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Administrative Stuff

• No HW is due today

• HW 6 will be due on Monday Oct.  14.

• Posted on the class web page.



Administrative Stuff

• Labs this week

• Mini-Project

• This is worth 3% of your grade (x2 labs)

• https://www.ece.iastate.edu/~alexs/classes/
 2024_Fall_2810/labs/Project-Mini/



Quick Review



A  ripple-carry adder
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How long does it take to compute all 
sum bits and all carry bits?

– 

It takes 2n gate delays using a ripple-carry adder? 



Delays through the Full-Adder circuit

[ Figure 3.3c from the textbook ]

2 gate delays in total



The Full-Adder Circuit

[ Figure 3.3c from the textbook ]



The Full-Adder Circuit

[ Figure 3.3c from the textbook ]

Let's take a closer look at this.
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ci+1 = xi yi + (xi + yi )ci

Another Way to Draw the Full-Adder Circuit



Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci



Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi )ci



Decomposing the Carry Expression
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Another Way to Draw the Full-Adder Circuit
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Another Way to Draw the Full-Adder Circuit
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Another Way to Draw the Full-Adder Circuit
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Another Way to Draw the Full-Adder Circuit

ci+1 = xi yi + (xi + yi )ci
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Yet Another Way to Draw It (Just Rotate It)

ci

ci+1 si

xi yi

pigi
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Now we can Build a Ripple-Carry Adder

[ Figure 3.14 from the textbook ]



x 1 y 1 

g 1 p 1 

s 1 

Stage 1 

x 0 y 0 

g 0 p 0 

s 0 

Stage 0 

c 0 
c 1 c 2 

Now we can Build a Ripple-Carry Adder

[ Figure 3.14 from the textbook ]
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The delay is 5 gates (1+2+2)
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n-bit ripple-carry adder: 2n+1 gate delays

. . . 



Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi )ci

gi pi

ci+1 = gi  + pi ci

ci+1 = gi  + pi (gi-1  + pi-1 ci-1 )

= gi  + pi gi-1  + pi pi-1 ci-1



Carry for the first two stages

c1  =  g0  + p0 c0

c2  =  g1  + p1g0 + p1p0c0



x 1 y 1 

g 1 p 1 

s 1 

x 0 y 0 

s 0 

c 2 

x 0 y 0 

c 0 

c 1 

g 0 p 0 

The first two stages of a carry-lookahead adder

[ Figure 3.15 from the textbook ]
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It takes 3 gate delays to generate c1



x 1 y 1 
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It takes 3 gate delays to generate c2
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The first two stages of a carry-lookahead adder
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It takes 4 gate delays to generate s1

2 c 



It takes 4 gate delays to generate s2
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N-bit Carry-Lookahead Adder

• It takes 3 gate delays to generate all carry signals

• It takes 1 more gate delay to generate all sum bits

• Thus, the total delay through an n-bit            
carry-lookahead adder is only 4 gate delays!



Expanding the Carry Expression

c1  =  g0  + p0 c0

c2  =  g1  + p1g0 + p1p0c0

ci+1 = gi  + pi ci

c3  =  g2  + p2g1 + p2p1g0 + p2p1p0c0

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

. . .



Expanding the Carry Expression

c1  =  g0  + p0 c0

c2  =  g1  + p1g0 + p1p0c0

ci+1 = gi  + pi ci

c3  =  g2  + p2g1 + p2p1g0 + p2p1p0c0

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

. . .

Even this takes 
only 3 gate delays 
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A hierarchical carry-lookahead adder with 
ripple-carry between blocks

[ Figure 3.16 from the textbook ]
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[ Figure 3.17 from the textbook ]

A hierarchical carry-lookahead adder
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The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0



The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
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The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

G0

P0



The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

G0

P0

c8  =  G0  + P0 c0



The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

c16  =  g15  + p15g14 + p15p14g13 + p15p14p13g12
 + p15p14p13p12g11 + p15p14p13p12p11g10
 + p15p14p13p12p11p10g9+ p15p14p13p12p11p10p9g8
 + p15p14p13p12p11p10p9p8c8



The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

c16  =  g15  + p15g14 + p15p14g13 + p15p14p13g12
 + p15p14p13p12g11 + p15p14p13p12p11g10
 + p15p14p13p12p11p10g9+ p15p14p13p12p11p10p9g8
 + p15p14p13p12p11p10p9p8c8

The same expression, just add 8 to all subscripts



The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
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 + p15p14p13p12p11p10g9+ p15p14p13p12p11p10p9g8
 + p15p14p13p12p11p10p9p8c8

G0

P0 2-gate delays

3-gate delays



The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

c16  =  g15  + p15g14 + p15p14g13 + p15p14p13g12
 + p15p14p13p12g11 + p15p14p13p12p11g10
 + p15p14p13p12p11p10g9+ p15p14p13p12p11p10p9g8
 + p15p14p13p12p11p10p9p8c8

G1

P1 2-gate delays

3-gate delays



The Hierarchical Carry Expression

c8  =  G0  + P0 c0

c16  =  G1  + P1 c8

 =  G1  + P1 G0 + P1 P0 c0

c24  = G2  + P2 G1 + P2 P1 G0 + P2 P1 P0 c0

c32  = G3  + P3 G2  + P3 P2 G1 + P3 P2 P1 G0+ P3 P2 P1 P0 c0



The Hierarchical Carry Expression

c8  =  G0  + P0 c0

c16  =  G1  + P1 c8

 =  G1  + P1 G0 + P1 P0 c0

c24  = G2  + P2 G1 + P2 P1 G0 + P2 P1 P0 c0

c32  = G3  + P3 G2  + P3 P2 G1 + P3 P2 P1 G0+ P3 P2 P1 P0 c0

4-gate delays

5-gate delays

5-gate delays

5-gate delays
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[ Figure 3.17 from the textbook ]

A hierarchical carry-lookahead adder
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A hierarchical carry-lookahead adder

c8  =  G0  + P0 c0c16  = G1  + P1 G0 + P1 P0 c0c32 =G3+P3G2+P3P2G1 +P3 P2 P1 G0+P3 P2 P1 P0 c0



Total Gate Delay Through a 
Hierarchical Carry-Lookahead Adder 

• The total delay is 8 gates:

§ 3 to generate all Gi and Pi signals

§ +2 to generate c8, c16, c24, and c32

§ +2 to generate internal carries in the blocks

§ +1 to generate the sum bits (one extra XOR) 



Total Gate Delay Through a 
Hierarchical Carry-Lookahead Adder 

• The total delay is 8 gates:

§ 3 to generate all Gi and Pi signals

§ +2 to generate c8, c16, c24, and c32

§ +2 to generate internal carries in the blocks

§ +1 to generate the sum bits (one extra XOR) 
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c1  =  g0  + p0 c0

2 more gate delays for the internal carries within a block
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c9  =  g8  + p8 c8

2 more gate delays for the internal carries within a block
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Total Gate Delay Through a 
Hierarchical Carry-Lookahead Adder 

• The total delay is 8 gates:

§ 3 to generate all Gi and Pi signals

§ +2 to generate c8, c16, c24, and c32

§ +2 to generate internal carries in the blocks

§ +1 to generate the sum bits (one extra XOR) 



Multiplication and division
by 10 in the decimal system



Decimal Multiplication by 10

What happens when we multiply a number by 10?

  4 x 10 = ?

          542 x 10 = ?

        1245 x 10 = ?



Decimal Multiplication by 10

What happens when we multiply a number by 10?

  4 x 10 = 40

          542 x 10 = 5420

        1245 x 10 = 12450

       



Decimal Multiplication by 10

What happens when we multiply a number by 10?

  4 x 10 = 40

          542 x 10 = 5420

        1245 x 10 = 12450

       You simply add a zero as the rightmost number



Decimal Division by 10

What happens when we divide a number by 10?

  14 / 10 = ?

          540 / 10 = ?

        1240 / 10 = ?



Decimal Division by 10

What happens when we divide a number by 10?

  14 / 10 = 1       //integer division

          540 / 10 = 54

        1240 / 10 = 124

You simply delete the rightmost number



Multiplication and division
by 2 in the binary system



Binary Multiplication by 2

What happens when we multiply a number by 2?

   011  times 2  = ?

             101 times 2 = ?

        110011 times 2 = ?



Binary Multiplication by 2

What happens when we multiply a number by 2?

   011  times 2  =  0110

             101 times 2 =  1010

        110011 times 2 = 1100110

       You simply add a zero as the rightmost number



Binary Multiplication by 4

What happens when we multiply a number by 4?

   011  times 4  = ?

             101 times 4 = ?

        110011 times 4 = ?



Binary Multiplication by 4

What happens when we multiply a number by 4?

   011  times 4  = 01100

             101 times 4 = 10100

        110011 times 4 = 11001100

add two zeros in the last two bits and shift everything else to the left



Binary Multiplication by 2N

What happens when we multiply a number by 2N?

  011  times 2N  =  01100…0    // add N zeros

            101 times 4 =  10100…0    // add N zeros

        110011 times 4 = 11001100…0    // add N zeros



Binary Division by 2

What happens when we divide a number by 2?

   0110  divided by 2  = ?

             1010 divides by 2 = ?

        110011 divides by  2 = ?



Binary Division by 2

What happens when we divide a number by 2?

   0110  divided by 2  = 011

             1010 divides by 2 = 101

        110011 divides by  2 = 11001

You simply delete the rightmost number



Multiplication of two
unsigned binary numbers



Decimal Multiplication By Hand

[http://www.ducksters.com/kidsmath/long_multiplication.php]



Binary Multiplication By Hand

[Figure 3.34a from the textbook]



Binary Multiplication By Hand

[Figure 3.34b from the textbook]



Binary Multiplication By Hand

[Figure 3.34c from the textbook]



Figure 3.35.   A 4x4 multiplier circuit.



Figure 3.35.   A 4x4 multiplier circuit.



Sign Extension



Sign extension for positive numbers
• If we want to represent the same positive number with 

more bits, we simply pad it on the left with zeros.

• For example: 

     0110 (+6 with 4-bits)
   00110          (+6 with 5-bits)
 000110          (+6 with 6-bits)



Sign extension for negative numbers
• If we want to represent the same negative number 

with more bits, we simply pad it on the left with ones.

• For example: 

     1011 (-5 with 4-bits)
   11011          (-5 with 5-bits)
 111011          (-5 with 6-bits)



Multiplication of two
signed binary numbers



Positive Multiplicand  Example

[Figure 3.36a in the textbook]



Positive Multiplicand  Example

[Figure 3.36a in the textbook]

add an extra bit 
to avoid overflow



Negative Multiplicand  Example

[Figure 3.36b in the textbook]



Negative Multiplicand  Example

[Figure 3.36b in the textbook]

add an extra bit 
to avoid overflow
but now it is 1



What if the Multiplier is Negative?
• Negate both numbers.

• This will make the multiplier positive.

• Then proceed as normal.

• This will not affect the result.

• Example:  5*(- 4) = (- 5)*(4)= - 20



Arithmetic Comparison Circuits



Truth table for a one-bit digital comparator

[http://en.wikipedia.org/wiki/Digital_comparator]



[http://www.personal.psu.edu/users///c/w/cwb5096/Old%20Site/index_files/cmpenlab4.htm]

A one-bit digital comparator circuit



Truth table for a two-bit digital comparator

[http://en.wikipedia.org/wiki/Digital_comparator]



[http://forum.allaboutcircuits.com/showthread.php?t=10561]

A two-bit digital comparator circuit



[ Figure 4.22 from the textbook ]

A four-bit comparator circuit



[ Figure 3.45 from the textbook ]

Another four-bit comparator circuit



[ Figure 3.45 from the textbook ]

Another four-bit comparator circuit



Another four-bit comparator circuit

0 0 1 1 1 0 0 1

Compare 6 with 5 by subtraction (6-5).



Another four-bit comparator circuit

0 0 1 1 1 0 0 1

0 1 1 0 1 1 0 0



Another four-bit comparator circuit

0 0 1 1 1 0 0 1

0 1 1 0 1 1 0 0

0 0 0 1

1
  0 1 1 0
  1 0 1 0
1 0 0 0 1

+

1



Another four-bit comparator circuit

0 0 1 1 1 0 0 1

0 1 1 0 1 1 0 0

0 0 0 1

1
  0 1 1 0
  1 0 1 0
1 0 0 0 1

+

1

Ignore



Another four-bit comparator circuit

0 0 1 1 1 0 0 1

0 1 1 0 1 1 0 0

0 0 0 1
1 1 1 0 1

.  .  .     1
  0 1 1 0
  1 0 1 0
1 0 0 0 1

+



Another four-bit comparator circuit

0 0 1 1 1 0 0 1

0 1 1 0 1 1 0 0

0 0 0 1
1 1 1 0

0 0 0

1

.  .  .     1
  0 1 1 0
  1 0 1 0
1 0 0 0 1

+



Binary Coded Decimal (BCD)



Table of Binary-Coded Decimal Digits



Addition of BCD digits

[Figure 3.38a in the textbook]



Addition of BCD digits

[Figure 3.38a in the textbook]

The result is greater than 9, which is not a valid BCD number



Addition of BCD digits

[Figure 3.38a in the textbook]

add 6



Addition of BCD digits

[Figure 3.38b in the textbook]



Addition of BCD digits

[Figure 3.38b in the textbook]

The result is 1, but it should be 7



Addition of BCD digits

[Figure 3.38b in the textbook]

add 6



Why add 6?

• Think of BCD addition as a mod 16 operation

• Decimal addition is mod 10 operation



BCD Arithmetic Rules

Z = X + Y

If Z <= 9, then S=Z and carry-out = 0

If Z > 9, then S=Z+6 and carry-out =1



Block diagram for a one-digit BCD adder

[Figure 3.39 in the textbook]



How to check if the number is > 9?

7    -   0111
8    -   1000
9    -   1001
10  -   1010
11  -   1011
12  -   1100
13  -   1101
14  -   1110
15  -   1111



x 
1 

x 
2 

x 
3 

x 
4 00 01 11 10

00

01

11

10

x 2 

x 4 

x 1 

x 3 

m 0 

m 1 m 5 

m 4 m 12

m 13

m 8 

m 9 

m 3 

m 2 m 6 

m 7 m 15

m 14

m 11

m 10

x1 x2 x3 x4
0 0 0 0 m0
0 0 0 1 m1
0 0 1 0 m2
0 0 1 1 m3
0 1 0 0 m4
0 1 0 1 m5
0 1 1 0 m6
0 1 1 1 m7
1 0 0 0 m8
1 0 0 1 m9
1 0 1 0 m10
1 0 1 1 m11
1 1 0 0 m12
1 1 0 1 m13
1 1 1 0 m14
1 1 1 1 m15

A four-variable Karnaugh map

0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1



z3 z2 z1 z0
0 0 0 0 m0
0 0 0 1 m1
0 0 1 0 m2
0 0 1 1 m3
0 1 0 0 m4
0 1 0 1 m5
0 1 1 0 m6
0 1 1 1 m7
1 0 0 0 m8
1 0 0 1 m9
1 0 1 0 m10
1 0 1 1 m11
1 1 0 0 m12
1 1 0 1 m13
1 1 1 0 m14
1 1 1 1 m15

How to check if the number is > 9?
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z3 z2 z1 z0
0 0 0 0 m0
0 0 0 1 m1
0 0 1 0 m2
0 0 1 1 m3
0 1 0 0 m4
0 1 0 1 m5
0 1 1 0 m6
0 1 1 1 m7
1 0 0 0 m8
1 0 0 1 m9
1 0 1 0 m10
1 0 1 1 m11
1 1 0 0 m12
1 1 0 1 m13
1 1 1 0 m14
1 1 1 1 m15

How to check if the number is > 9?

z 3 z 2 z 1 z 0 

0 

00 01 11 10

0 1 0

0 0 1 0 

0 0 1 1 

0 0 1 1 

00
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11
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f = z3z2 + z3z1
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z3 z2 z1 z0
0 0 0 0 m0
0 0 0 1 m1
0 0 1 0 m2
0 0 1 1 m3
0 1 0 0 m4
0 1 0 1 m5
0 1 1 0 m6
0 1 1 1 m7
1 0 0 0 m8
1 0 0 1 m9
1 0 1 0 m10
1 0 1 1 m11
1 1 0 0 m12
1 1 0 1 m13
1 1 1 0 m14
1 1 1 1 m15

How to check if the number is > 9?

z 3 z 2 z 1 z 0 

0 

00 01 11 10

0 1 0

0 0 1 0 

0 0 1 1 

0 0 1 1 

00

01

11

10

f = z3z2 + z3z1

In addition, also check if there was a carry

f = carry-out + z3z2 + z3z1

0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1



modulebcdadd(Cin, X, Y, S, Cout);
input Cin;
input [3:0] X, Y;
output reg [3:0] S; 
output reg Cout; 
reg [4:0] Z; 

always@ (X, Y, Cin)
begin

Z = X + Y + Cin;
if (Z < 10) 

{Cout, S} = Z;
else

{Cout, S} = Z + 6;
end 

endmodule

Verilog code for a one-digit BCD adder

[Figure 3.40 in the textbook]



[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder



[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

carry-out + z3z2 + z3z1



[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder
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Circuit for a one-digit BCD adder
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Circuit for a one-digit BCD adder
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[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

1

1

1 1 0 add 6

implicit 0



[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

1

1

1 1 0
?



c i 

x i 
y i 

c i 1 + 

s i 

Simplification of the Full-Adder
circuit when xi=0

[ Figure 3.4b from the textbook ]
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Simplification of the Full-Adder
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Simplification of the Full-Adder
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Simplification of the Full-Adder
circuit when xi=0
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Simplification of the Full-Adder
circuit when xi=0

c i 
y i 

c i 1 + 

s i 

It reduces to a half-adder.



Simplification of the Full-Adder
circuit when xi=0

c i 
y i 

c i 1 + 

s i 

But if we only need the sum bit …



Simplification of the Full-Adder
circuit when xi=0

c i 
y i 

s i 

… it reduces to an XOR.



[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder
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Circuit for a one-digit BCD adder

1

1

1 1 0
?

1  1   0
z3  z2  z1  z0

+
z3             z2     z1     z0 



[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder
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implicit 0

z3             z2     z1     z0 



[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

1

1

1 1 0
?

1  1   0
z3  z2  z1  z0

+

carry 3

z3

c3

z3             z2     z1     z0 



Questions?



THE END


