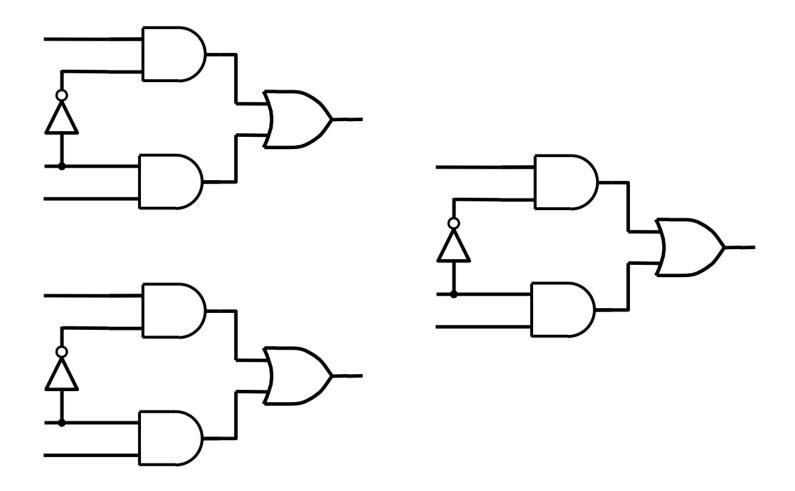
Analogy: Railroad Switches

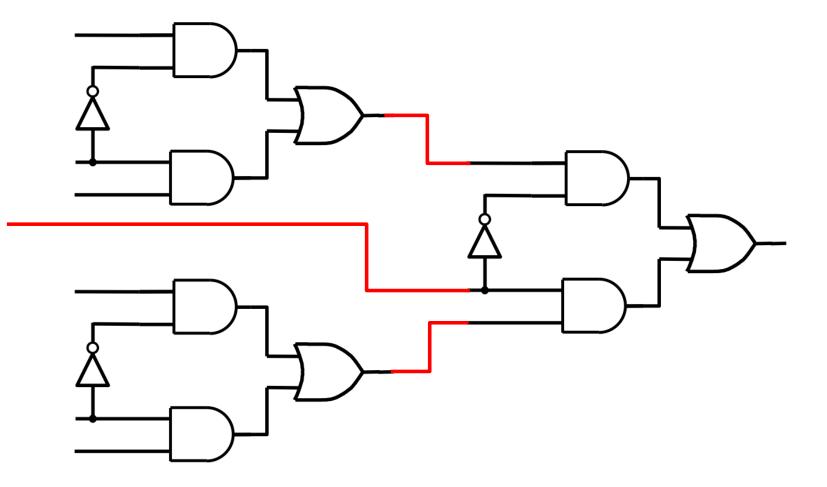


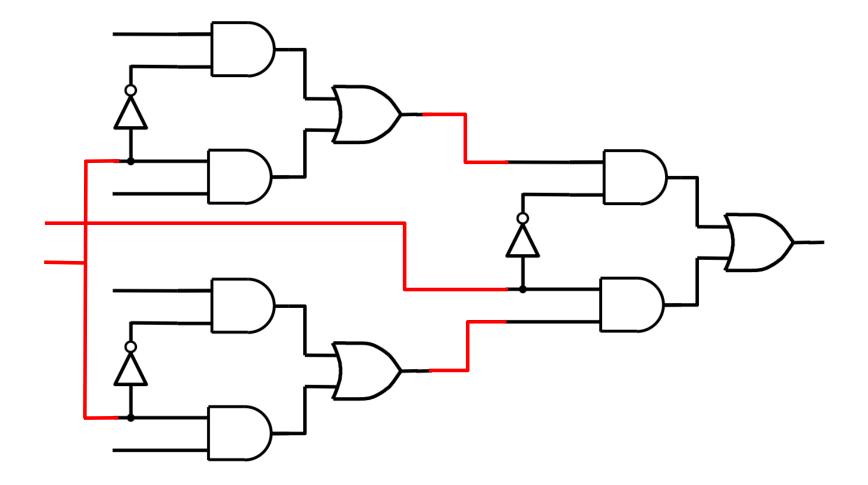
these two switches are controlled together

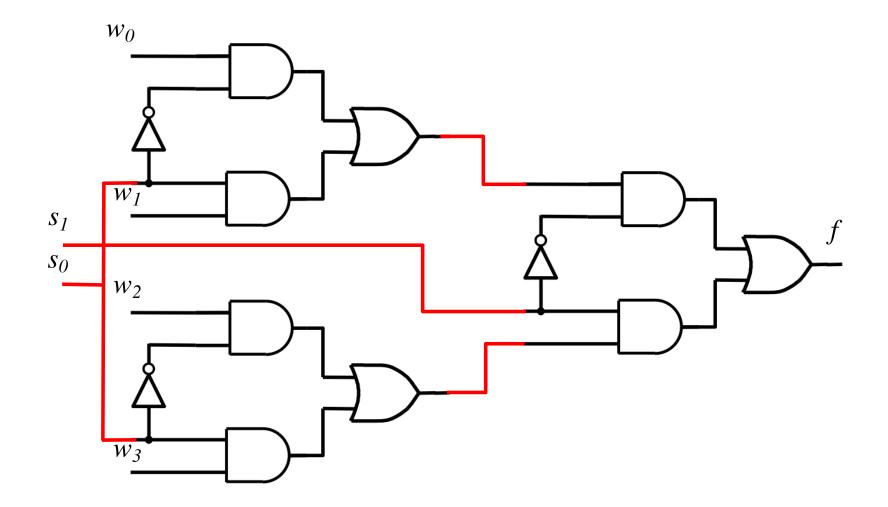


http://en.wikipedia.org/wiki/Railroad_switch]

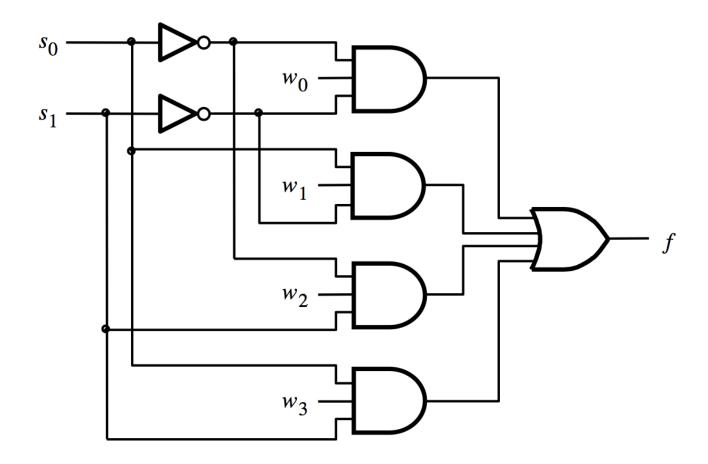




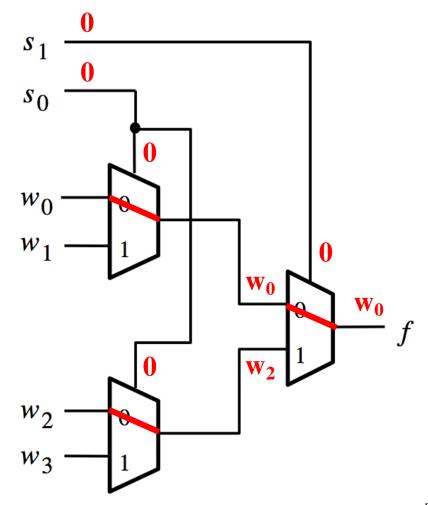




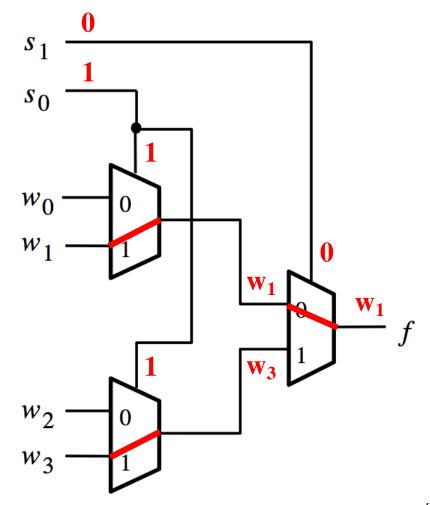
That is different from the SOP form of the 4-to-1 multiplexer shown below, which uses fewer gates



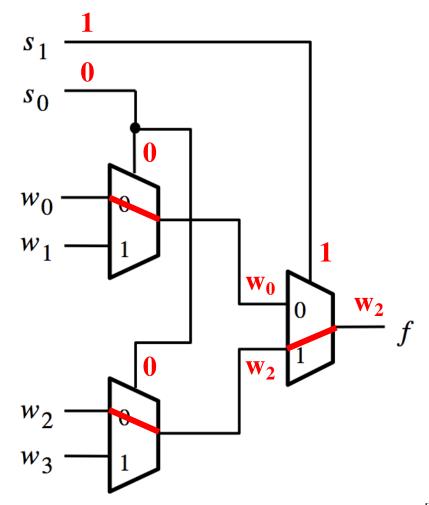
Analysis of the Hierarchical Implementation $(s_1=0 \text{ and } s_0=0)$



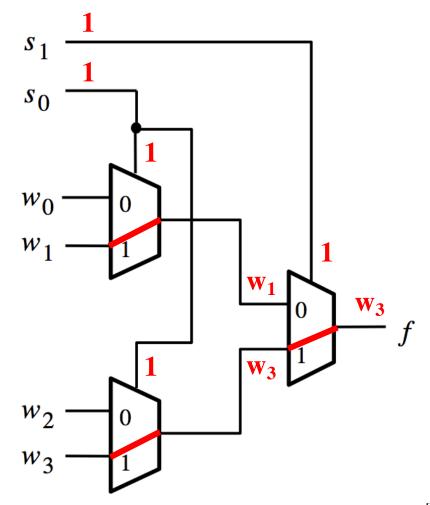
Analysis of the Hierarchical Implementation $(s_1=0 \text{ and } s_0=1)$

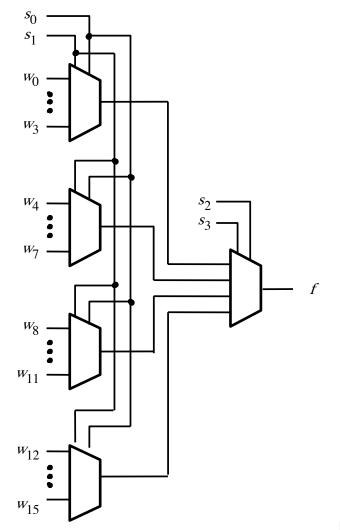


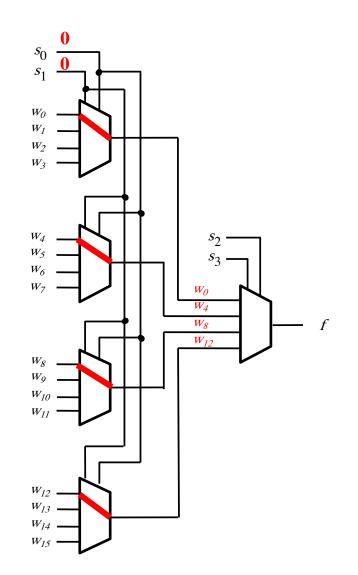
Analysis of the Hierarchical Implementation $(s_1=1 \text{ and } s_0=0)$

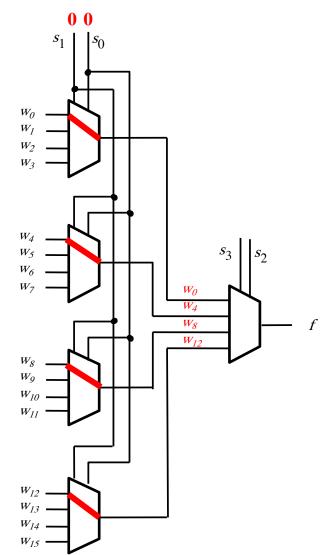


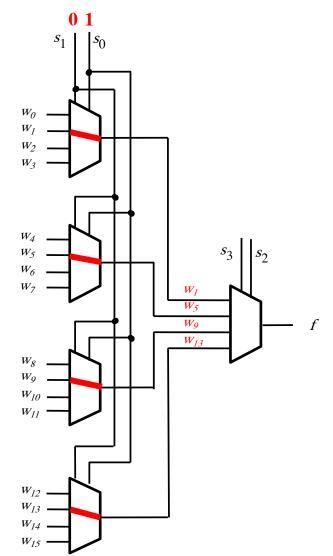
Analysis of the Hierarchical Implementation $(s_1=1 \text{ and } s_0=1)$

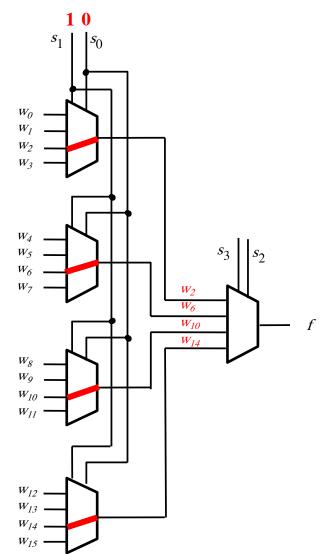


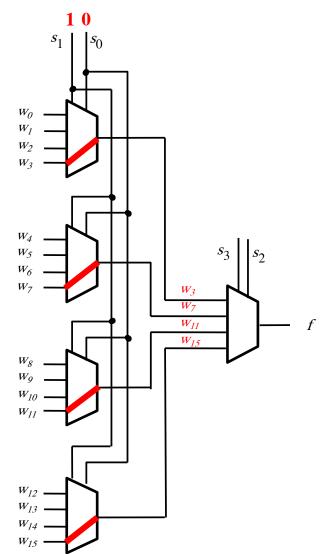


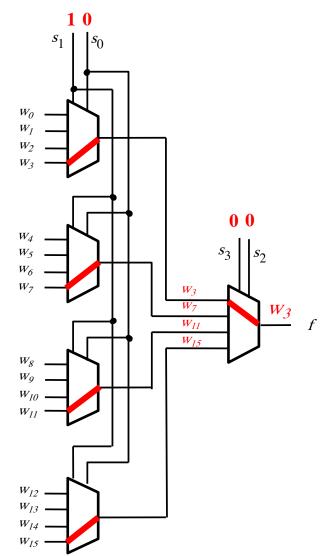


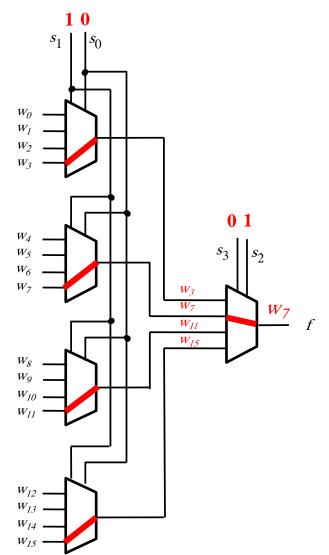


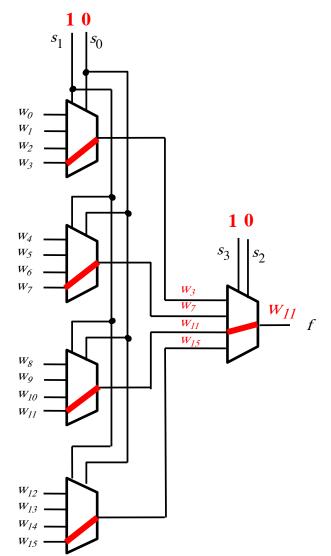


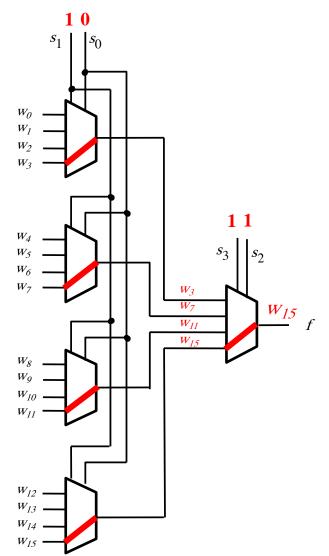


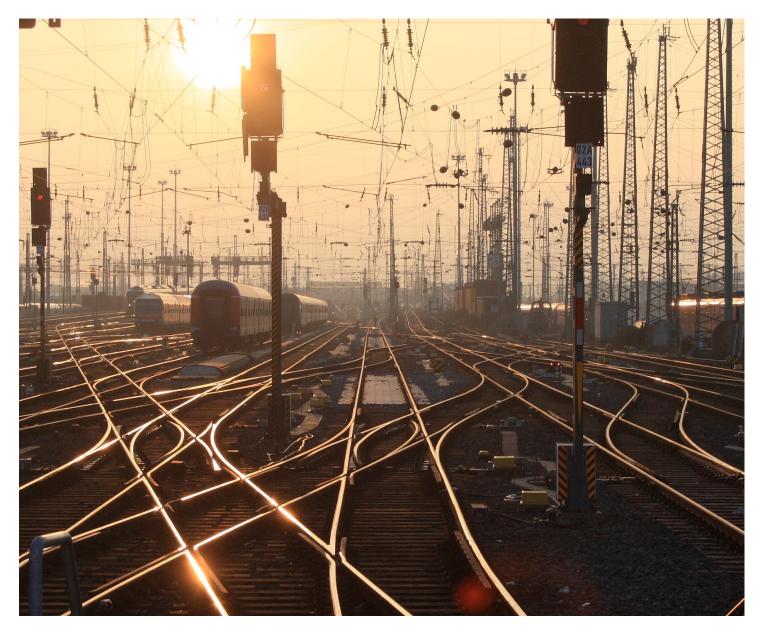








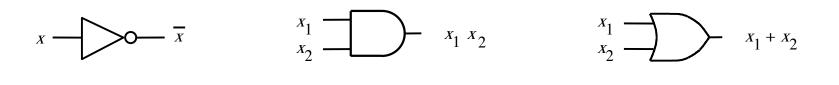




[http://upload.wikimedia.org/wikipedia/commons/2/26/SunsetTracksCrop.JPG]

Multiplexers Are Special

The Three Basic Logic Gates



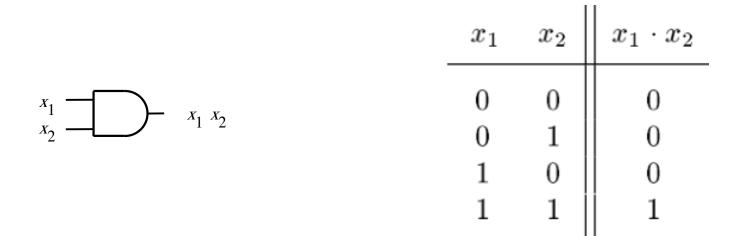
NOT gate

AND gate

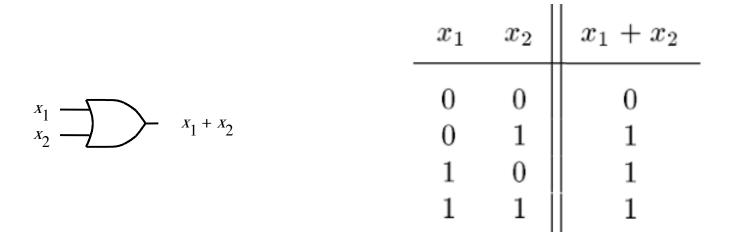
OR gate

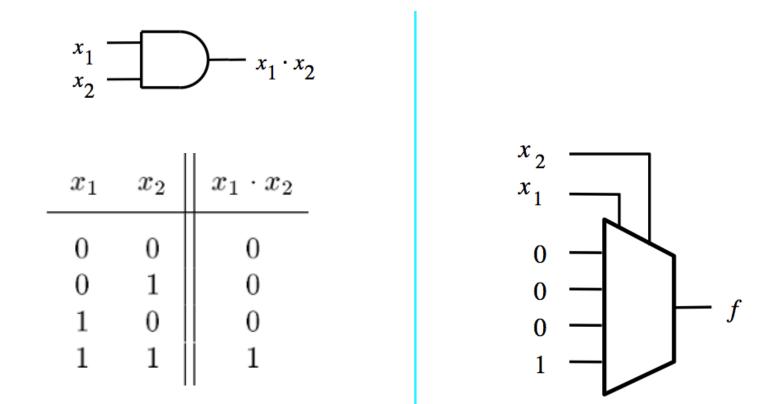
Truth Table for NOT

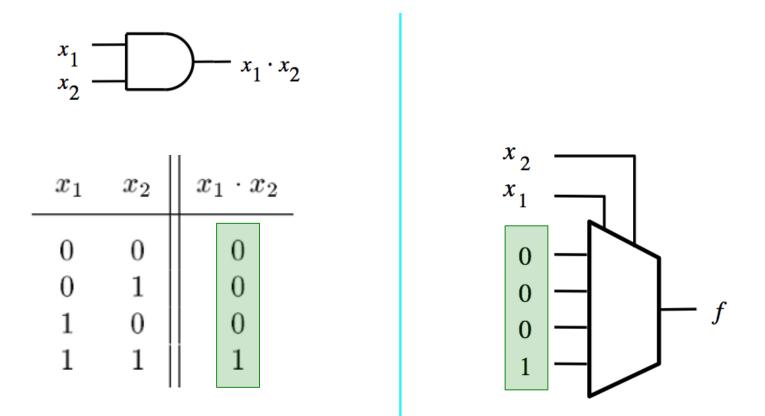
Truth Table for AND



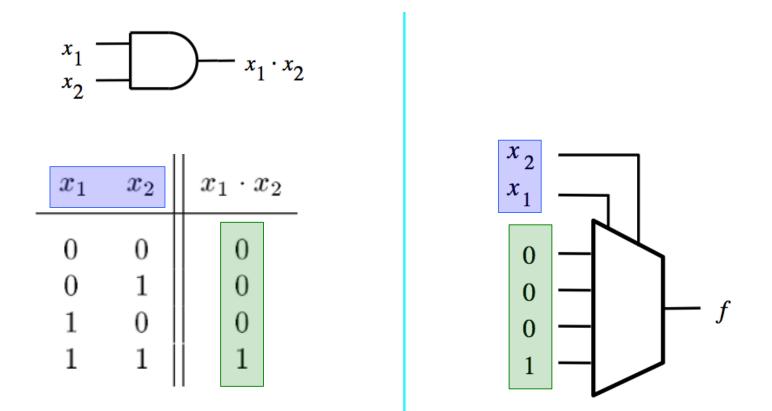
Truth Table for OR



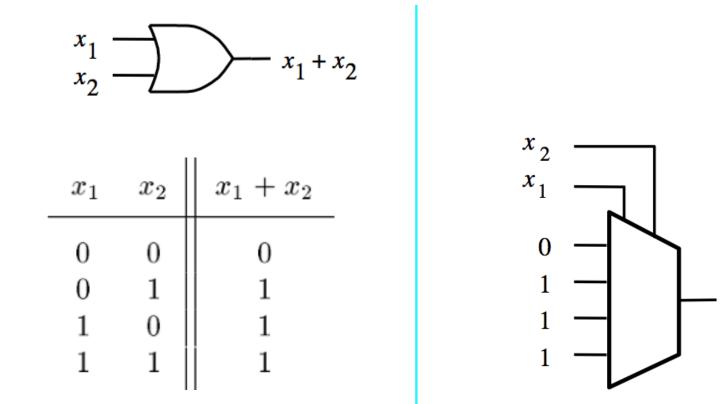




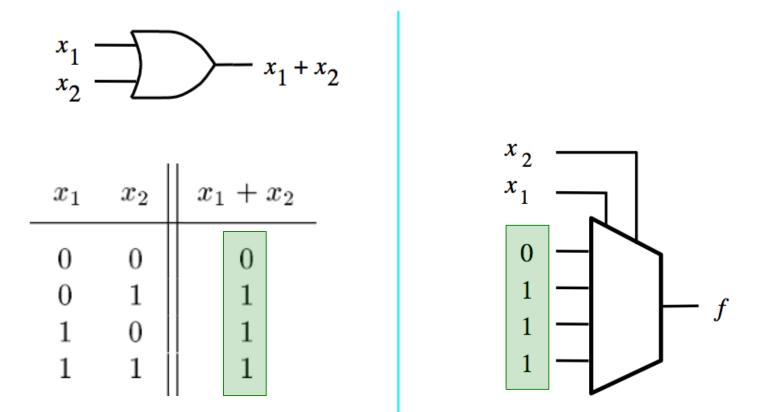
These two are the same.



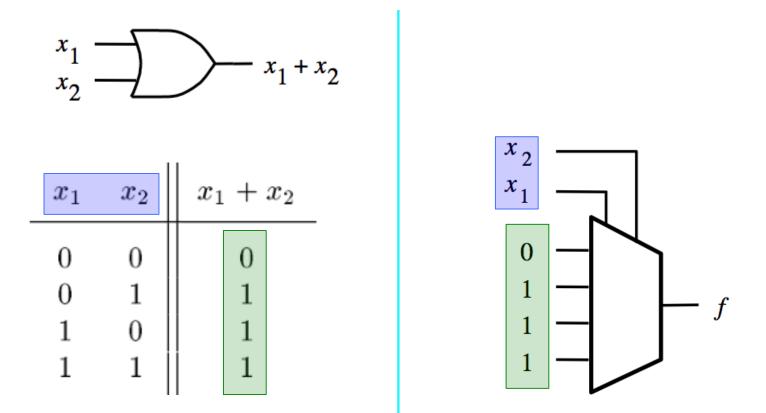
These two are the same. And so are these two.



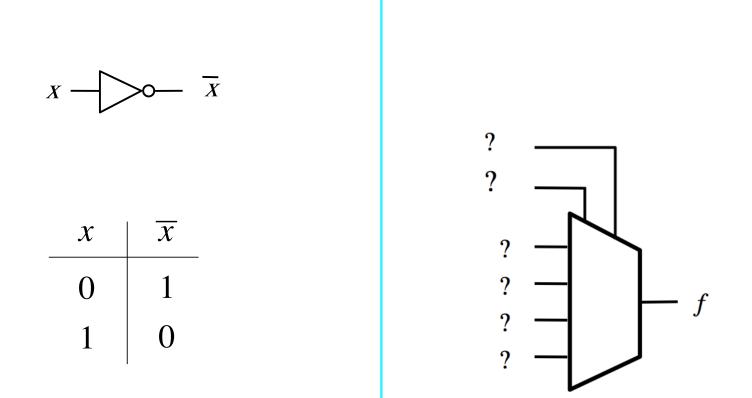
f

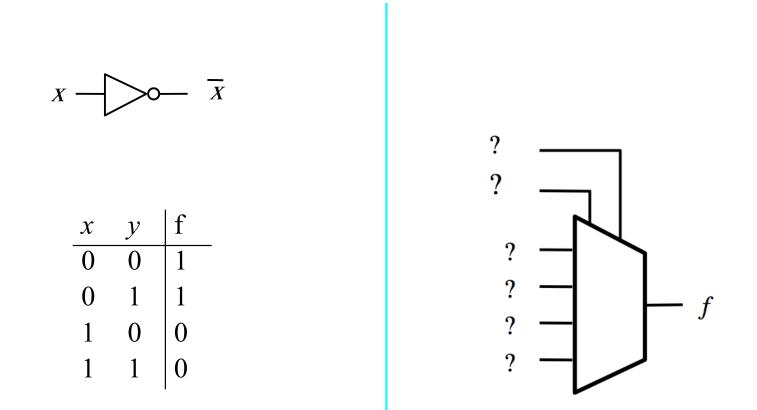


These two are the same.

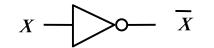


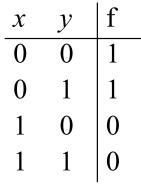
These two are the same. And so are these two.

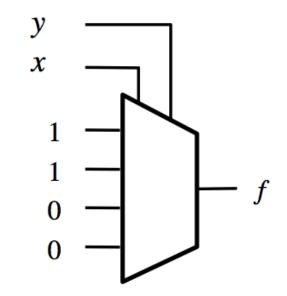


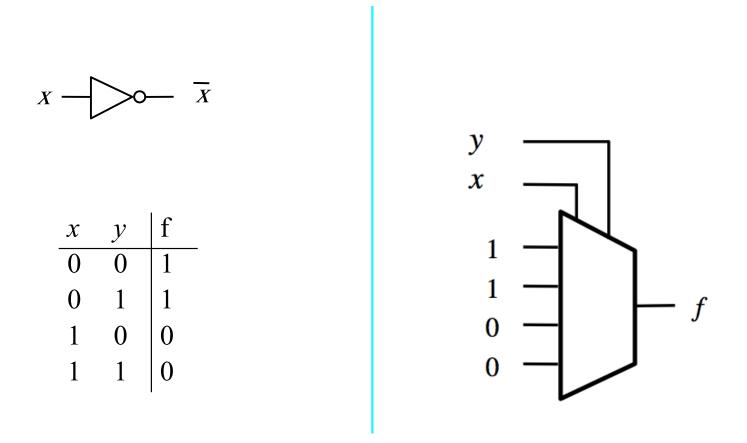


Introduce a dummy variable y.

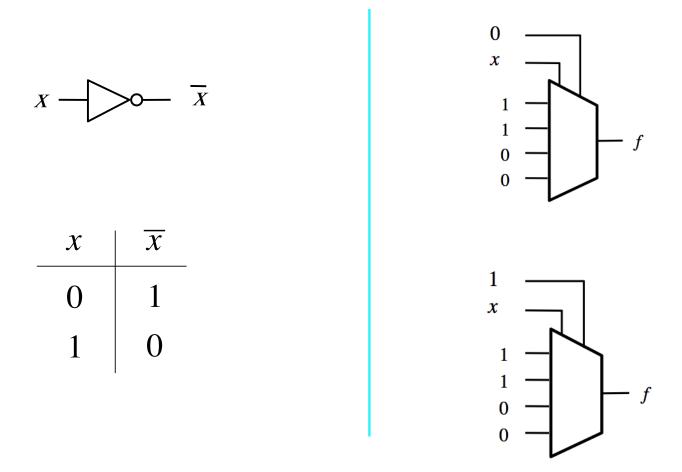








Now set y to either 0 or 1 (both will work). Why?

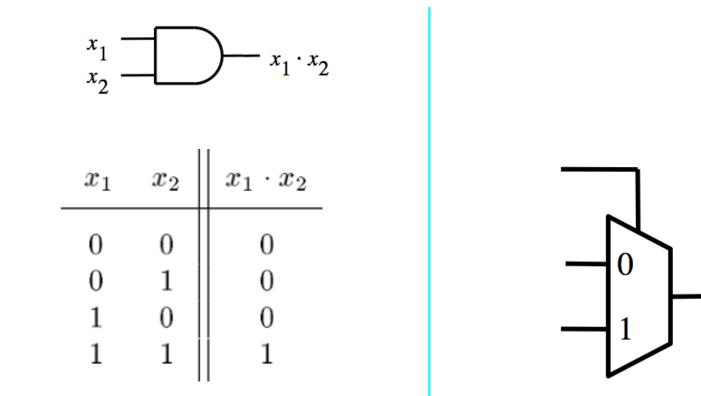


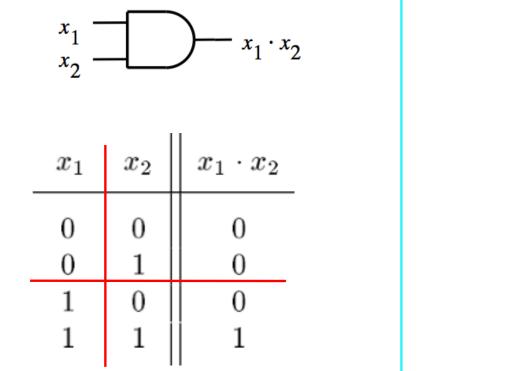
Two alternative solutions.

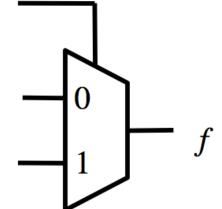
Implications

Any Boolean function can be implemented using only 4-to-1 multiplexers!

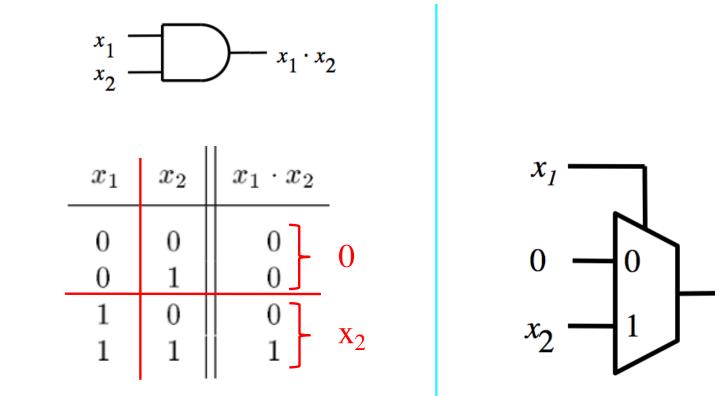
f

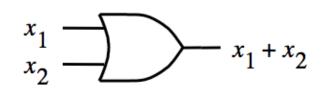




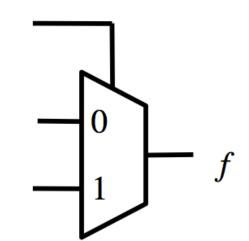


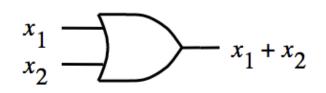
f

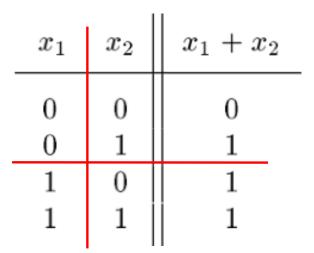


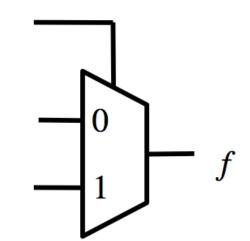


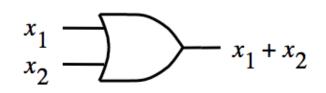
x_1	x_2	$x_1 + x_2$
$0 \\ 0 \\ 1 \\ 1$	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array} $	0 1 1 1

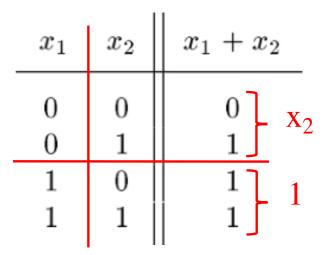


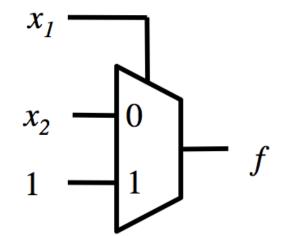


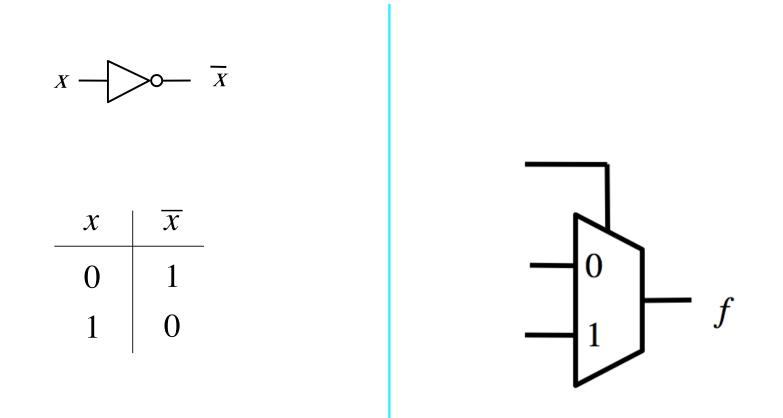


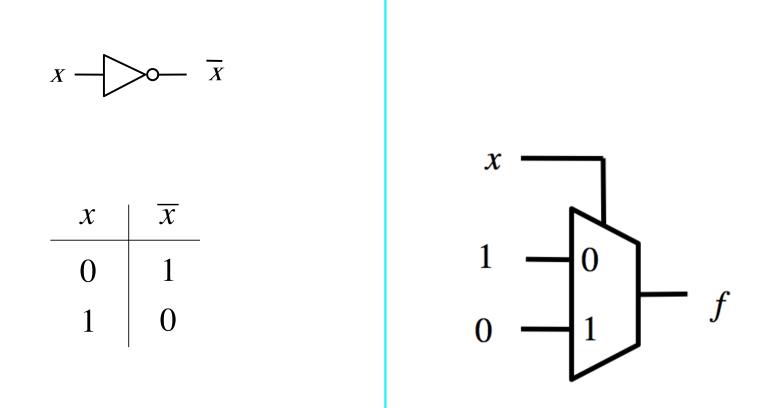






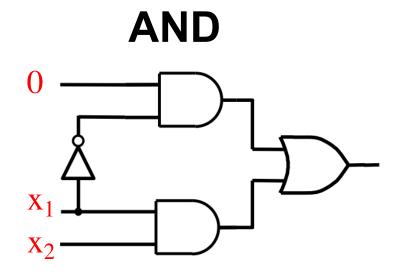


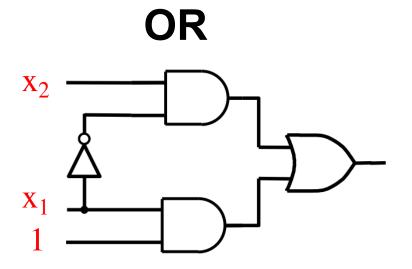




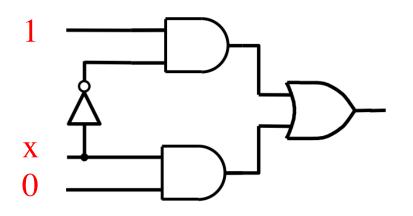
Implications

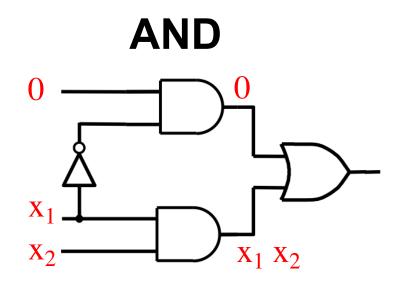
Any Boolean function can be implemented using only 2-to-1 multiplexers!

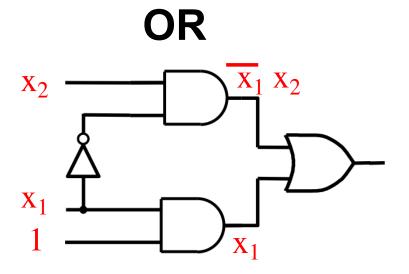


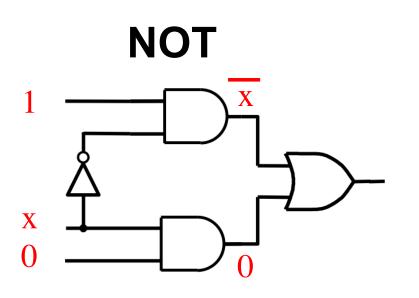


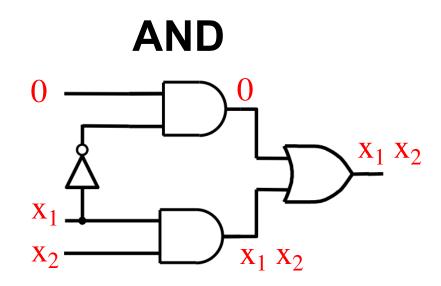
NOT

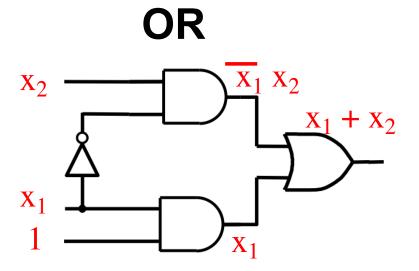


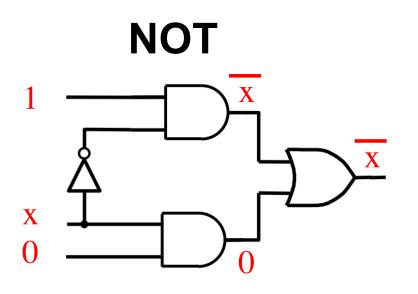






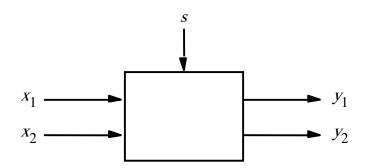




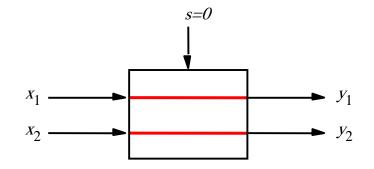


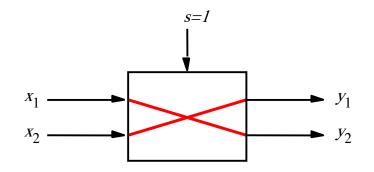
Switch Circuit

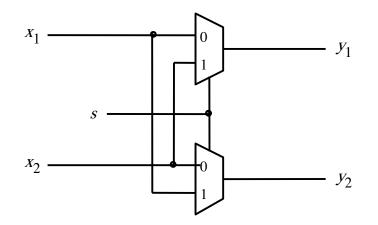
2 x 2 Crossbar switch

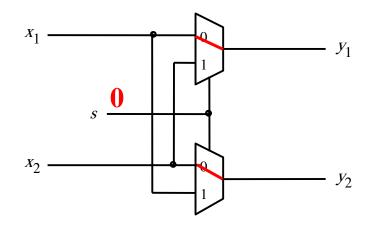


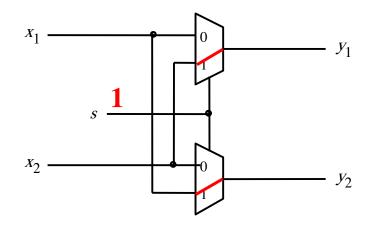
2 x 2 Crossbar switch

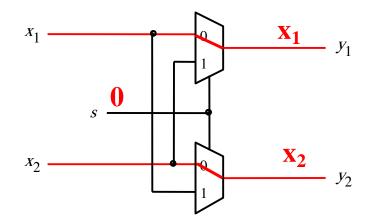


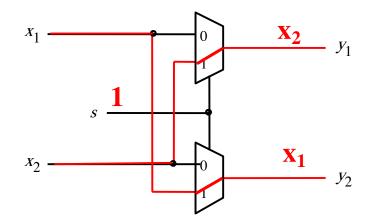




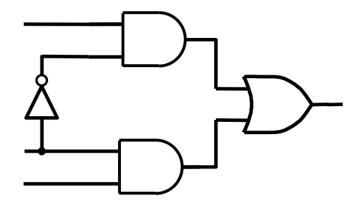


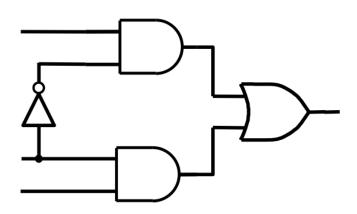




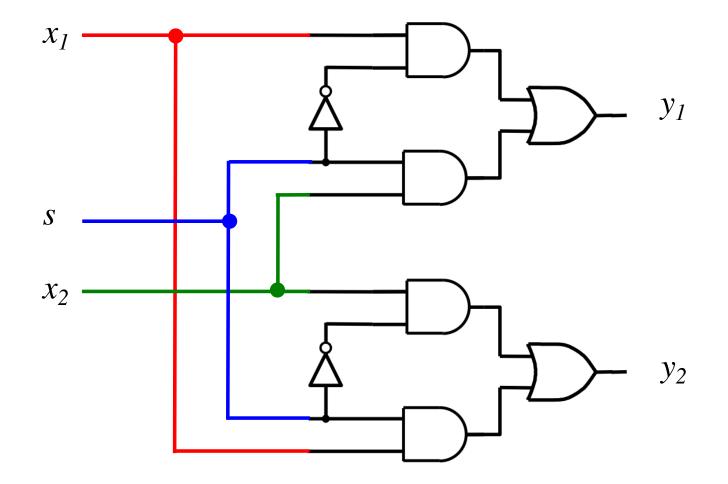


Implementation of a 2 x 2 crossbar switch with multiplexers





Implementation of a 2 x 2 crossbar switch with multiplexers

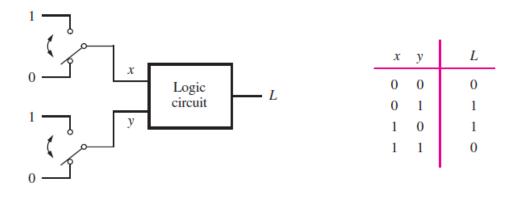


Synthesis of Logic Circuits Using Multiplexers

Synthesis of Logic Circuits Using Multiplexers

Note: This method is NOT the same as simply replacing each logic gate with a multiplexer! It is a lot more efficient.

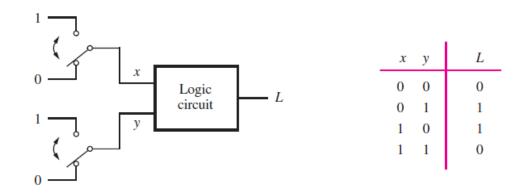
The XOR Logic Gate



(a) Two switches that control a light

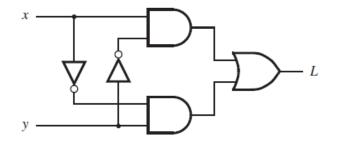
(b) Truth table

The XOR Logic Gate

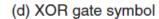


(a) Two switches that control a light

L



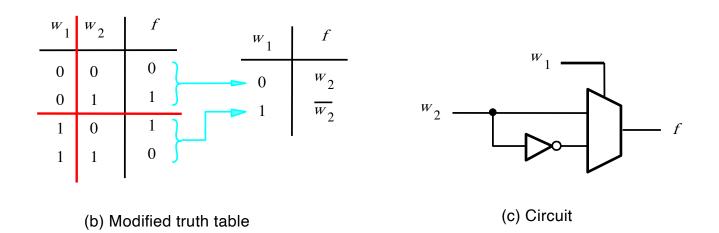
(c) Logic network



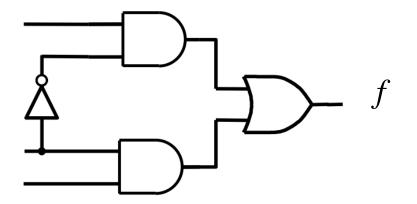
v

Implementation of a logic function with a 4-to-1 multiplexer

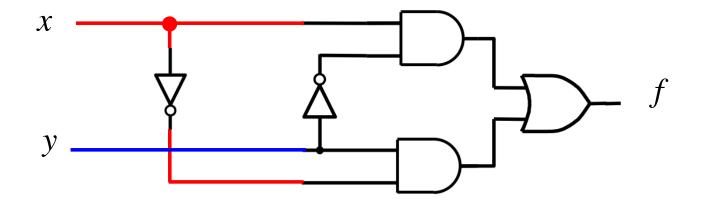
Implementation of the same logic function with a 2-to-1 multiplexer



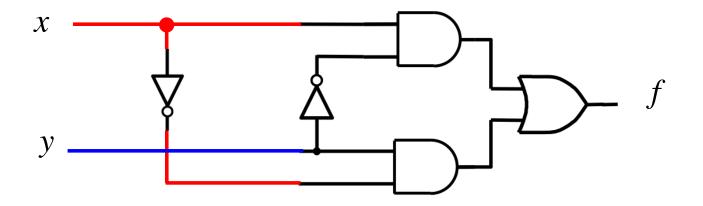
Implementation of the XOR Logic Gate with a 2-to-1 multiplexer and one NOT



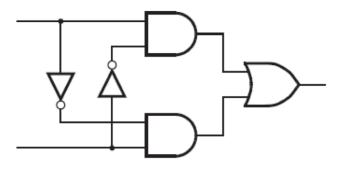
Implementation of the XOR Logic Gate with a 2-to-1 multiplexer and one NOT



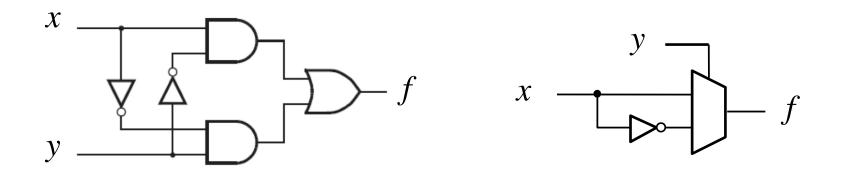
Implementation of the XOR Logic Gate with a 2-to-1 multiplexer and one NOT

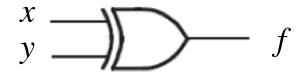


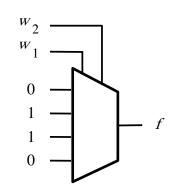
These two circuits are equivalent (the wires of the bottom AND gate are flipped)



In other words, all four of these are equivalent!

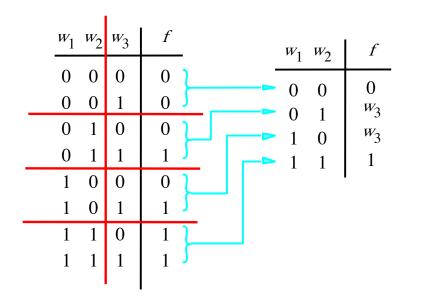


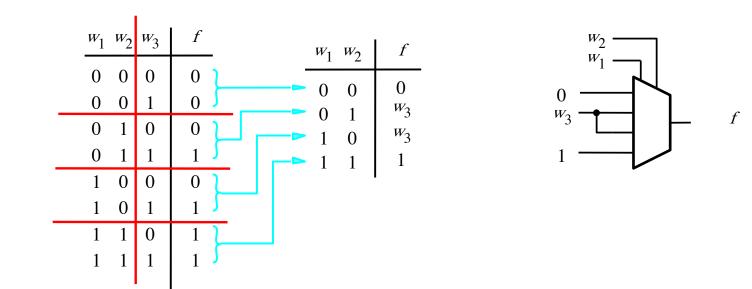




<i>w</i> ₁	<i>w</i> ₂	w ₃	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

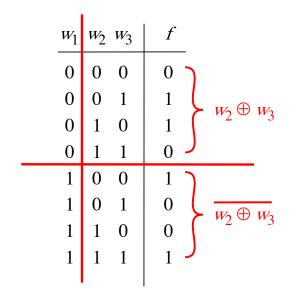
<i>w</i> ₁	<i>w</i> ₂	<i>w</i> ₃	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

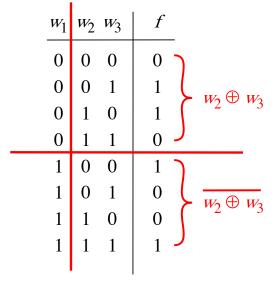




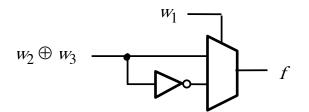
Another Example (3-input XOR)

W ₁	W_2	w ₃	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

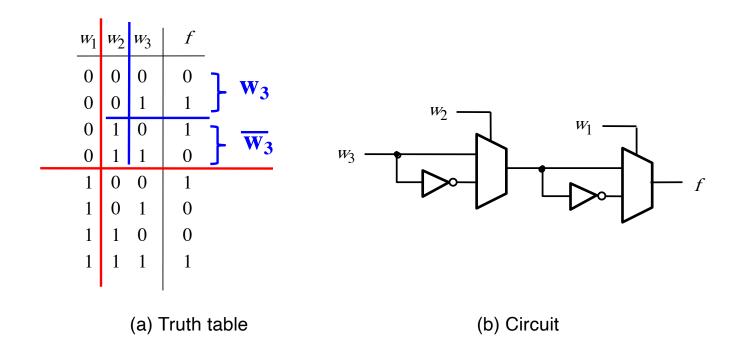




(a) Truth table



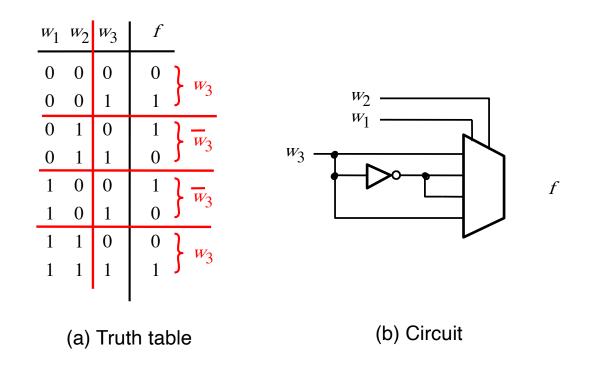
(b) Circuit



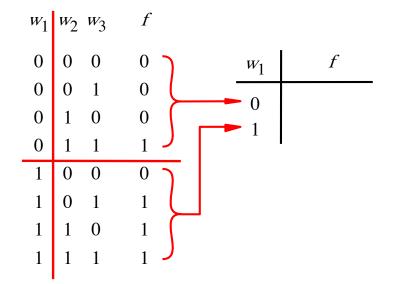
<i>w</i> ₁	<i>w</i> ₂	w ₃	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

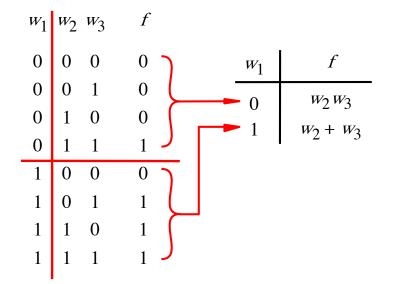
<i>w</i> ₁	<i>w</i> ₂	w ₃	f	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

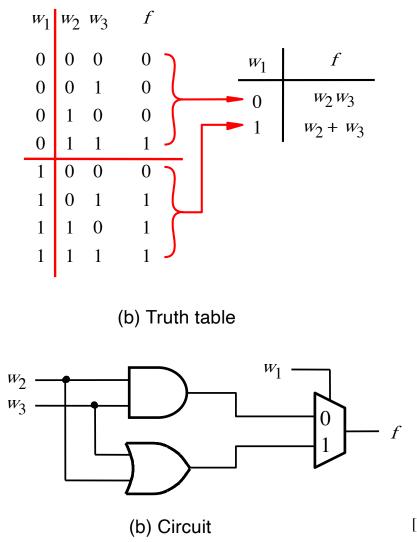
<i>w</i> ₁	<i>w</i> ₂	w ₃	f
0	0	0	0
0	0	1	1 W_3
0	1	0	$1 \left\{ \frac{1}{W_3} \right\}$
0	1	1	0 5 "3
1	0	0	$1 \left\{ \overline{W}_{3} \right\}$
1	0	1	0 5 "3
1	1	0	$\left(\begin{array}{c}0\\ W_{3}\end{array}\right)$
1	1	1	1 5 "3



Multiplexor Synthesis Using Shannon's Expansion



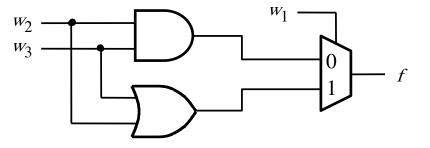




 $f = \overline{w}_1 w_2 w_3 + w_1 \overline{w}_2 w_3 + w_1 w_2 \overline{w}_3 + w_1 w_2 w_3$

$$f = \overline{w}_1(w_2w_3) + w_1(\overline{w}_2w_3 + w_2\overline{w}_3 + w_2w_3)$$

= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$



Shannon's Expansion Theorem

Any Boolean function $f(w_1, \ldots, w_n)$ can be rewritten in the form:

 $f(w_1, w_2, \dots, w_n) = \overline{w}_1 \cdot f(0, w_2, \dots, w_n) + w_1 \cdot f(1, w_2, \dots, w_n)$

Shannon's Expansion Theorem

Any Boolean function $f(w_1, \ldots, w_n)$ can be rewritten in the form:

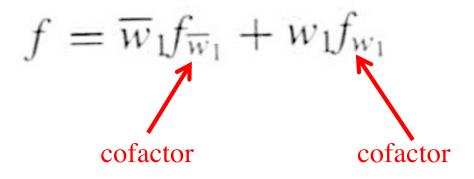
$$f(w_1, w_2, \ldots, w_n) = \overline{w}_1 \cdot f(0, w_2, \ldots, w_n) + w_1 \cdot f(1, w_2, \ldots, w_n)$$

$$f = \overline{w}_1 f_{\overline{w}_1} + w_1 f_{w_1}$$

Shannon's Expansion Theorem

Any Boolean function $f(w_1, \ldots, w_n)$ can be rewritten in the form:

$$f(w_1, w_2, \dots, w_n) = \overline{w}_1 \cdot f(0, w_2, \dots, w_n) + w_1 \cdot f(1, w_2, \dots, w_n)$$



Shannon's Expansion Theorem (Example)

 $f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3$

Shannon's Expansion Theorem (Example)

 $f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3$

 $f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3 (\overline{w_1} + w_1)$

Shannon's Expansion Theorem (Example)

 $f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3$

 $f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3 (\overline{w_1} + w_1)$

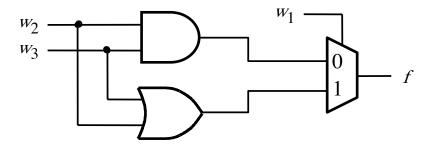
 $f = \overline{w}_1(0 \cdot w_2 + 0 \cdot w_3 + w_2 w_3) + w_1(1 \cdot w_2 + 1 \cdot w_3 + w_2 w_3)$ = $\overline{w}_1(w_2 w_3) + w_1(w_2 + w_3)$

Shannon's Expansion Theorem (Example)

 $f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3$

$$f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3 (\overline{w_1} + w_1)$$

 $f = \overline{w}_1(0 \cdot w_2 + 0 \cdot w_3 + w_2w_3) + w_1(1 \cdot w_2 + 1 \cdot w_3 + w_2w_3)$ = $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$

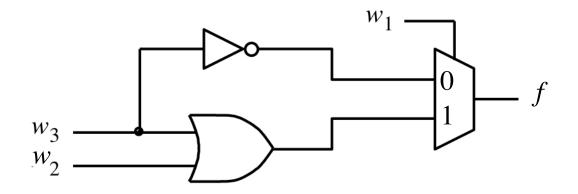


Another Example

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

$$f = \overline{w}_1 f_{\overline{w}_1} + w_1 f_{w_1}$$
$$= \overline{w}_1 (\overline{w}_3) + w_1 (w_2 + w_3)$$



$$f = \overline{w}_1 f_{\overline{w}_1} + w_1 f_{w_1}$$
$$= \overline{w}_1 (\overline{w}_3) + w_1 (w_2 + w_3)$$

[Figure 4.11a from the textbook]

Shannon's Expansion Theorem (In terms of more than one variable)

$$f(w_1, \dots, w_n) = \overline{w}_1 \overline{w}_2 \cdot f(0, 0, w_3, \dots, w_n) + \overline{w}_1 w_2 \cdot f(0, 1, w_3, \dots, w_n) + w_1 \overline{w}_2 \cdot f(1, 0, w_3, \dots, w_n) + w_1 w_2 \cdot f(1, 1, w_3, \dots, w_n)$$

This form is suitable for implementation with a 4x1 multiplexer.

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$
$$= \overline{w}_1 (\overline{w}_2 + w_2) \overline{w}_3 + w_1 w_2 + w_1 (\overline{w}_2 + w_2) w_3$$

$$f = \overline{w_1}\overline{w_3} + w_1w_2 + w_1w_3$$

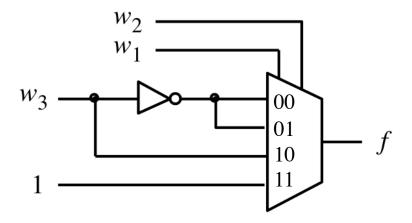
= $\overline{w_1}(\overline{w_2} + w_2)\overline{w_3} + w_1w_2 + w_1(\overline{w_2} + w_2)w_3$
= $\overline{w_1}\overline{w_2}\overline{w_3} + \overline{w_1}w_2\overline{w_3} + w_1w_2 + w_1\overline{w_2}w_3 + w_1w_2w_3$
= $\overline{w_1}\overline{w_2}\overline{w_3} + \overline{w_1}w_2\overline{w_3} + w_1\overline{w_2}w_3 + w_1w_2(1 + w_3)$
= $\overline{w_1}\overline{w_2}(\overline{w_3}) + \overline{w_1}w_2(\overline{w_3}) + w_1\overline{w_2}(w_3) + w_1w_2(1)$

$$f = \overline{w_1}\overline{w_3} + w_1w_2 + w_1w_3$$

= $\overline{w_1}(\overline{w_2} + w_2)\overline{w_3} + w_1w_2 + w_1(\overline{w_2} + w_2)w_3$
= $\overline{w_1}\overline{w_2}\overline{w_3} + \overline{w_1}w_2\overline{w_3} + w_1w_2 + w_1\overline{w_2}w_3 + w_1w_2w_3$
= $\overline{w_1}\overline{w_2}\overline{w_3} + \overline{w_1}w_2\overline{w_3} + w_1\overline{w_2}w_3 + w_1w_2(1 + w_3)$
= $\overline{w_1}\overline{w_2}(\overline{w_3}) + \overline{w_1}w_2\overline{w_3} + w_1\overline{w_2}(w_3) + w_1w_2(1)$
these are the 4 cofactors

$$f = \overline{w}_1 \overline{w}_3 + w_1 w_2 + w_1 w_3$$

$$f = \overline{w}_1 \overline{w}_2 f_{\overline{w}_1 \overline{w}_2} + \overline{w}_1 w_2 f_{\overline{w}_1 w_2} + w_1 \overline{w}_2 f_{w_1 \overline{w}_2} + w_1 w_2 f_{w_1 w_2}$$
$$= \overline{w}_1 \overline{w}_2 (\overline{w}_3) + \overline{w}_1 w_2 (\overline{w}_3) + w_1 \overline{w}_2 (w_3) + w_1 w_2 (1)$$



$$f = \overline{w}_1 \overline{w}_2 f_{\overline{w}_1 \overline{w}_2} + \overline{w}_1 w_2 f_{\overline{w}_1 w_2} + w_1 \overline{w}_2 f_{w_1 \overline{w}_2} + w_1 w_2 f_{w_1 w_2}$$
$$= \overline{w}_1 \overline{w}_2 (\overline{w}_3) + \overline{w}_1 w_2 (\overline{w}_3) + w_1 \overline{w}_2 (w_3) + w_1 w_2 (1)$$

[Figure 4.11b from the textbook]

Yet Another Example

$$f = w_1 w_2 + w_1 w_3 + w_2 w_3$$

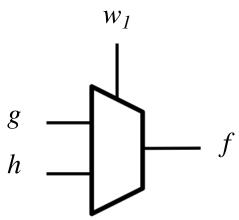
$$f = w_1 w_2 + w_1 w_3 + w_2 w_3$$

$$f = \overline{w}_1(w_2w_3) + w_1(w_2 + w_3 + w_2w_3)$$
$$= \overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$$

$$f = w_1 w_2 + w_1 w_3 + w_2 w_3$$

$$f = \overline{w}_1(w_2w_3) + w_1(w_2 + w_3 + w_2w_3)$$

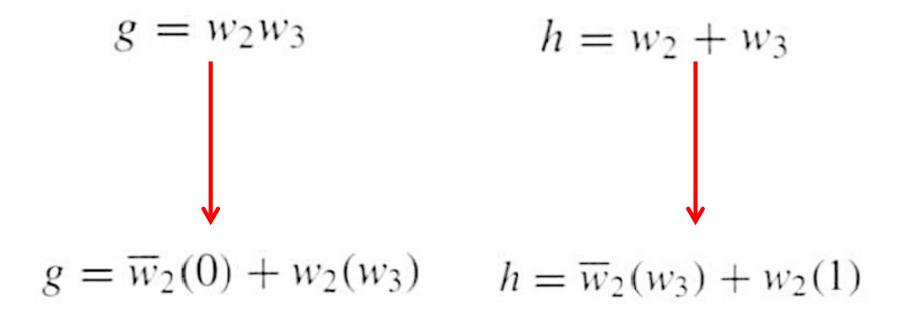
= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$
 $g = w_2w_3$ $h = w_2 + w_3$

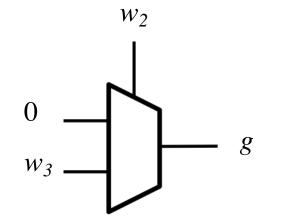


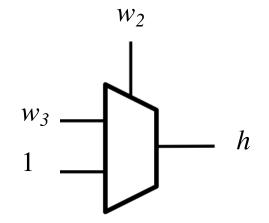
$$f = \overline{w}_1(w_2w_3) + w_1(w_2 + w_3 + w_2w_3)$$

= $\overline{w}_1(w_2w_3) + w_1(w_2 + w_3)$
 $g = w_2w_3$ $h = w_2 + w_3$

$$g = w_2 w_3 \qquad \qquad h = w_2 + w_3$$

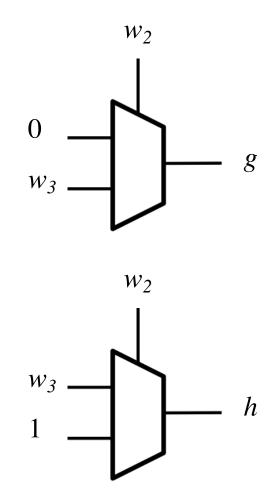


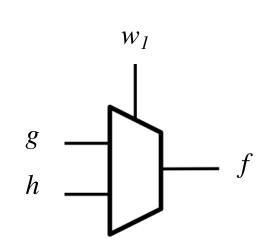




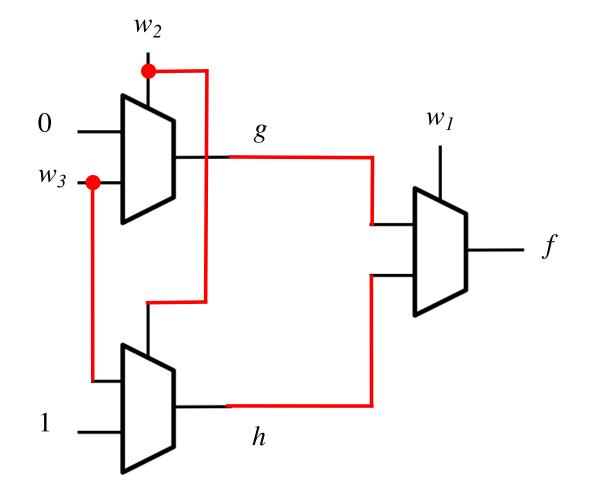
 $g = \overline{w}_2(0) + w_2(w_3)$ $h = \overline{w}_2(w_3) + w_2(1)$

Finally, we are ready to draw the circuit

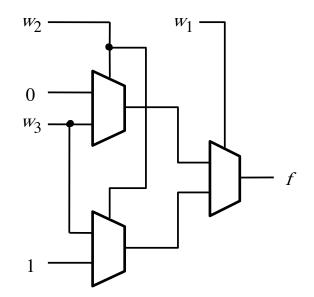




Finally, we are ready to draw the circuit



Finally, we are ready to draw the circuit



[Figure 4.12 from the textbook]

Questions?

THE END