

CprE 2810: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Multiplication

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- No HW is due today
- HW 6 will be due on Monday Oct. 14.
- Posted on the class web page.

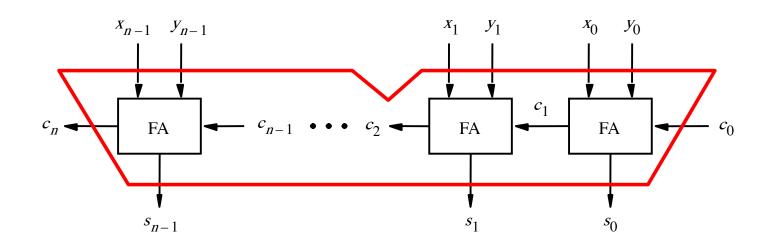
Administrative Stuff

- Labs this week
- Mini-Project
- This is worth 3% of your grade (x2 labs)
- https://www.ece.iastate.edu/~alexs/classes/ 2024_Fall_2810/labs/Project-Mini/

Quick Review

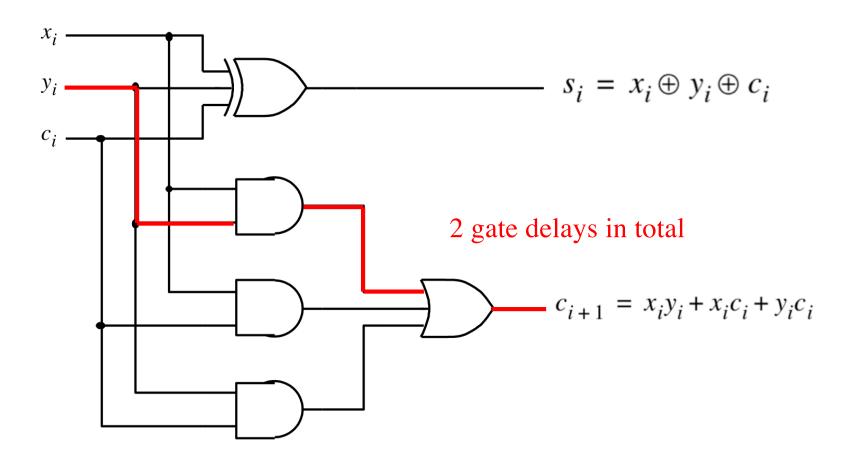
A ripple-carry adder

How long does it take to compute all sum bits and all carry bits?



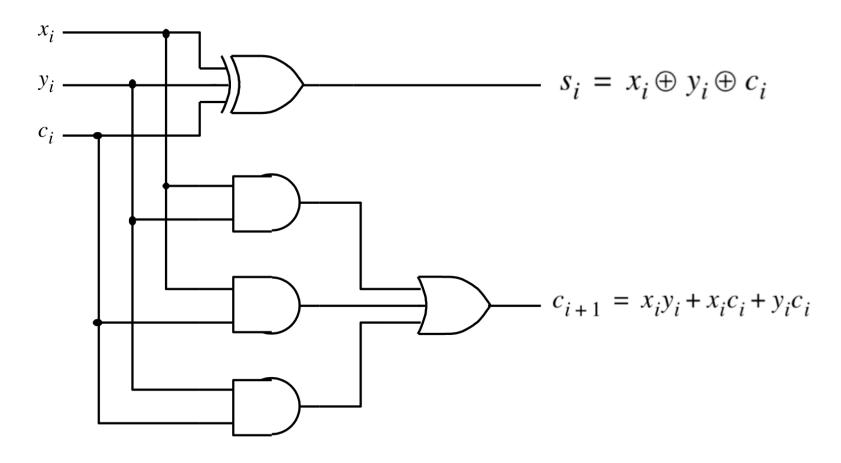
It takes 2n gate delays using a ripple-carry adder?

Delays through the Full-Adder circuit



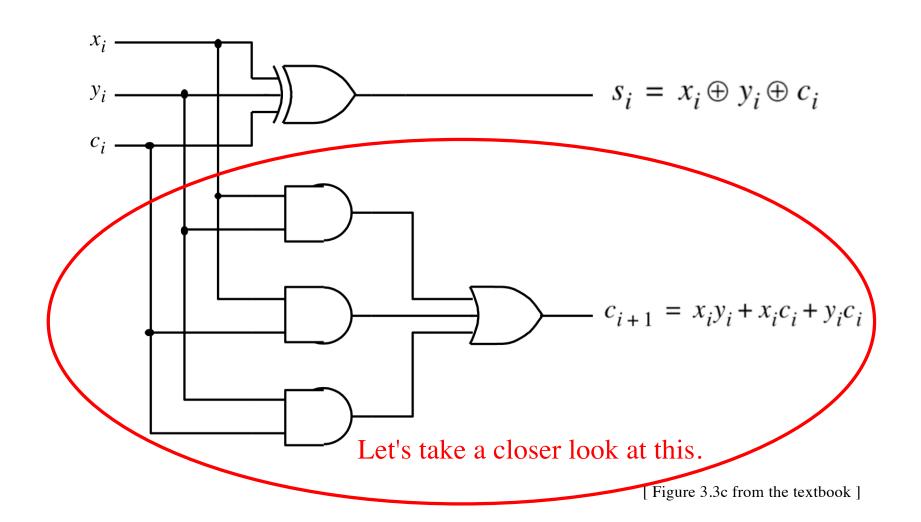
[Figure 3.3c from the textbook]

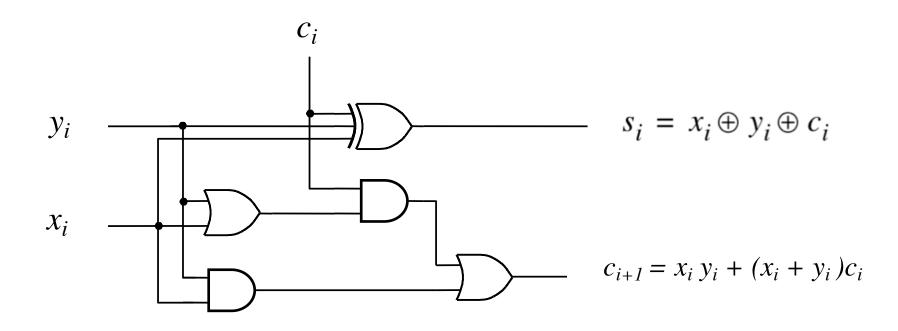
The Full-Adder Circuit



[Figure 3.3c from the textbook]

The Full-Adder Circuit



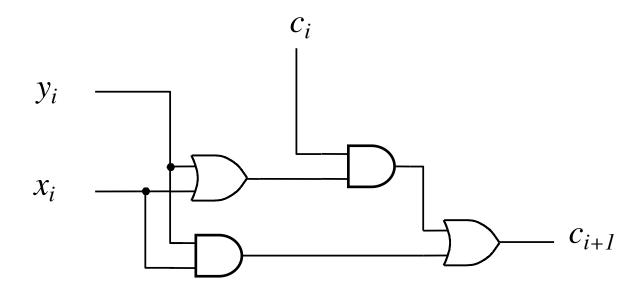


$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

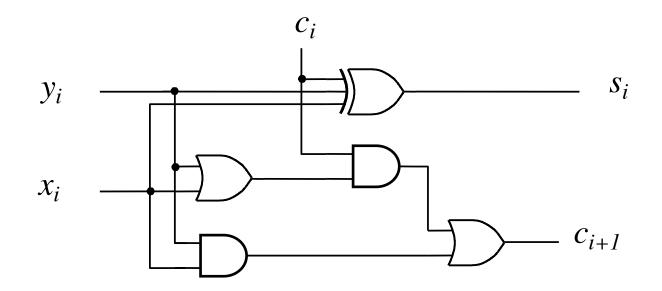
$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

$$c_{i+1} = x_i y_i + (x_i + y_i)c_i$$

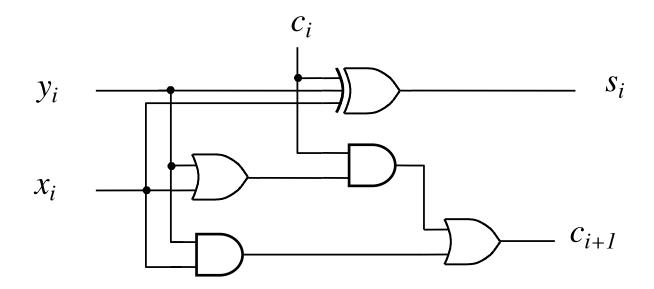
$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$
$$c_{i+1} = x_i y_i + (x_i + y_i) c_i$$



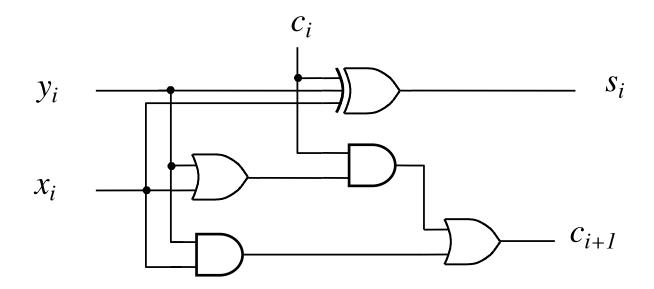
$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$
$$c_{i+1} = x_i y_i + (x_i + y_i) c_i$$



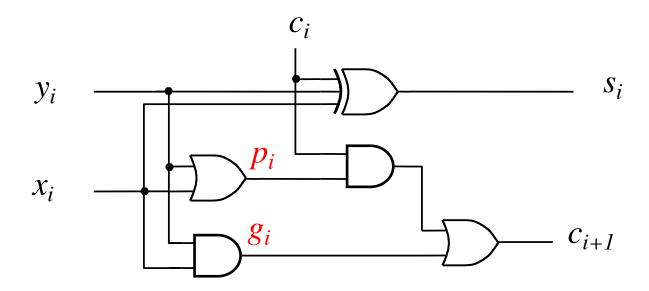
$$c_{i+1} = x_i y_i + (x_i + y_i)c_i$$



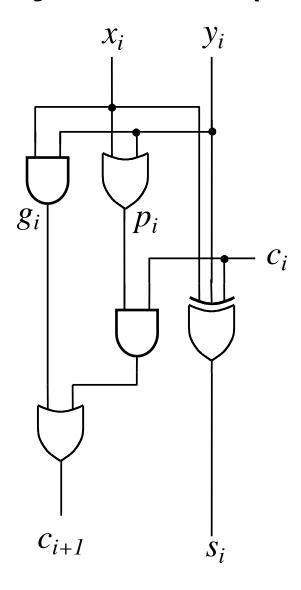
$$c_{i+1} = \underbrace{x_i y_i}_{g_i} + (\underbrace{x_i + y_i}_{p_i})c_i$$



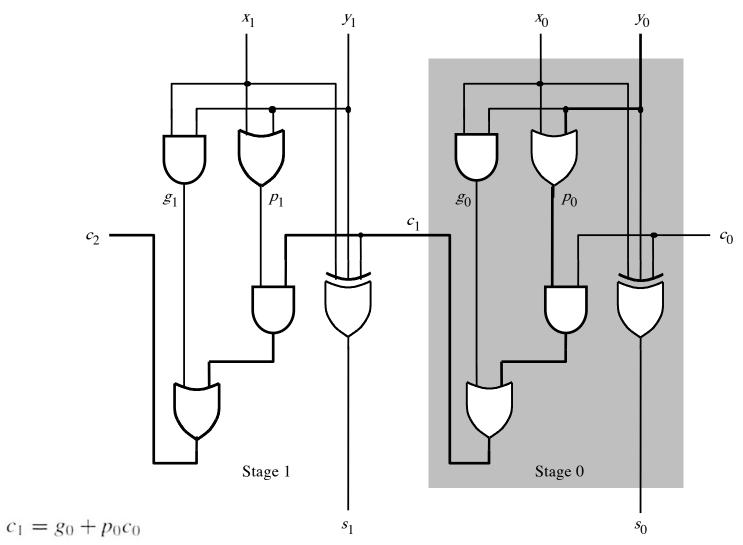
$$c_{i+1} = \underbrace{x_i y_i}_{g_i} + (\underbrace{x_i + y_i}_{p_i})c_i$$



Yet Another Way to Draw It (Just Rotate It)



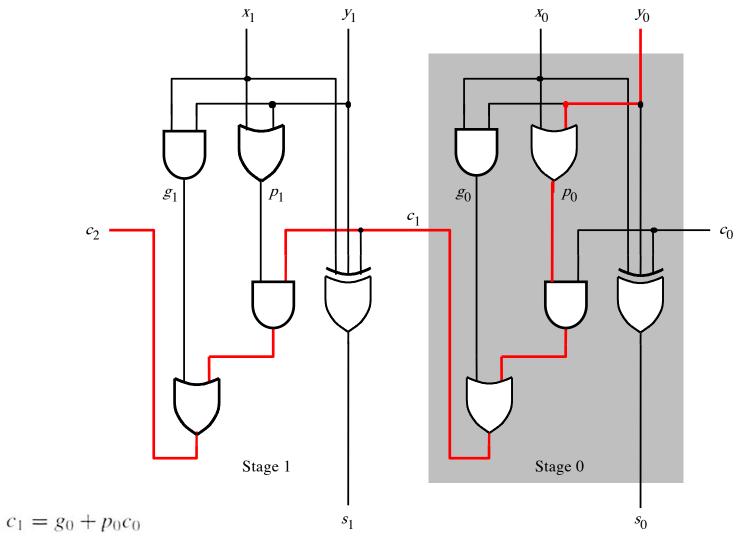
Now we can Build a Ripple-Carry Adder



 $c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$

[Figure 3.14 from the textbook]

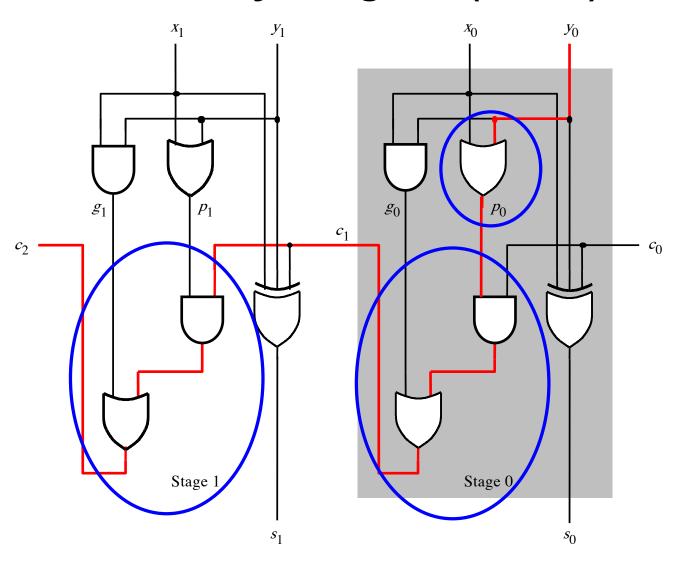
Now we can Build a Ripple-Carry Adder



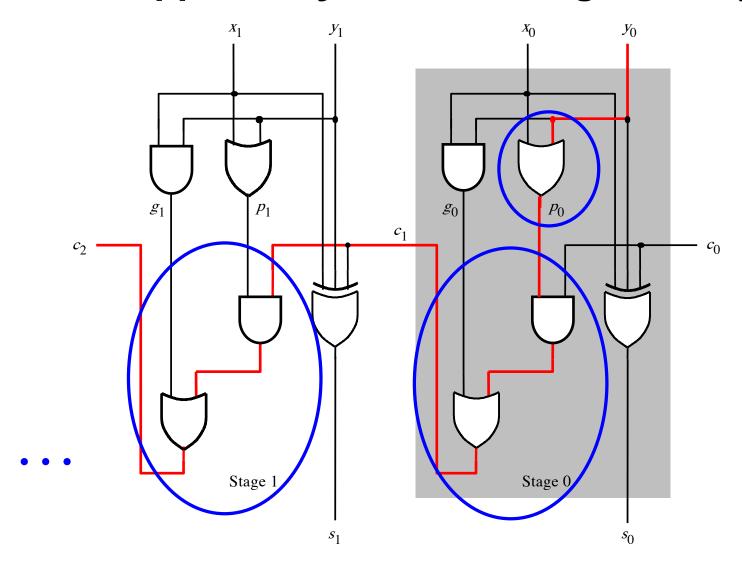
 $c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$

[Figure 3.14 from the textbook]

The delay is 5 gates (1+2+2)



n-bit ripple-carry adder: 2n+1 gate delays



$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

$$c_{i+1} = x_i y_i + (x_i + y_i) c_i$$

$$g_i \qquad p_i$$

$$c_{i+1} = g_i + p_i c_i$$

$$c_{i+1} = g_i + p_i (g_{i-1} + p_{i-1} c_{i-1})$$

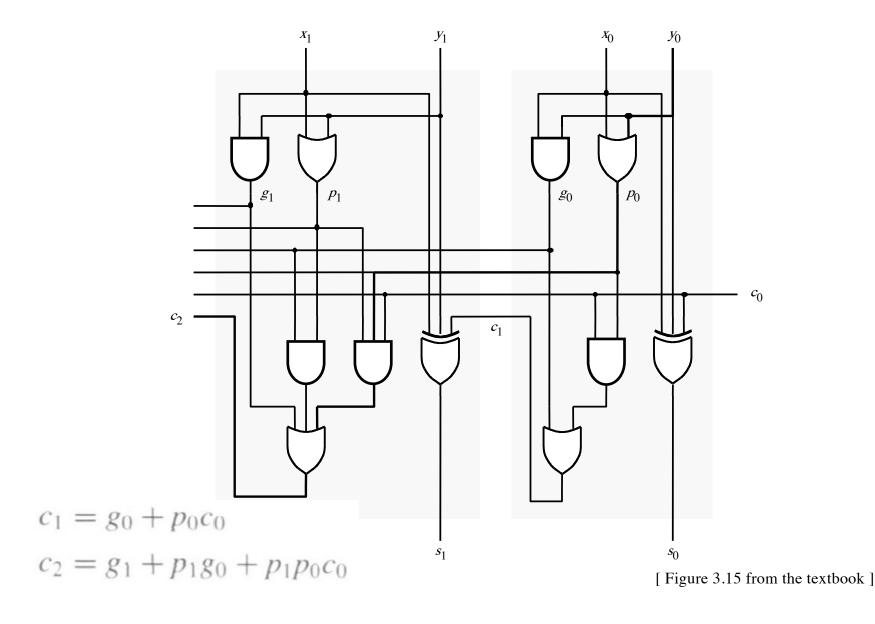
$$= g_i + p_i g_{i-1} + p_i p_{i-1} c_{i-1}$$

Carry for the first two stages

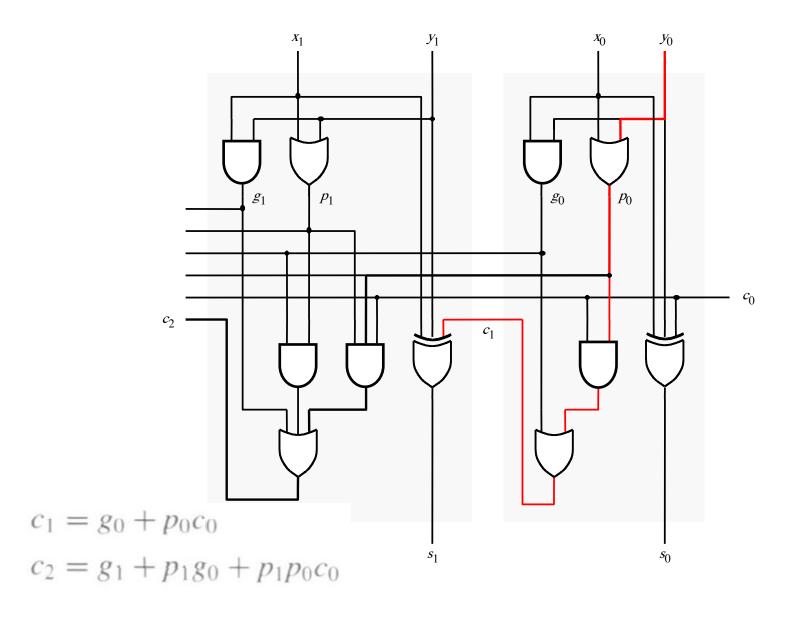
$$c_1 = g_0 + p_0 c_0$$

$$c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$$

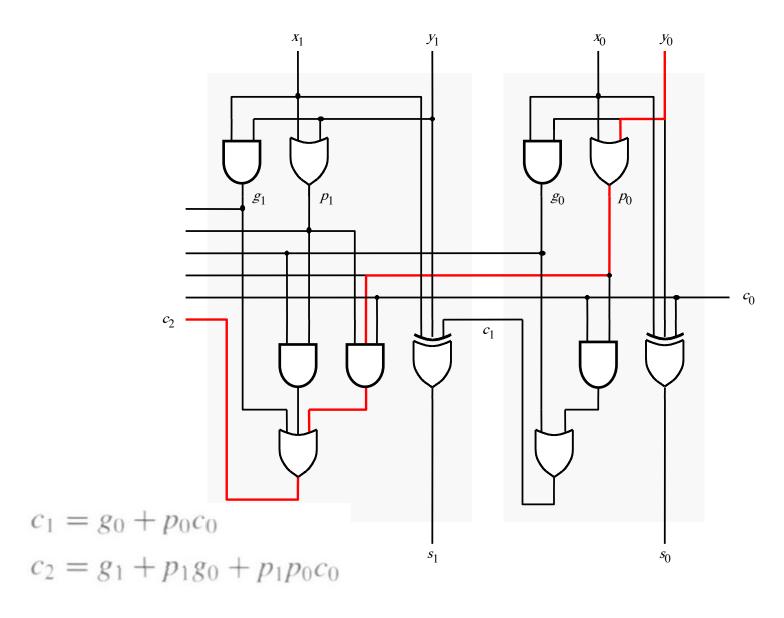
The first two stages of a carry-lookahead adder



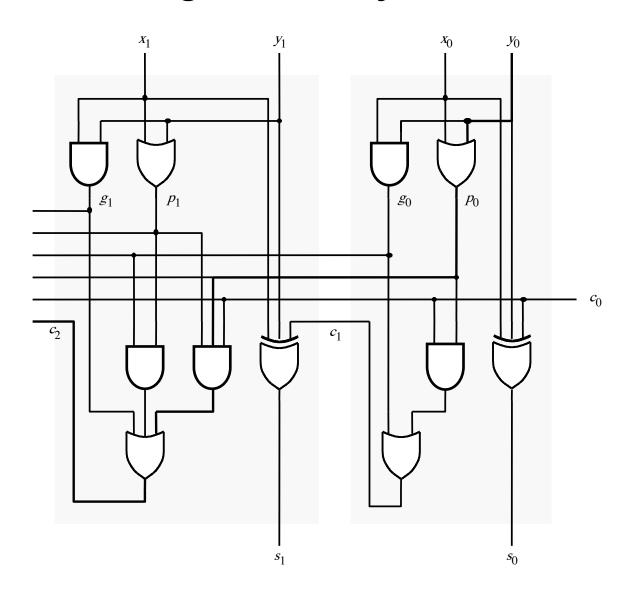
It takes 3 gate delays to generate c₁



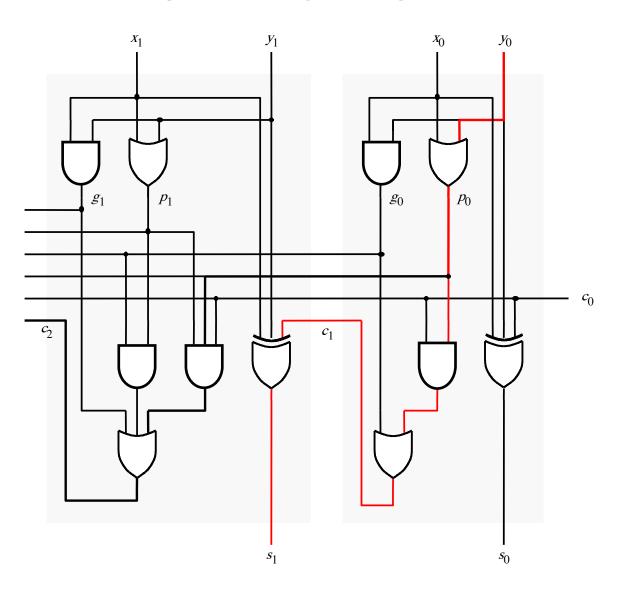
It takes 3 gate delays to generate c₂



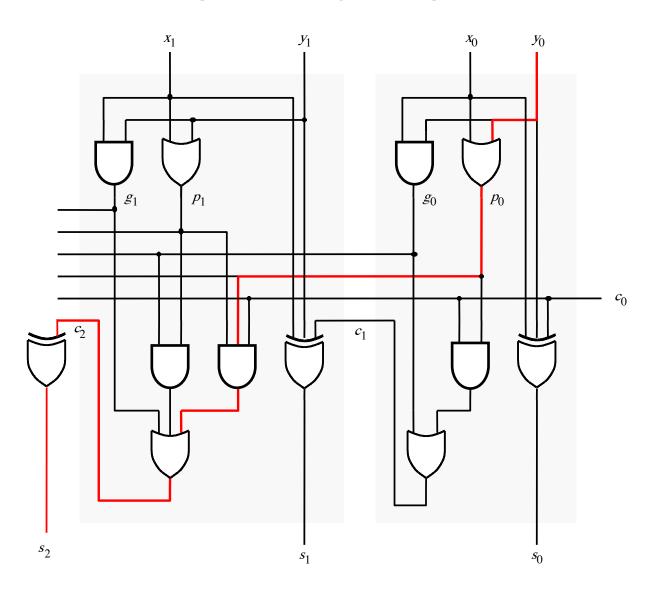
The first two stages of a carry-lookahead adder



It takes 4 gate delays to generate s₁



It takes 4 gate delays to generate s₂



N-bit Carry-Lookahead Adder

- It takes 3 gate delays to generate all carry signals
- It takes 1 more gate delay to generate all sum bits

 Thus, the total delay through an n-bit carry-lookahead adder is only 4 gate delays!

Expanding the Carry Expression

$$c_{i+1} = g_i + p_i c_i$$

$$c_1 = g_0 + p_0 c_0$$

$$c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$$

$$c_3 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0$$

$$\cdots$$

$$c_8 = g_7 + p_7 g_6 + p_7 p_6 g_5 + p_7 p_6 p_5 g_4$$

$$+ p_7 p_6 p_5 p_4 g_3 + p_7 p_6 p_5 p_4 p_3 g_2$$

$$+ p_7 p_6 p_5 p_4 p_3 p_2 g_1 + p_7 p_6 p_5 p_4 p_3 p_2 p_1 g_0$$

$$+ p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0 c_0$$

Expanding the Carry Expression

$$c_{i+1} = g_i + p_i c_i$$

$$c_1 = g_0 + p_0 c_0$$

$$c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$$

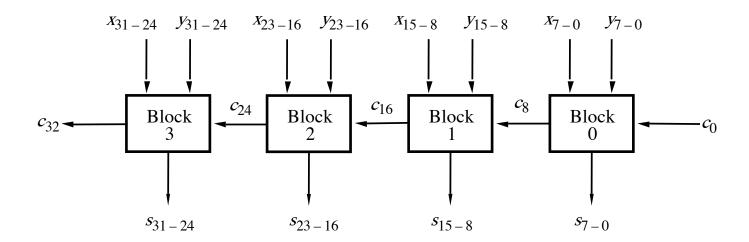
$$c_3 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0$$

$$\cdots$$

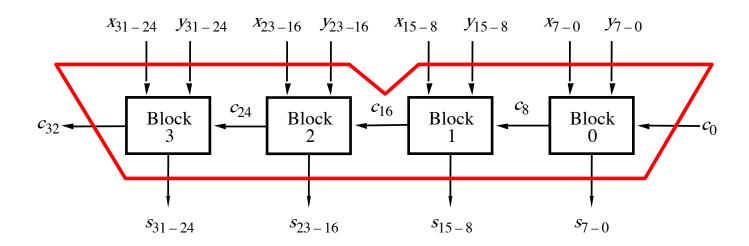
$$c_8 = g_7 + p_7 g_6 + p_7 p_6 g_5 + p_7 p_6 p_5 g_4$$
Even this takes $+ p_7 p_6 p_5 p_4 g_3 + p_7 p_6 p_5 p_4 p_3 g_2$
only 3 gate delays $+ p_7 p_6 p_5 p_4 p_3 p_2 g_1 + p_7 p_6 p_5 p_4 p_3 p_2 p_1 g_0$

$$+ p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0 c_0$$

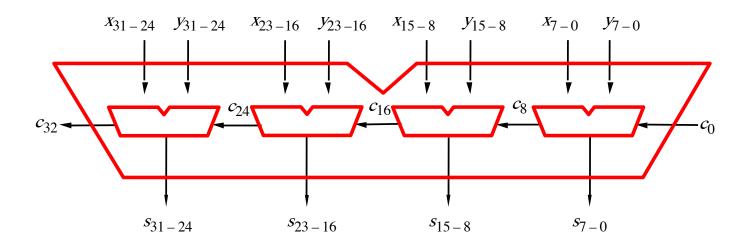
A hierarchical carry-lookahead adder with ripple-carry between blocks



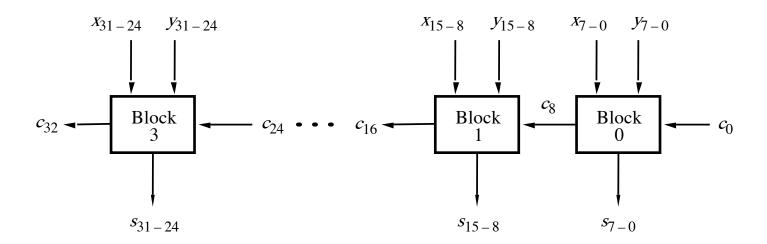
A hierarchical carry-lookahead adder with ripple-carry between blocks

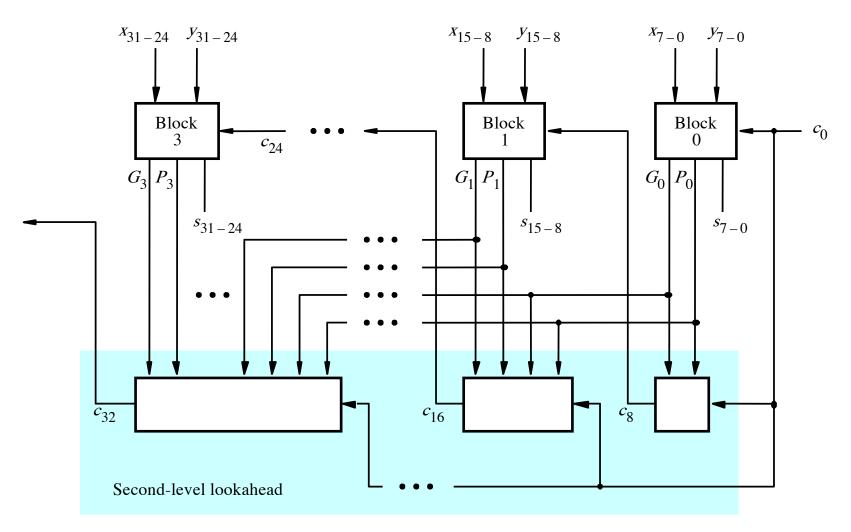


A hierarchical carry-lookahead adder with ripple-carry between blocks

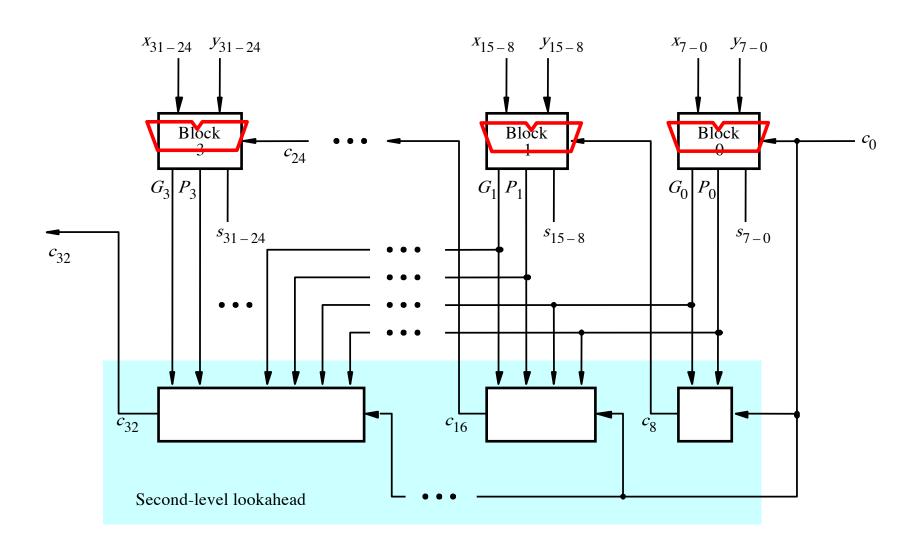


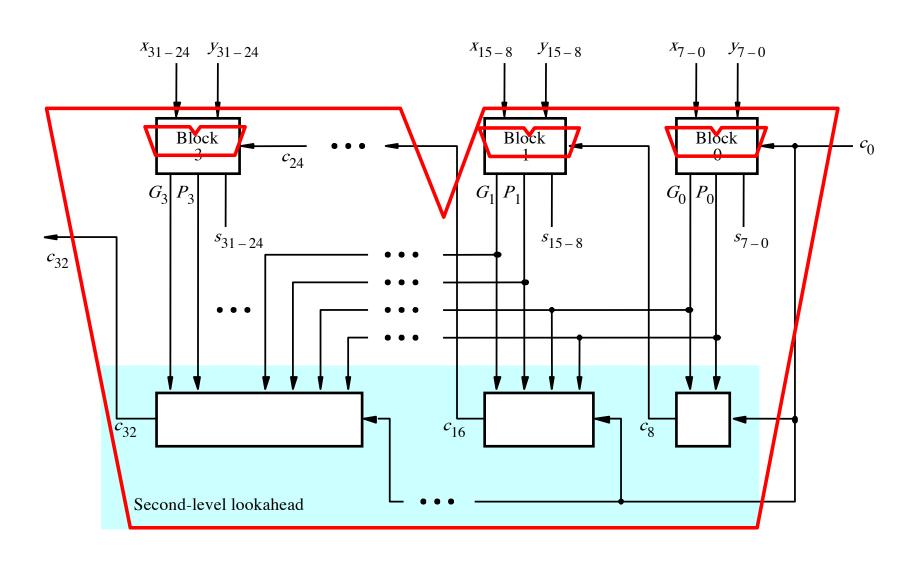
A hierarchical carry-lookahead adder with ripple-carry between blocks

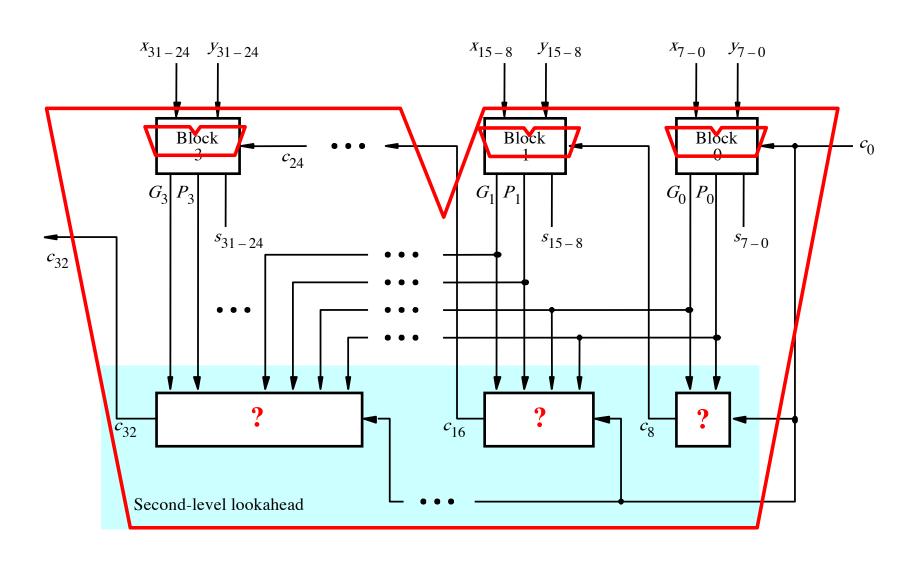




[Figure 3.17 from the textbook]







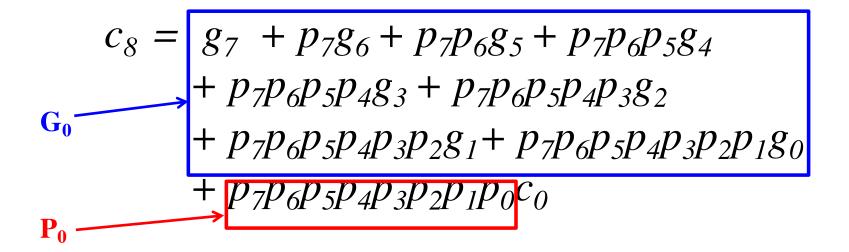
$$c_8 = g_7 + p_7 g_6 + p_7 p_6 g_5 + p_7 p_6 p_5 g_4$$

$$+ p_7 p_6 p_5 p_4 g_3 + p_7 p_6 p_5 p_4 p_3 g_2$$

$$+ p_7 p_6 p_5 p_4 p_3 p_2 g_1 + p_7 p_6 p_5 p_4 p_3 p_2 p_1 g_0$$

$$+ p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0 c_0$$

$$c_8 = g_7 + p_7 g_6 + p_7 p_6 g_5 + p_7 p_6 p_5 g_4 + p_7 p_6 p_5 p_4 g_3 + p_7 p_6 p_5 p_4 p_3 g_2 + p_7 p_6 p_5 p_4 p_3 p_2 g_1 + p_7 p_6 p_5 p_4 p_3 p_2 p_1 g_0 + p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0 c_0$$



$$c_{8} = g_{7} + p_{7}g_{6} + p_{7}p_{6}g_{5} + p_{7}p_{6}p_{5}g_{4}$$

$$+ p_{7}p_{6}p_{5}p_{4}g_{3} + p_{7}p_{6}p_{5}p_{4}p_{3}g_{2}$$

$$+ p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}g_{1} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}g_{0}$$

$$+ p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}p_{0}c_{0}$$

$$+ p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}p_{0}c_{0}$$

$$c_8 = G_0 + P_0 c_0$$

$$c_8 = g_7 + p_7g_6 + p_7p_6g_5 + p_7p_6p_5g_4$$

$$+ p_7p_6p_5p_4g_3 + p_7p_6p_5p_4p_3g_2$$

$$+ p_7p_6p_5p_4p_3p_2g_1 + p_7p_6p_5p_4p_3p_2p_1g_0$$

$$+ p_7p_6p_5p_4p_3p_2p_1p_0c_0$$

$$c_{16} = g_{15} + p_{15}g_{14} + p_{15}p_{14}g_{13} + p_{15}p_{14}p_{13}g_{12} + p_{15}p_{14}p_{13}p_{12}g_{11} + p_{15}p_{14}p_{13}p_{12}p_{11}g_{10} + p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}g_{9} + p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}p_{9}g_{8} + p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}p_{9}p_{8}c_{8}$$

$$c_8 = g_7 + p_7g_6 + p_7p_6g_5 + p_7p_6p_5g_4$$

$$+ p_7p_6p_5p_4g_3 + p_7p_6p_5p_4p_3g_2$$

$$+ p_7p_6p_5p_4p_3p_2g_1 + p_7p_6p_5p_4p_3p_2p_1g_0$$

$$+ p_7p_6p_5p_4p_3p_2p_1p_0c_0$$

The same expression, just add 8 to all subscripts

$$c_{16} = g_{15} + p_{15}g_{14} + p_{15}p_{14}g_{13} + p_{15}p_{14}p_{13}g_{12} + p_{15}p_{14}p_{13}p_{12}g_{11} + p_{15}p_{14}p_{13}p_{12}p_{11}g_{10} + p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}g_{9} + p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}p_{9}g_{8} + p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}p_{9}p_{8}c_{8}$$

3-gate delays

$$c_{8} = g_{7} + p_{7}g_{6} + p_{7}p_{6}g_{5} + p_{7}p_{6}p_{5}g_{4}$$

$$+ p_{7}p_{6}p_{5}p_{4}g_{3} + p_{7}p_{6}p_{5}p_{4}p_{3}g_{2}$$

$$+ p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}g_{1} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}g_{0}$$

$$+ p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}p_{0}c_{0}$$

$$2-\text{gate delays}$$

$$c_{16} = g_{15} + p_{15}g_{14} + p_{15}p_{14}g_{13} + p_{15}p_{14}p_{13}g_{12} + p_{15}p_{14}p_{13}p_{12}g_{11} + p_{15}p_{14}p_{13}p_{12}p_{11}g_{10} + p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}g_{9} + p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}p_{9}g_{8} + p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}p_{9}p_{8}c_{8}$$

$$c_8 = g_7 + p_7g_6 + p_7p_6g_5 + p_7p_6p_5g_4$$

$$+ p_7p_6p_5p_4g_3 + p_7p_6p_5p_4p_3g_2$$

$$+ p_7p_6p_5p_4p_3p_2g_1 + p_7p_6p_5p_4p_3p_2p_1g_0$$

$$+ p_7p_6p_5p_4p_3p_2p_1p_0c_0$$

3-gate delays

$$c_{16} = g_{15} + p_{15}g_{14} + p_{15}p_{14}g_{13} + p_{15}p_{14}p_{13}g_{12} + p_{15}p_{14}p_{13}p_{12}g_{11} + p_{15}p_{14}p_{13}p_{12}p_{11}g_{10} + p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}g_{9} + p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}p_{9}g_{8}$$

$$+ p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}p_{9}p_{8}c_{8}$$

$$+ p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}p_{9}p_{8}c_{8}$$

$$-2-gate delays$$

$$c_8 = G_0 + P_0 c_0$$

$$c_{16} = G_1 + P_1 c_8$$

= $G_1 + P_1 G_0 + P_1 P_0 c_0$

$$c_{24} = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 c_0$$

$$c_{32} = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0$$

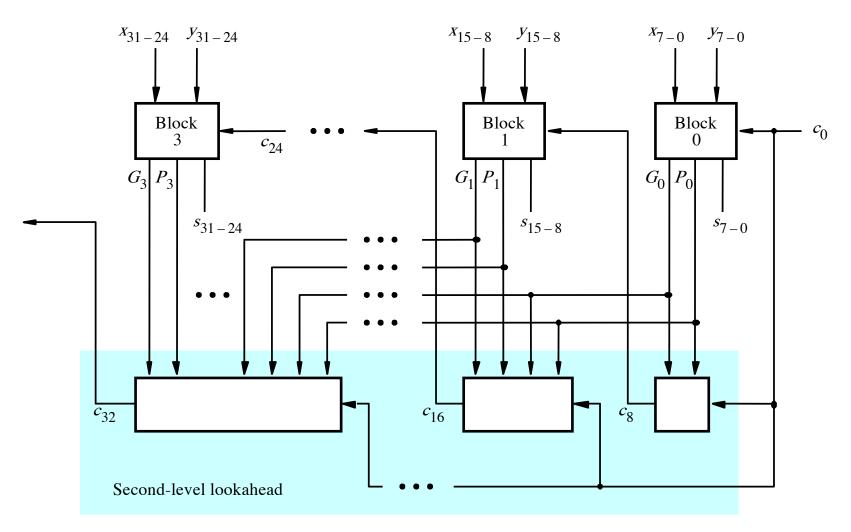
$$c_8 = G_0 + P_0 c_0$$
 4-gate delays

$$c_{16} = G_1 + P_1 c_8$$
 5-gate delays
= $G_1 + P_1 G_0 + P_1 P_0 c_0$

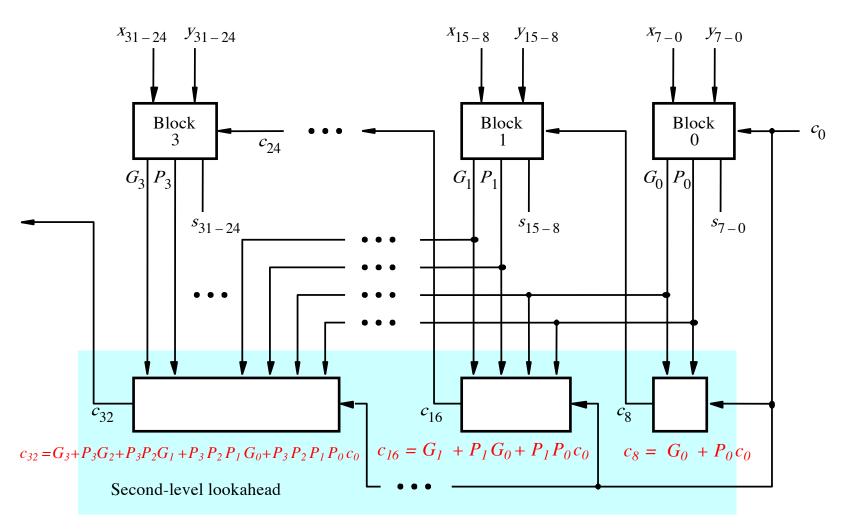
 $c_{24} = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0c_0$ 5-gate delays

5-gate delays

$$c_{32} = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0$$



[Figure 3.17 from the textbook]



[Figure 3.17 from the textbook]

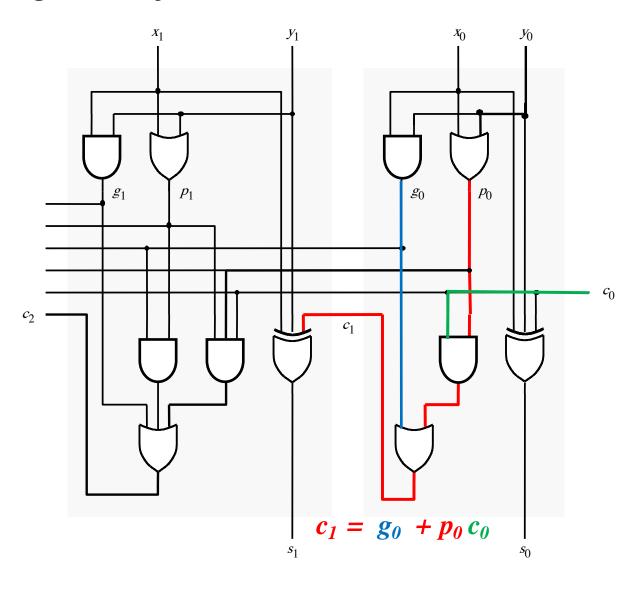
Total Gate Delay Through a Hierarchical Carry-Lookahead Adder

- The total delay is 8 gates:
 - 3 to generate all Gi and Pi signals
 - +2 to generate c8, c16, c24, and c32
 - +2 to generate internal carries in the blocks
 - +1 to generate the sum bits (one extra XOR)

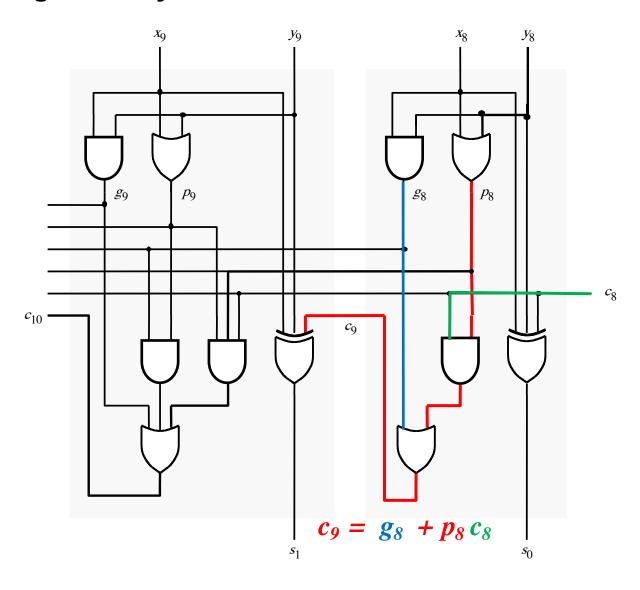
Total Gate Delay Through a Hierarchical Carry-Lookahead Adder

- The total delay is 8 gates:
 - 3 to generate all Gi and Pi signals
 - +2 to generate c8, c16, c24, and c32
 - +2 to generate internal carries in the blocks
 - +1 to generate the sum bits (one extra XOR)

2 more gate delays for the internal carries within a block



2 more gate delays for the internal carries within a block



Hierarchical CLA Adder Carry Logic

SECOND LEVEL HIERARCHY

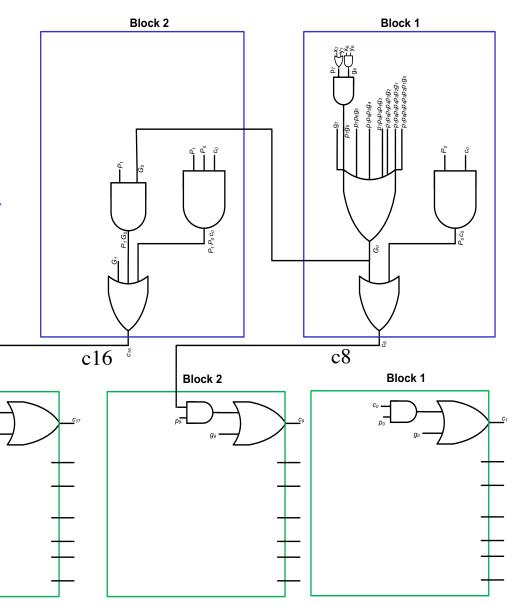
Block 3

C8 - 4 gate delays

C16 – 5 gate delays

C24 – 5 Gate delays

C32 – 5 Gate delays



FIRST LEVEL HIERARCHY

Hierarchical CLA Critical Path

SECOND LEVEL HIERARCHY

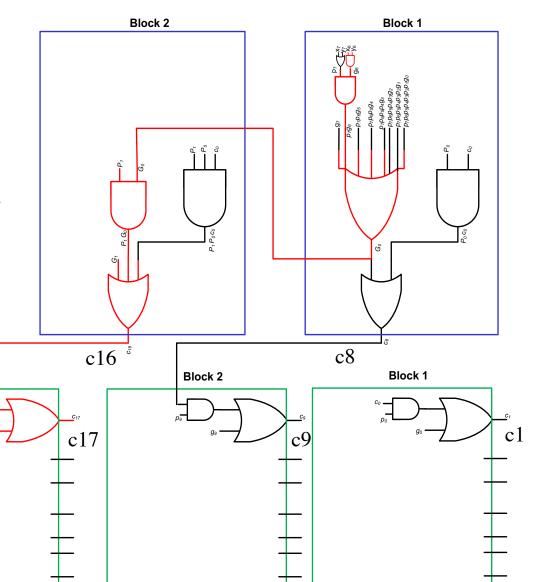
Block 3

C1 - 3 gate delays

C9 - 6 gate delays

C17 – 7 gate delays

C25 – 7 Gate delays



FIRST LEVEL HIERARCHY

Total Gate Delay Through a Hierarchical Carry-Lookahead Adder

- The total delay is 8 gates:
 - 3 to generate all Gi and Pi signals
 - +2 to generate c8, c16, c24, and c32
 - +2 to generate internal carries in the blocks
 - +1 to generate the sum bits (one extra XOR)

Multiplication and division by 10 in the decimal system

Decimal Multiplication by 10

What happens when we multiply a number by 10?

$$4 \times 10 = ?$$

$$542 \times 10 = ?$$

$$1245 \times 10 = ?$$

Decimal Multiplication by 10

What happens when we multiply a number by 10?

$$4 \times 10 = 40$$

$$542 \times 10 = 5420$$

$$1245 \times 10 = 12450$$

Decimal Multiplication by 10

What happens when we multiply a number by 10?

$$4 \times 10 = 40$$

$$542 \times 10 = 5420$$

$$1245 \times 10 = 12450$$

You simply add a zero as the rightmost number

Decimal Division by 10

What happens when we divide a number by 10?

Decimal Division by 10

What happens when we divide a number by 10?

You simply delete the rightmost number

Multiplication and division by 2 in the binary system

What happens when we multiply a number by 2?

011 times 2 = ?

101 times 2 = ?

110011 times 2 = ?

What happens when we multiply a number by 2?

011 times 2 = 0110

101 times 2 = 1010

110011 times 2 = 1100110

You simply add a zero as the rightmost number

What happens when we multiply a number by 4?

011 times 4 = ?

101 times 4 = ?

110011 times 4 = ?

What happens when we multiply a number by 4?

011 times 4 = 01100

101 times 4 = 10100

110011 times 4 = 11001100

add two zeros in the last two bits and shift everything else to the left

Binary Multiplication by 2^N

What happens when we multiply a number by 2^N?

```
011 times 2^{N} = 01100...0 // add N zeros
```

```
101 times 4 = 10100...0 // add N zeros
```

110011 times 4 = 11001100...0 // add N zeros

Binary Division by 2

What happens when we divide a number by 2?

0110 divided by 2 = ?

1010 divides by 2 = ?

110011 divides by 2 = ?

Binary Division by 2

What happens when we divide a number by 2?

0110 divided by 2 = 011

1010 divides by 2 = 101

110011 divides by 2 = 11001

You simply delete the rightmost number

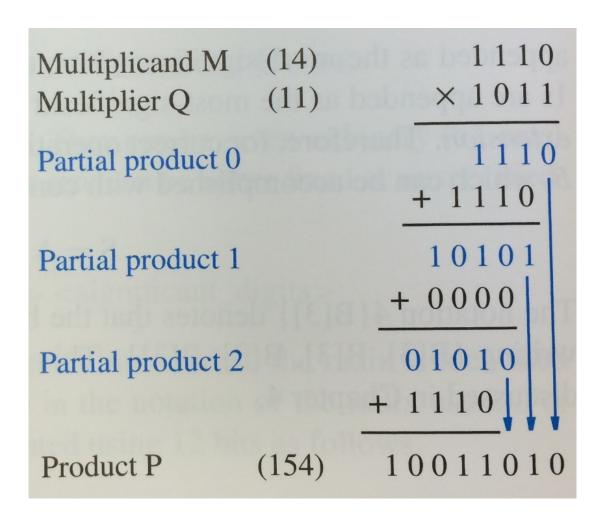
Multiplication of two unsigned binary numbers

Decimal Multiplication By Hand

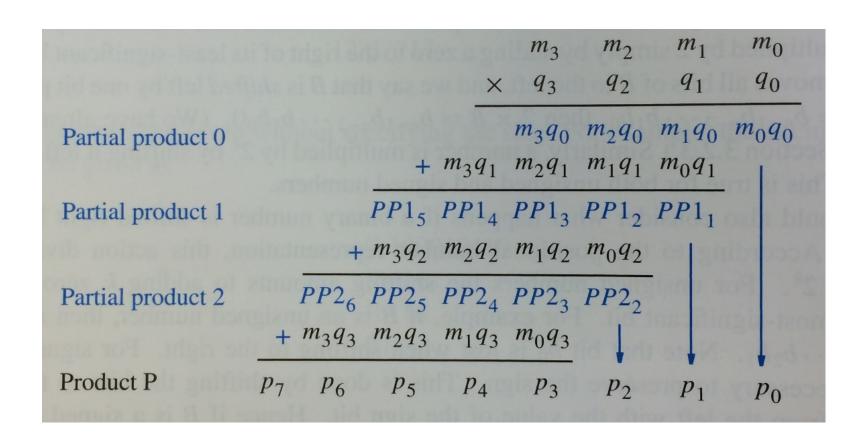
Binary Multiplication By Hand

Multiplicand M	(14)	1110
Multiplier Q	(11)	X 1011
		1110
		1 1 1 0
		0000
		1 1 1 0
Product P	(154)	10011010

Binary Multiplication By Hand



Binary Multiplication By Hand



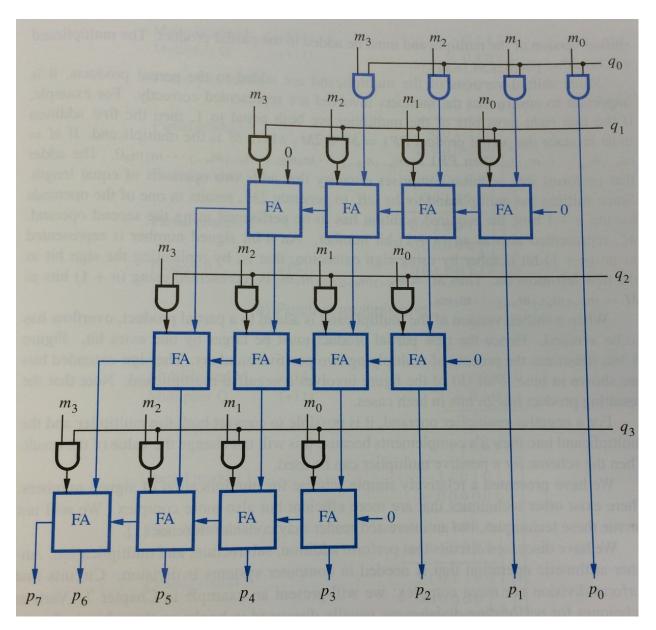


Figure 3.35. A 4x4 multiplier circuit.

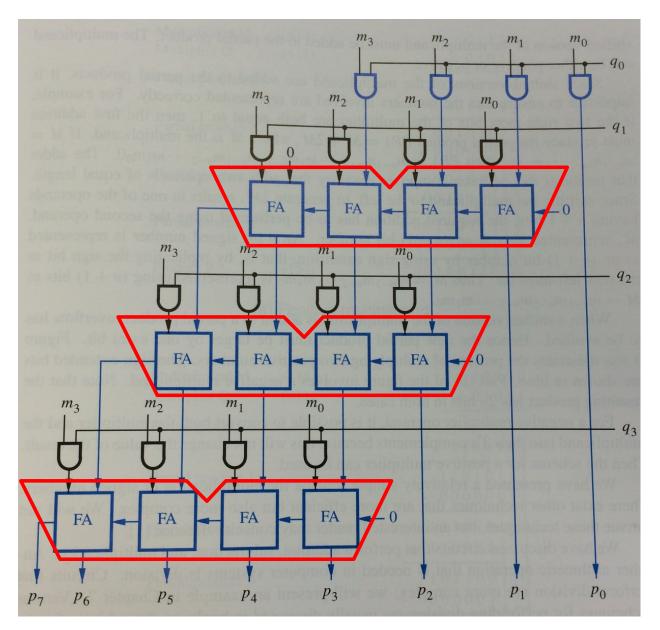


Figure 3.35. A 4x4 multiplier circuit.

Sign Extension

Sign extension for positive numbers

 If we want to represent the same positive number with more bits, we simply pad it on the left with zeros.

For example:

```
0110 (+6 with 4-bits)
00110 (+6 with 5-bits)
000110 (+6 with 6-bits)
```

Sign extension for negative numbers

• If we want to represent the same negative number with more bits, we simply pad it on the left with ones.

For example:

```
1011 (-5 with 4-bits)
11011 (-5 with 5-bits)
111011 (-5 with 6-bits)
```

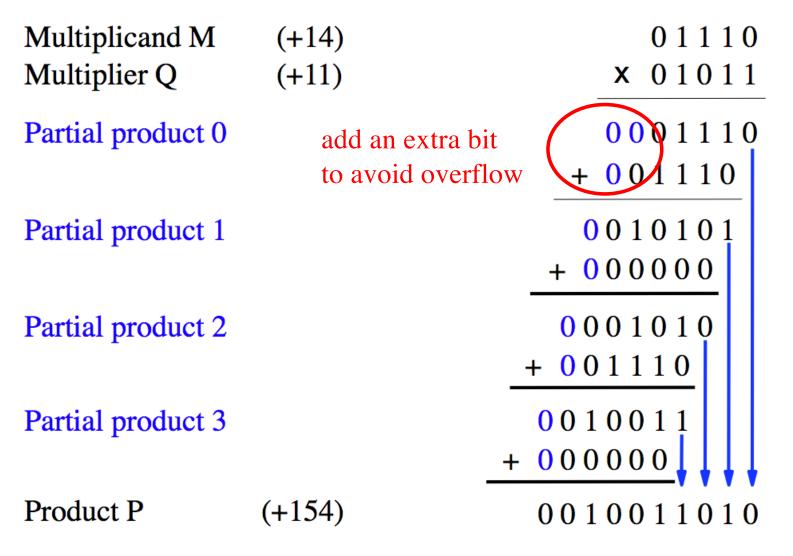
Multiplication of two signed binary numbers

Positive Multiplicand Example

Multiplicand M Multiplier Q	(+14) (+11)	01110 x 01011
Partial product 0		0001110
		+ 001110
Partial product 1		$\begin{array}{c} 0010101\\ + 000000 \end{array}$
Partial product 2		0001010
		+ 001110
Partial product 3		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Product P	(+154)	0010011010

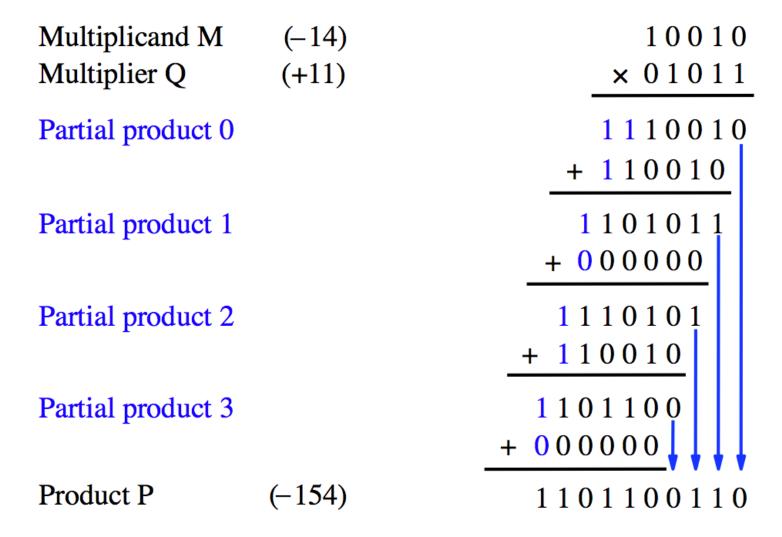
[Figure 3.36a in the textbook]

Positive Multiplicand Example



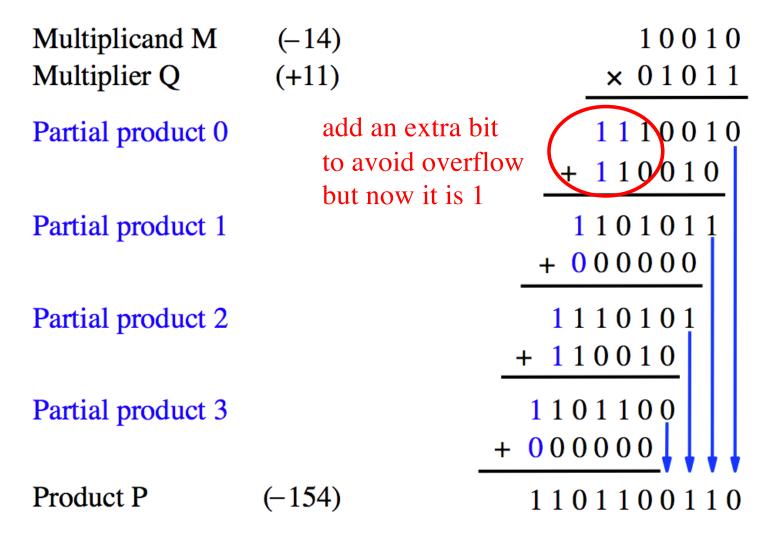
[Figure 3.36a in the textbook]

Negative Multiplicand Example



[Figure 3.36b in the textbook]

Negative Multiplicand Example



[Figure 3.36b in the textbook]

What if the Multiplier is Negative?

- Negate both numbers.
- This will make the multiplier positive.
- Then proceed as normal.
- This will not affect the result.
- Example: 5*(-4) = (-5)*(4) = -20

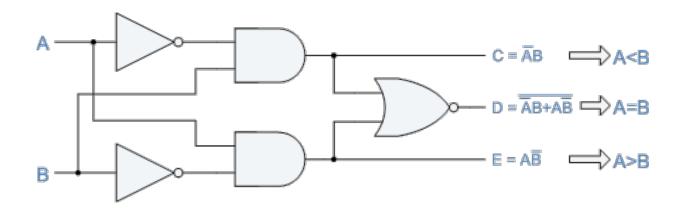
Arithmetic Comparison Circuits

Truth table for a one-bit digital comparator

Inputs		Outputs		
\overline{A}	B	A > B	A = B	A < B
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

A one-bit digital comparator circuit

Inp	uts	Outputs		
\overline{A}	B	A > B	A = B	A < B
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

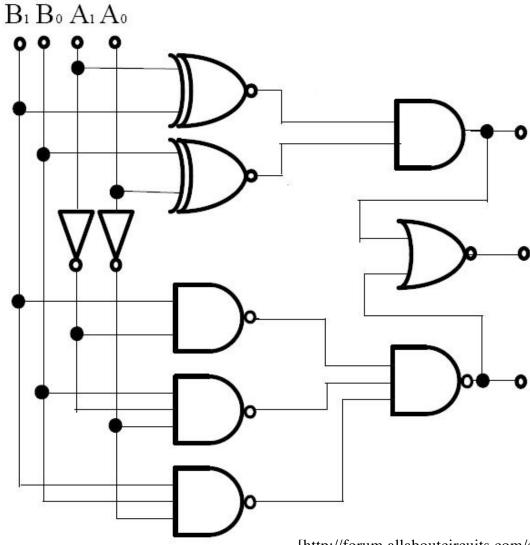


Truth table for a two-bit digital comparator

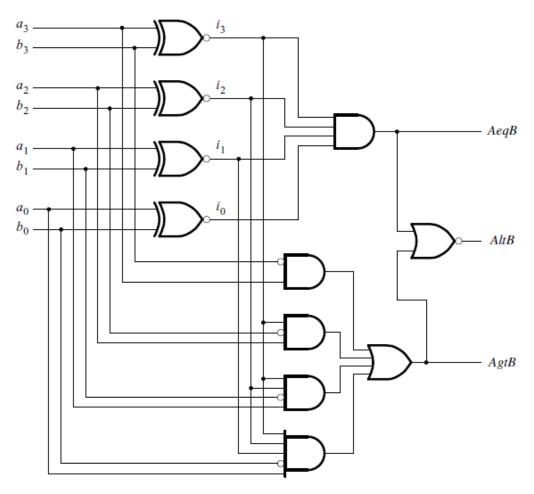
Inputs		Outputs				
A_1	A_0	B_1	B_0	A < B	A = B	A > B
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

[http://en.wikipedia.org/wiki/Digital_comparator]

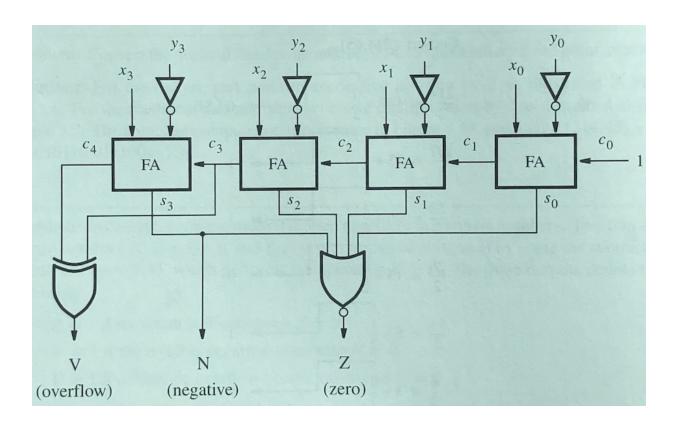
A two-bit digital comparator circuit

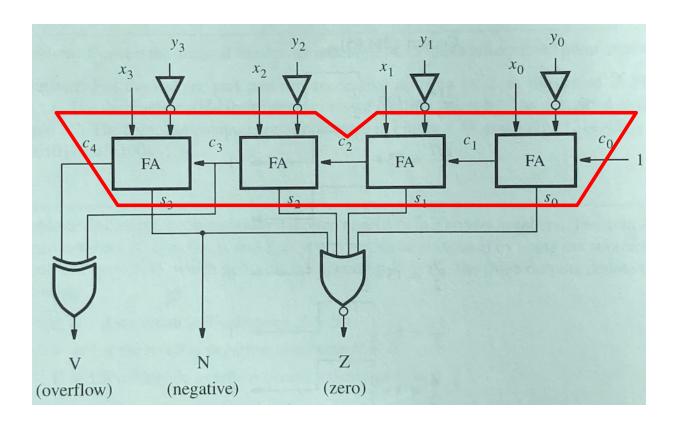


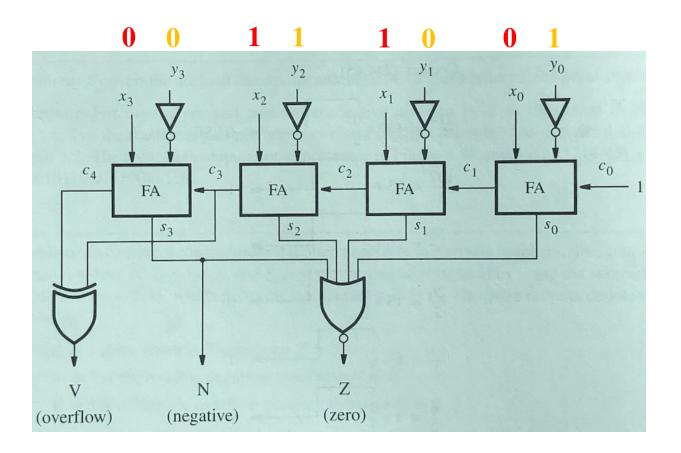
[http://forum.allaboutcircuits.com/showthread.php?t=10561]



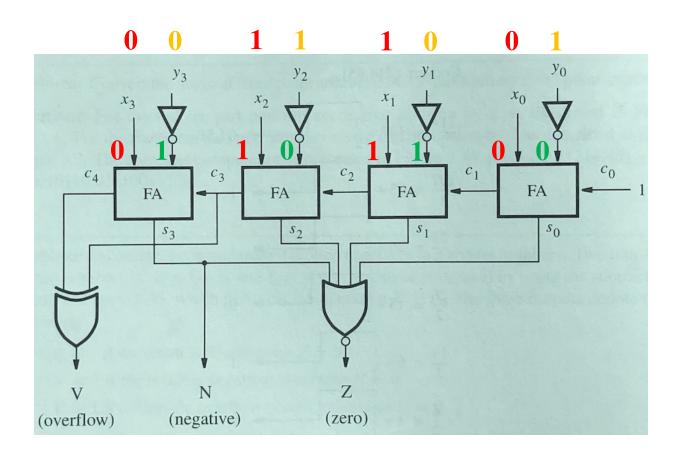
[Figure 4.22 from the textbook]

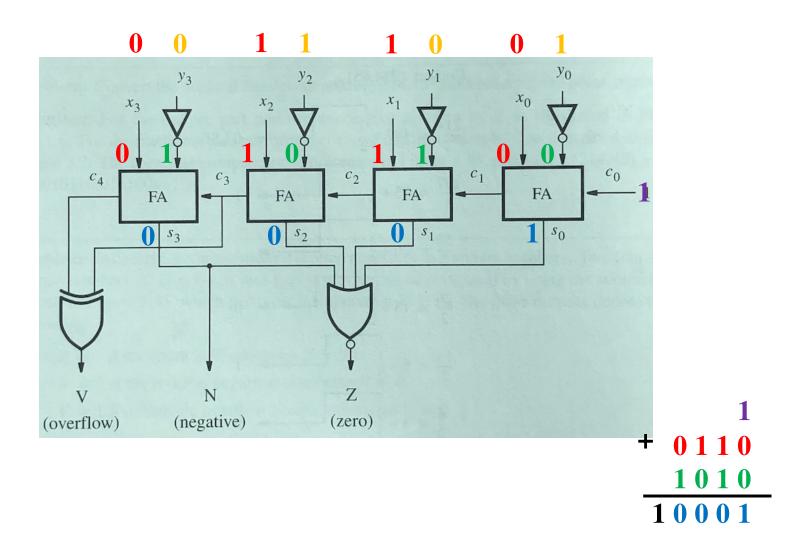


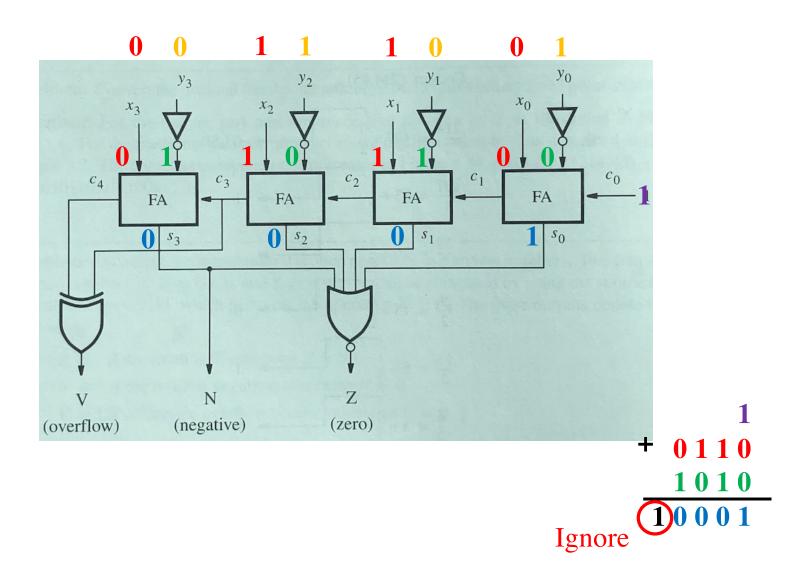


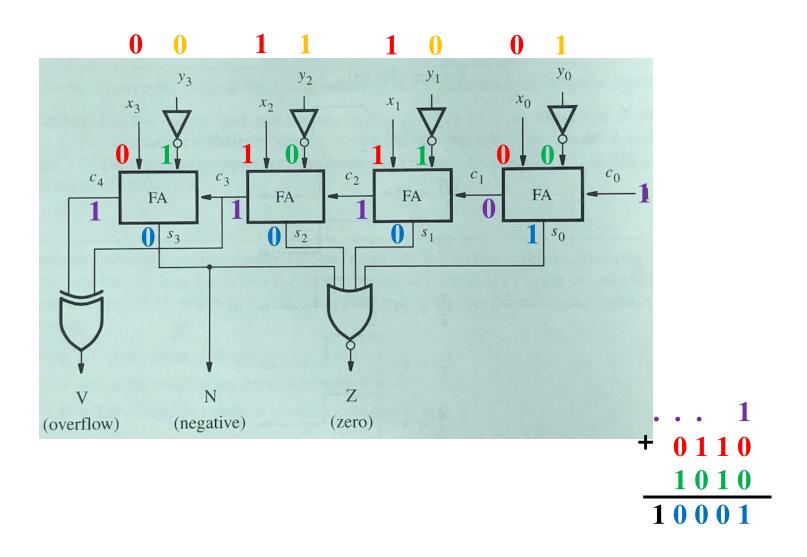


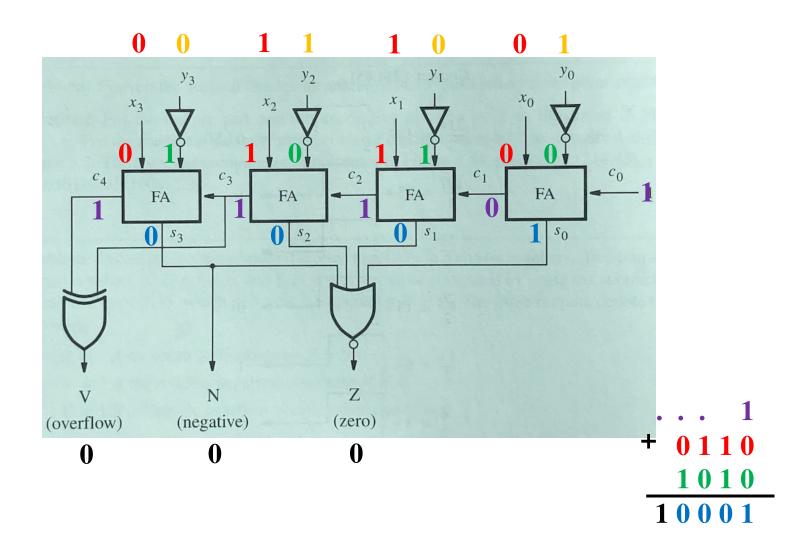
Compare 6 with 5 by subtraction (6-5).











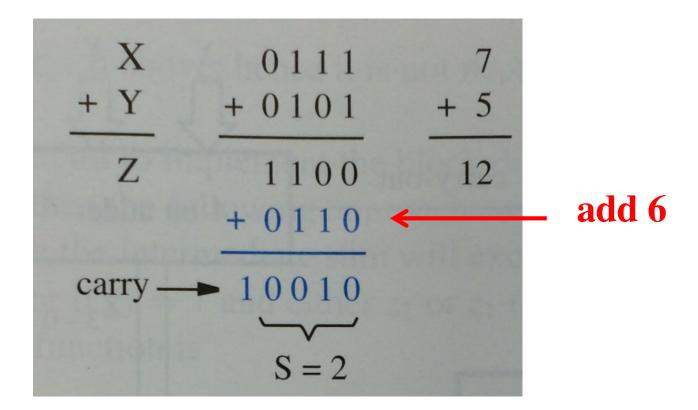
Binary Coded Decimal (BCD)

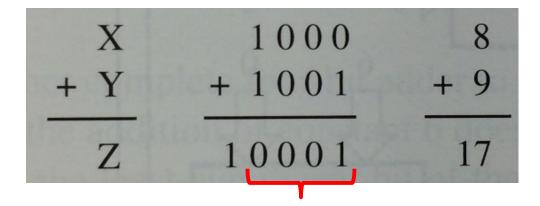
Table of Binary-Coded Decimal Digits

Decimal digit	BCD code
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

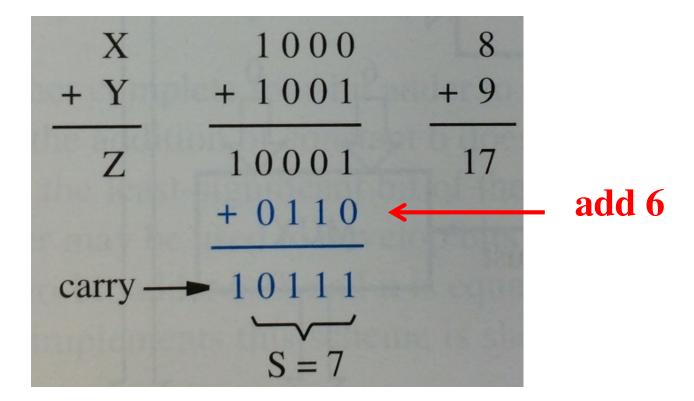
Addition of BCD digits

The result is greater than 9, which is not a valid BCD number





The result is 1, but it should be 7



Why add 6?

Think of BCD addition as a mod 16 operation

Decimal addition is mod 10 operation

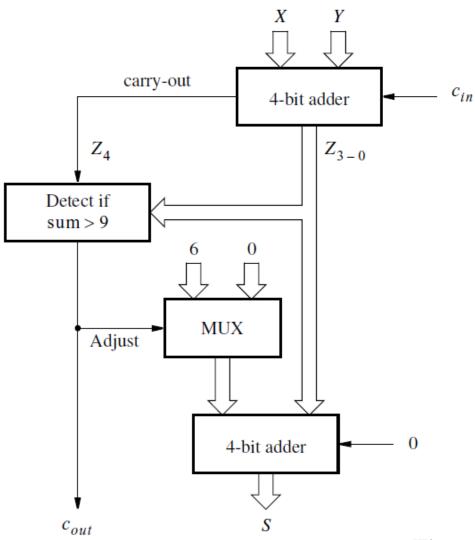
BCD Arithmetic Rules

$$Z = X + Y$$

If $Z \le 9$, then S=Z and carry-out = 0

If Z > 9, then S=Z+6 and carry-out =1

Block diagram for a one-digit BCD adder



[Figure 3.39 in the textbook]

```
7 - 0111
```

8 - 1000

9 - 1001

10 - 1010

11 - 1011

12 - 1100

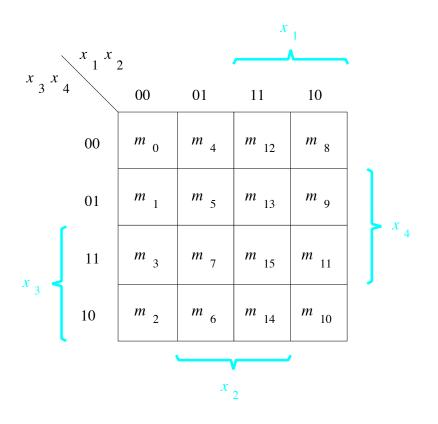
13 - 1101

14 - 1110

15 - 1111

A four-variable Karnaugh map

x 1	x2	x 3	x 4		
0	0	0	0	m0	0
0	0	0	1	m1	0
0	0	1	0	m2	0
0	0	1	1	m3	0
0	1	0	0	m4	0
0	1	0	1	m5	0
0	1	1	0	m6	0
0	1	1	1	m7	0
1	0	0	0	m8	0
1	0	0	1	m9	0
1	0	1	0	m10	1
1	0	1	1	m11	1
1	1	0	0	m12	1
1	1	0	1	m13	1
1	1	1	0	m14	1
1	1	1	1	m15	1



z3	z2	z1	z0		
0	0	0	0	m0	0
0	0	0	1	m1	0
0	0	1	0	m2	0
0	0	1	1	m3	0
0	1	0	0	m4	0
0	1	0	1	m5	0
0	1	1	0	m6	0
0	1	1	1	m7	0
1	0	0	0	m8	0
1	0	0	1	m9	0
1	0	1	0	m10	1
1	0	1	1	m11	1
1	1	0	0	m12	1
1	1	0	1	m13	1
1	1	1	0	m14	1
1	1	1	1	m15	1

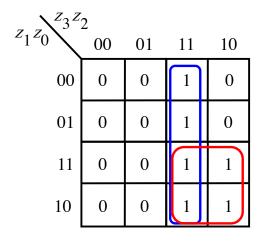
$z = \sqrt{z_3} z$	2			
$z_1 z_0$	00	01	11	10
00	0	0	1	0
01	0	0	1	0
11	0	0	1	1
10	0	0	1	1

z3	z2	z1	z0		
0	0	0	0	m0	0
0	0	0	1	m1	0
0	0	1	0	m2	0
0	0	1	1	m3	0
0	1	0	0	m4	0
0	1	0	1	m5	0
0	1	1	0	m6	0
0	1	1	1	m7	0
1	0	0	0	m8	0
1	0	0	1	m9	0
1	0	1	0	m10	1
1	0	1	1	m11	1
1	1	0	0	m12	1
1	1	0	1	m13	1
1	1	1	0	m14	1
1	1	1	1	m15	1



$$f = z_3 z_2 + z_3 z_1$$

z3	z2	z1	z0		
0	0	0	0	m0	0
0	0	0	1	m1	0
0	0	1	0	m2	0
0	0	1	1	m3	0
0	1	0	0	m4	0
0	1	0	1	m5	0
0	1	1	0	m6	0
0	1	1	1	m7	0
1	0	0	0	m8	0
1	0	0	1	m9	0
1	0	1	0	m10	1
1	0	1	1	m11	1
1	1	0	0	m12	1
1	1	0	1	m13	1
1	1	1	0	m14	1
1	1	1	1	m15	1



$$f = \mathbf{z}_3 \mathbf{z}_2 + \mathbf{z}_3 \mathbf{z}_1$$

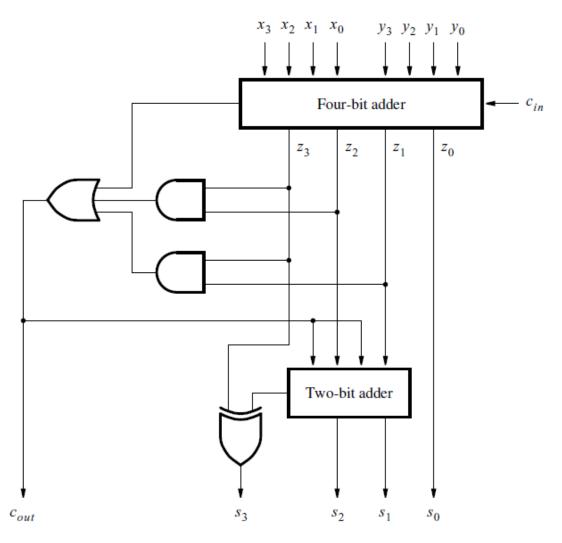
In addition, also check if there was a carry

$$f = carry-out + z_3z_2 + z_3z_1$$

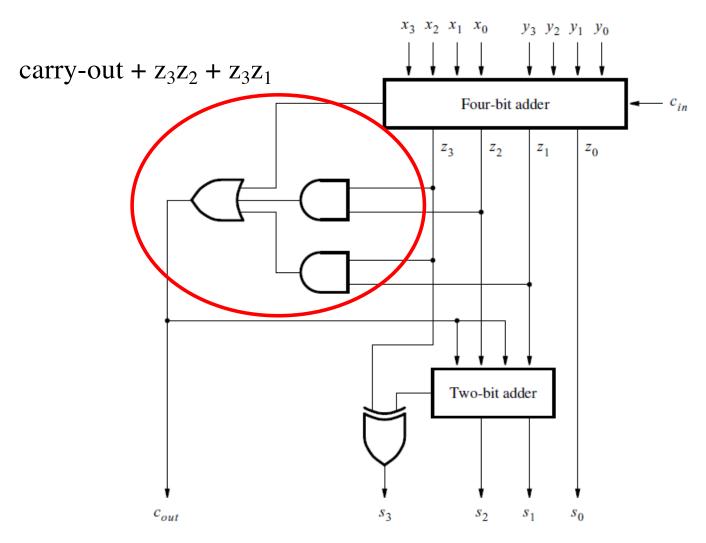
Verilog code for a one-digit BCD adder

```
module bcdadd(Cin, X, Y, S, Cout);
  input Cin;
  input [3:0] X,Y;
  output reg [3:0] S;
  output reg Cout;
  reg [4:0] Z;
  always@ (X, Y, Cin)
  begin
     Z = X + Y + Cin;
     if (Z < 10)
        \{Cout, S\} = Z;
     else
        \{Cout, S\} = Z + 6;
  end
```

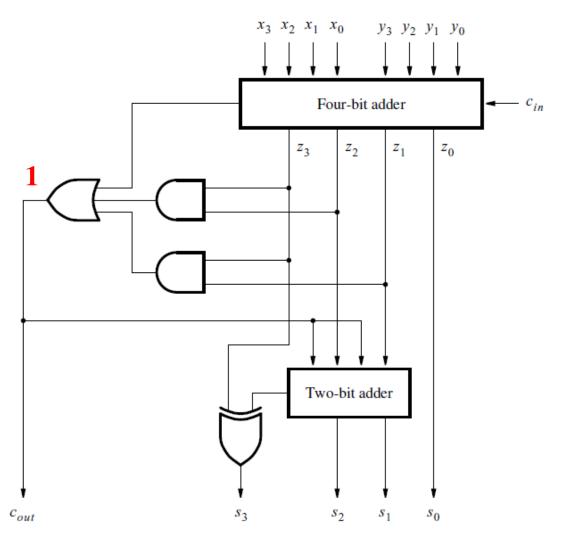
endmodule



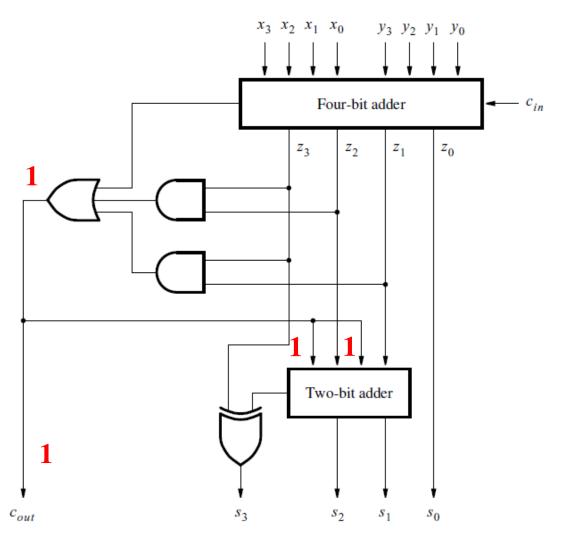
[Figure 3.41 in the textbook]



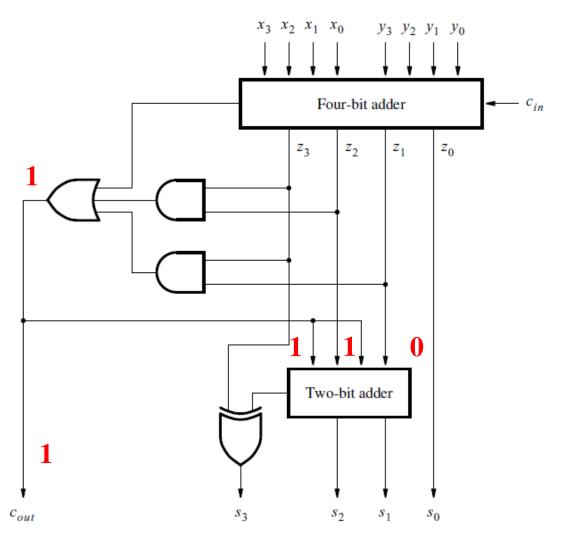
[Figure 3.41 in the textbook]



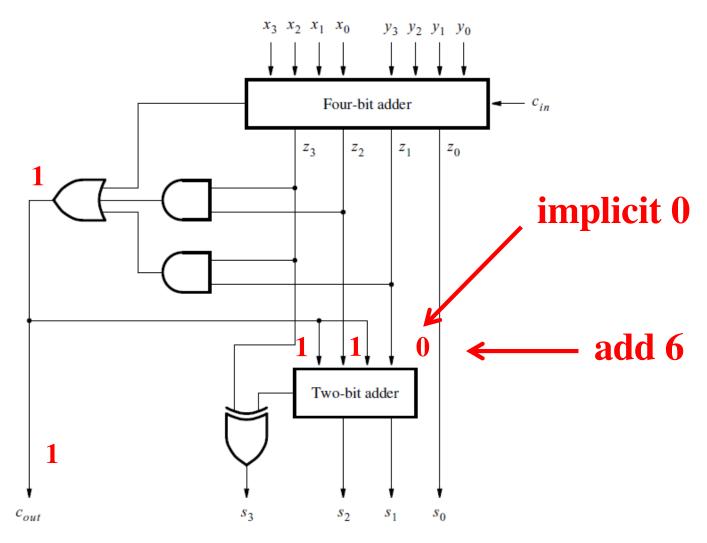
[Figure 3.41 in the textbook]



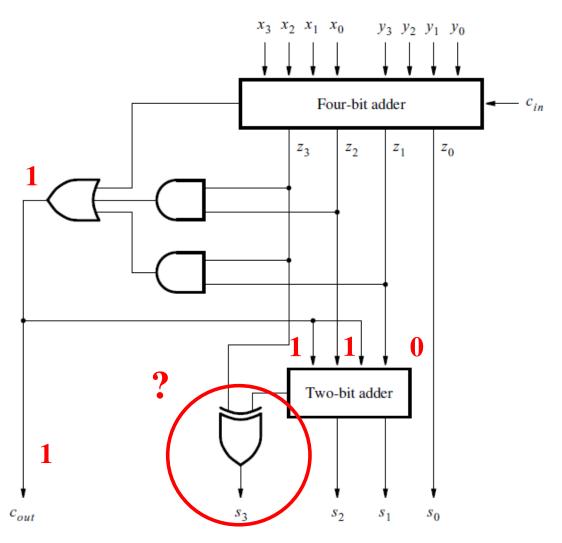
[Figure 3.41 in the textbook]



[Figure 3.41 in the textbook]

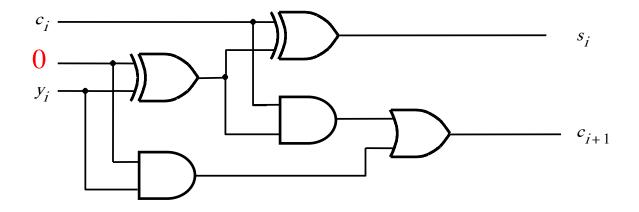


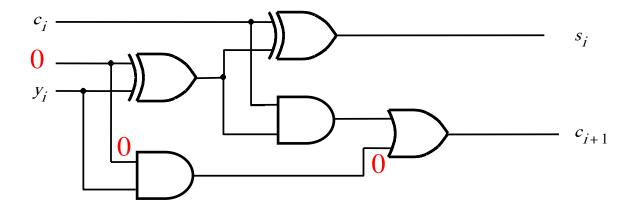
[Figure 3.41 in the textbook]

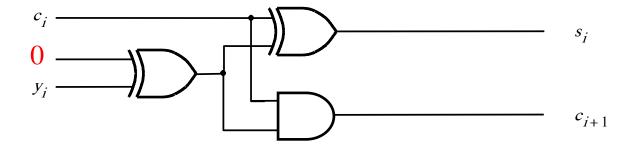


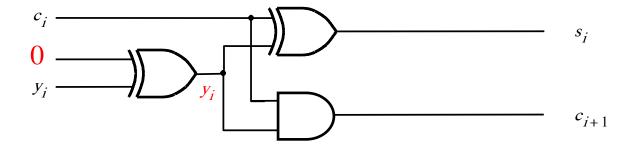
[Figure 3.41 in the textbook]

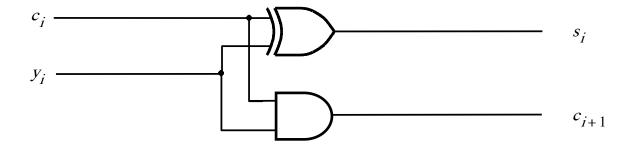


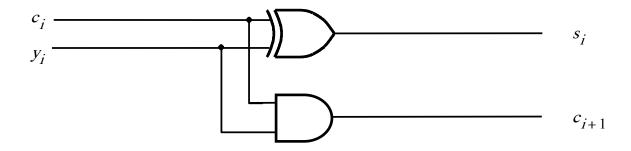




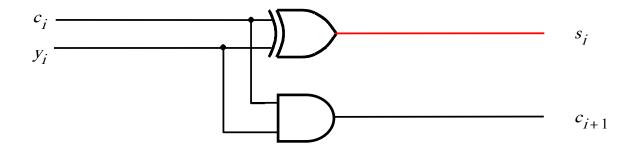






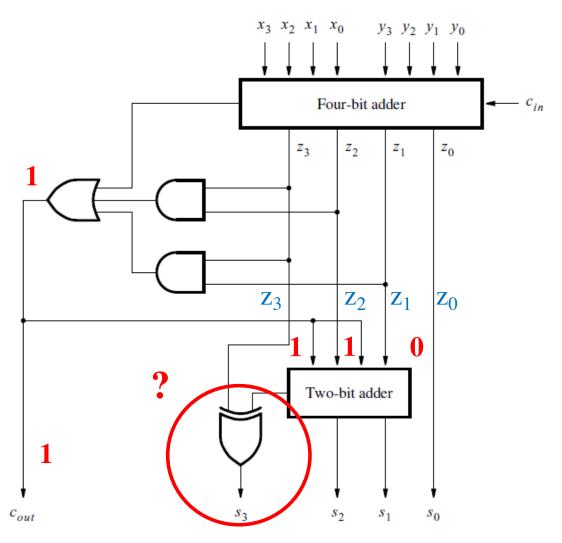


It reduces to a half-adder.



But if we only need the sum bit ...

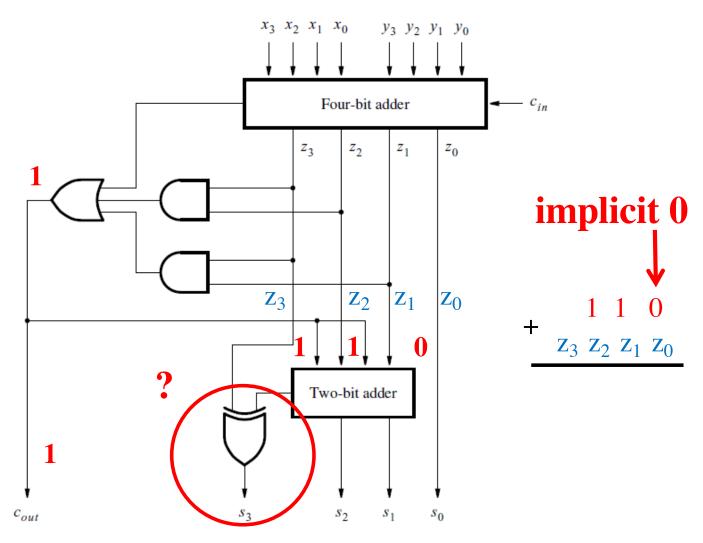
... it reduces to an XOR.



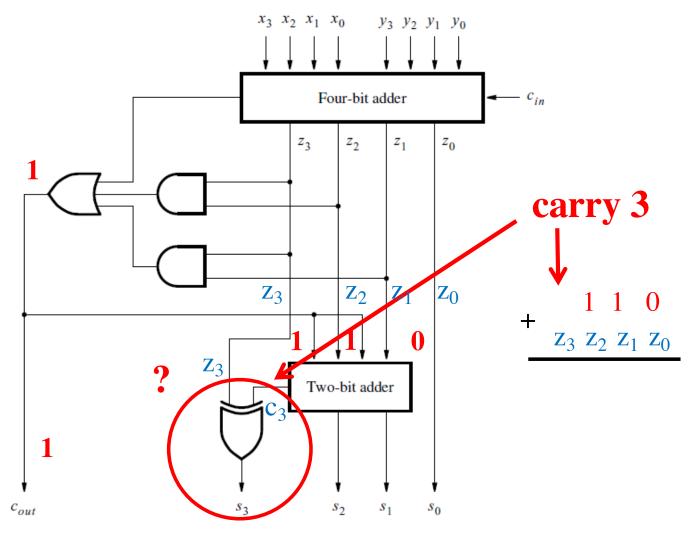
[Figure 3.41 in the textbook]



[Figure 3.41 in the textbook]



[Figure 3.41 in the textbook]



[Figure 3.41 in the textbook]

Questions?

THE END