
Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

CprE 2810: 
Digital Logic



Multiplication

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev



Administrative Stuff

• No HW is due today

• HW 6 will be due on Monday Oct.  14.

• Posted on the class web page.



Administrative Stuff

• Labs this week

• Mini-Project

• This is worth 3% of your grade (x2 labs)

• https://www.ece.iastate.edu/~alexs/classes/
 2024_Fall_2810/labs/Project-Mini/



Quick Review



A  ripple-carry adder



FA

x n – 1 

c n c n 1 

y n 1 – 

s n 1 – 

FA

x 1 

c 2 

y 1 

s 1 

FA
c 1 

x 0 y 0 

s 0 

c 0 

How long does it take to compute all 
sum bits and all carry bits?

– 

It takes 2n gate delays using a ripple-carry adder? 



Delays through the Full-Adder circuit

[ Figure 3.3c from the textbook ]

2 gate delays in total



The Full-Adder Circuit

[ Figure 3.3c from the textbook ]



The Full-Adder Circuit

[ Figure 3.3c from the textbook ]

Let's take a closer look at this.



yi

xi

ci

ci+1 = xi yi + (xi + yi )ci

Another Way to Draw the Full-Adder Circuit



Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci



Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi )ci



Decomposing the Carry Expression

yi

xi

ci+1

ci

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi )ci



Another Way to Draw the Full-Adder Circuit

yi

xi

ci

ci+1

si

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi )ci



Another Way to Draw the Full-Adder Circuit

yi

xi

ci

ci+1

si

ci+1 = xi yi + (xi + yi )ci



Another Way to Draw the Full-Adder Circuit

ci+1 = xi yi + (xi + yi )ci

yi

xi

ci

ci+1

si

gi pi



Another Way to Draw the Full-Adder Circuit

ci+1 = xi yi + (xi + yi )ci

yi

xi

ci

ci+1

si

gi pi

gi

pi



Yet Another Way to Draw It (Just Rotate It)

ci

ci+1 si

xi yi

pigi



x 1 y 1 

g 1 p 1 

s 1 

Stage 1 

x 0 y 0 

g 0 p 0 

s 0 

Stage 0 

c 0 
c 1 c 2 

Now we can Build a Ripple-Carry Adder

[ Figure 3.14 from the textbook ]



x 1 y 1 

g 1 p 1 

s 1 

Stage 1 

x 0 y 0 

g 0 p 0 

s 0 

Stage 0 

c 0 
c 1 c 2 

Now we can Build a Ripple-Carry Adder

[ Figure 3.14 from the textbook ]



x 1 y 1 

g 1 p 1 

s 1 

Stage 1 

x 0 y 0 

g 0 p 0 

s 0 

Stage 0 

c 0 
c 1 c 2 

The delay is 5 gates (1+2+2)



x 1 y 1 

g 1 p 1 

s 1 

Stage 1 

x 0 y 0 

g 0 p 0 

s 0 

Stage 0 

c 0 
c 1 c 2 

n-bit ripple-carry adder: 2n+1 gate delays

. . . 



Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi )ci

gi pi

ci+1 = gi  + pi ci

ci+1 = gi  + pi (gi-1  + pi-1 ci-1 )

= gi  + pi gi-1  + pi pi-1 ci-1



Carry for the first two stages

c1  =  g0  + p0 c0

c2  =  g1  + p1g0 + p1p0c0



x 1 y 1 

g 1 p 1 

s 1 

x 0 y 0 

s 0 

c 2 

x 0 y 0 

c 0 

c 1 

g 0 p 0 

The first two stages of a carry-lookahead adder

[ Figure 3.15 from the textbook ]



x 1 y 1 

g 1 p 1 

s 1 

x 0 y 0 

s 0 

c 2 

x 0 y 0 

c 0 

c 1 

g 0 p 0 

It takes 3 gate delays to generate c1



x 1 y 1 

g 1 p 1 

s 1 

x 0 y 0 

s 0 

c 2 

x 0 y 0 

c 0 

c 1 

g 0 p 0 

It takes 3 gate delays to generate c2



x 1 y 1 

g 1 p 1 

s 1 

x 0 y 0 

s 0 

x 0 y 0 

c 0 

c 1 

g 0 p 0 

The first two stages of a carry-lookahead adder

2 c 



x 1 y 1 

g 1 p 1 

s 1 

x 0 y 0 

s 0 

x 0 y 0 

c 0 

c 1 

g 0 p 0 

It takes 4 gate delays to generate s1

2 c 



It takes 4 gate delays to generate s2
x 1 y 1 

g 1 p 1 

s 1 

x 0 y 0 

s 0 

c 2 

x 0 y 0 

c 0 

c 1 

g 0 p 0 

s 2 



N-bit Carry-Lookahead Adder

• It takes 3 gate delays to generate all carry signals

• It takes 1 more gate delay to generate all sum bits

• Thus, the total delay through an n-bit            
carry-lookahead adder is only 4 gate delays!



Expanding the Carry Expression

c1  =  g0  + p0 c0

c2  =  g1  + p1g0 + p1p0c0

ci+1 = gi  + pi ci

c3  =  g2  + p2g1 + p2p1g0 + p2p1p0c0

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

. . .



Expanding the Carry Expression

c1  =  g0  + p0 c0

c2  =  g1  + p1g0 + p1p0c0

ci+1 = gi  + pi ci

c3  =  g2  + p2g1 + p2p1g0 + p2p1p0c0

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

. . .

Even this takes 
only 3 gate delays 



Block

x31 24–

c32
c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c03
Block

1
Block

0

A hierarchical carry-lookahead adder with 
ripple-carry between blocks

x23 16– y23 16–

s23 16–

Block
2



Block

x31 24–

c32
c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c03
Block

1
Block

0

A hierarchical carry-lookahead adder with 
ripple-carry between blocks

x23 16– y23 16–

s23 16–

Block
2



x31 24–

c32
c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c0

A hierarchical carry-lookahead adder with 
ripple-carry between blocks

x23 16– y23 16–

s23 16–



Block

x31 24–

c32 c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c03
Block

1
Block

0

A hierarchical carry-lookahead adder with 
ripple-carry between blocks

[ Figure 3.16 from the textbook ]



Block 

x 15 8 – y 15 8 – x 7 0 – y 7 0 – 

3 
Block 

1 
Block 

0 

Second-level lookahead

c 0 

s 7 0 – 

P 0 G 0 P 1 G 1 P 3 G 3 

s 15 8 – s 31 24– 

c 8 c 16c 32

x 31 24– y 31 24– 

c 24

[ Figure 3.17 from the textbook ]

A hierarchical carry-lookahead adder



Block 

x 15 8 – y 15 8 – x 7 0 – y 7 0 – 

3 
Block 

1 
Block 

0 

Second-level lookahead

c 0 

s 7 0 – 

P 0 G 0 P 1 G 1 P 3 G 3 

s 15 8 – s 31 24– 

c 8 c 16c 32

x 31 24– y 31 24– 

c 24

A hierarchical carry-lookahead adder

c 32



Block 

x 15 8 – y 15 8 – x 7 0 – y 7 0 – 

3 
Block 

1 
Block 

0 

Second-level lookahead

c 0 

s 7 0 – 

P 0 G 0 P 1 G 1 P 3 G 3 

s 15 8 – s 31 24– 

c 8 c 16c 32

x 31 24– y 31 24– 

c 24

A hierarchical carry-lookahead adder

c 32



Block 

x 15 8 – y 15 8 – x 7 0 – y 7 0 – 

3 
Block 

1 
Block 

0 

Second-level lookahead

c 0 

s 7 0 – 

P 0 G 0 P 1 G 1 P 3 G 3 

s 15 8 – s 31 24– 

c 8 c 16c 32

x 31 24– y 31 24– 

c 24

A hierarchical carry-lookahead adder

? ? ?

c 32



The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0



The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0



The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

G0

P0



The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

G0

P0

c8  =  G0  + P0 c0



The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

c16  =  g15  + p15g14 + p15p14g13 + p15p14p13g12
 + p15p14p13p12g11 + p15p14p13p12p11g10
 + p15p14p13p12p11p10g9+ p15p14p13p12p11p10p9g8
 + p15p14p13p12p11p10p9p8c8



The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

c16  =  g15  + p15g14 + p15p14g13 + p15p14p13g12
 + p15p14p13p12g11 + p15p14p13p12p11g10
 + p15p14p13p12p11p10g9+ p15p14p13p12p11p10p9g8
 + p15p14p13p12p11p10p9p8c8

The same expression, just add 8 to all subscripts



The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

c16  =  g15  + p15g14 + p15p14g13 + p15p14p13g12
 + p15p14p13p12g11 + p15p14p13p12p11g10
 + p15p14p13p12p11p10g9+ p15p14p13p12p11p10p9g8
 + p15p14p13p12p11p10p9p8c8

G0

P0 2-gate delays

3-gate delays



The Hierarchical Carry Expression

c8  =  g7  + p7g6 + p7p6g5 + p7p6p5g4
 + p7p6p5p4g3 + p7p6p5p4p3g2
 + p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
 + p7p6p5p4p3p2p1p0c0

c16  =  g15  + p15g14 + p15p14g13 + p15p14p13g12
 + p15p14p13p12g11 + p15p14p13p12p11g10
 + p15p14p13p12p11p10g9+ p15p14p13p12p11p10p9g8
 + p15p14p13p12p11p10p9p8c8

G1

P1 2-gate delays

3-gate delays



The Hierarchical Carry Expression

c8  =  G0  + P0 c0

c16  =  G1  + P1 c8

 =  G1  + P1 G0 + P1 P0 c0

c24  = G2  + P2 G1 + P2 P1 G0 + P2 P1 P0 c0

c32  = G3  + P3 G2  + P3 P2 G1 + P3 P2 P1 G0+ P3 P2 P1 P0 c0



The Hierarchical Carry Expression

c8  =  G0  + P0 c0

c16  =  G1  + P1 c8

 =  G1  + P1 G0 + P1 P0 c0

c24  = G2  + P2 G1 + P2 P1 G0 + P2 P1 P0 c0

c32  = G3  + P3 G2  + P3 P2 G1 + P3 P2 P1 G0+ P3 P2 P1 P0 c0

4-gate delays

5-gate delays

5-gate delays

5-gate delays



Block 

x 15 8 – y 15 8 – x 7 0 – y 7 0 – 

3 
Block 

1 
Block 

0 

Second-level lookahead

c 0 

s 7 0 – 

P 0 G 0 P 1 G 1 P 3 G 3 

s 15 8 – s 31 24– 

c 8 c 16c 32

x 31 24– y 31 24– 

c 24

[ Figure 3.17 from the textbook ]

A hierarchical carry-lookahead adder



Block 

x 15 8 – y 15 8 – x 7 0 – y 7 0 – 

3 
Block 

1 
Block 

0 

Second-level lookahead

c 0 

s 7 0 – 

P 0 G 0 P 1 G 1 P 3 G 3 

s 15 8 – s 31 24– 

c 8 c 16c 32

x 31 24– y 31 24– 

c 24

[ Figure 3.17 from the textbook ]

A hierarchical carry-lookahead adder

c8  =  G0  + P0 c0c16  = G1  + P1 G0 + P1 P0 c0c32 =G3+P3G2+P3P2G1 +P3 P2 P1 G0+P3 P2 P1 P0 c0



Total Gate Delay Through a 
Hierarchical Carry-Lookahead Adder 

• The total delay is 8 gates:

§ 3 to generate all Gi and Pi signals

§ +2 to generate c8, c16, c24, and c32

§ +2 to generate internal carries in the blocks

§ +1 to generate the sum bits (one extra XOR) 



Total Gate Delay Through a 
Hierarchical Carry-Lookahead Adder 

• The total delay is 8 gates:

§ 3 to generate all Gi and Pi signals

§ +2 to generate c8, c16, c24, and c32

§ +2 to generate internal carries in the blocks

§ +1 to generate the sum bits (one extra XOR) 



x 1 y 1 

g 1 p 1 

s 1 

x 0 y 0 

s 0 

c 2 

x 0 y 0 

c 0 

c 1 

g 0 p 0 

c1  =  g0  + p0 c0

2 more gate delays for the internal carries within a block



x 9 y 9 

g 9 p 9 

s 1 

x 0 y 0 

s 0 

c 10 

x 8 y 8 

c 8 

c 9 

g 8 p 8 

c9  =  g8  + p8 c8

2 more gate delays for the internal carries within a block



g 7
p 7 g 6

x 7 y 7 x
6 y 6

p 7
p 6

g 5
 

p 7
p 6

p 5
g 4

p 7
g 6

 

p 7
p 6

p 5
p 4

g 3
p 7

p 6
p 5

p 4
p 3

g 2
p 7

p 6
p 5

p 4
p 3

p 2
g 1

p 7
p 6

p 5
p 4

p 3
p 2

p 1
g 0

G
0 P

0 
c 0

c 0P
0

c 8
 

Block 1

G
0

c 0P
0

 

Block 2

c 1
6

P
1 

P
1 
P

0 
c 0

P
1 

P
1 
G

0 

G
1 

 

SECOND 
LEVEL

HIERARCHY

p9

g9

c9 

Block 2

p17

g17

c17 

Block 3

p0

g0

c1 

Block 1

c0 

FIRST LEVEL HIERARCHY

Hierarchical 
CLA Adder 
Carry Logic

C8   – 4 gate delays
C16 – 5 gate delays
C24 – 5 Gate delays
C32 – 5 Gate delays 

c8c16



g 7
p 7 g 6

x 7 y 7 x
6 y 6

p 7
p 6

g 5
 

p 7
p 6

p 5
g 4

p 7
g 6

 

p 7
p 6

p 5
p 4

g 3
p 7

p 6
p 5

p 4
p 3

g 2
p 7

p 6
p 5

p 4
p 3

p 2
g 1

p 7
p 6

p 5
p 4

p 3
p 2

p 1
g 0

G
0 P

0 
c 0

c 0P
0

c 8
 

Block 1

G
0

c 0P
0

 

Block 2

c 1
6

P
1 

P
1 
P

0 
c 0

P
1 

P
1 
G

0 

G
1 

 

SECOND 
LEVEL

HIERARCHY

p9

g9

c9 

Block 2

p17

g17

c17 

Block 3

p0

g0

c1 

Block 1

c0 

FIRST LEVEL HIERARCHY

Hierarchical 
CLA 

Critical Path

C1   -  3 gate delays
C9   – 6 gate delays
C17 – 7 gate delays
C25 – 7 Gate delays

c17 c9 c1

c8c16



Total Gate Delay Through a 
Hierarchical Carry-Lookahead Adder 

• The total delay is 8 gates:

§ 3 to generate all Gi and Pi signals

§ +2 to generate c8, c16, c24, and c32

§ +2 to generate internal carries in the blocks

§ +1 to generate the sum bits (one extra XOR) 



Multiplication and division
by 10 in the decimal system



Decimal Multiplication by 10

What happens when we multiply a number by 10?

  4 x 10 = ?

          542 x 10 = ?

        1245 x 10 = ?



Decimal Multiplication by 10

What happens when we multiply a number by 10?

  4 x 10 = 40

          542 x 10 = 5420

        1245 x 10 = 12450

       



Decimal Multiplication by 10

What happens when we multiply a number by 10?

  4 x 10 = 40

          542 x 10 = 5420

        1245 x 10 = 12450

       You simply add a zero as the rightmost number



Decimal Division by 10

What happens when we divide a number by 10?

  14 / 10 = ?

          540 / 10 = ?

        1240 / 10 = ?



Decimal Division by 10

What happens when we divide a number by 10?

  14 / 10 = 1       //integer division

          540 / 10 = 54

        1240 / 10 = 124

You simply delete the rightmost number



Multiplication and division
by 2 in the binary system



Binary Multiplication by 2

What happens when we multiply a number by 2?

   011  times 2  = ?

             101 times 2 = ?

        110011 times 2 = ?



Binary Multiplication by 2

What happens when we multiply a number by 2?

   011  times 2  =  0110

             101 times 2 =  1010

        110011 times 2 = 1100110

       You simply add a zero as the rightmost number



Binary Multiplication by 4

What happens when we multiply a number by 4?

   011  times 4  = ?

             101 times 4 = ?

        110011 times 4 = ?



Binary Multiplication by 4

What happens when we multiply a number by 4?

   011  times 4  = 01100

             101 times 4 = 10100

        110011 times 4 = 11001100

add two zeros in the last two bits and shift everything else to the left



Binary Multiplication by 2N

What happens when we multiply a number by 2N?

  011  times 2N  =  01100…0    // add N zeros

            101 times 4 =  10100…0    // add N zeros

        110011 times 4 = 11001100…0    // add N zeros



Binary Division by 2

What happens when we divide a number by 2?

   0110  divided by 2  = ?

             1010 divides by 2 = ?

        110011 divides by  2 = ?



Binary Division by 2

What happens when we divide a number by 2?

   0110  divided by 2  = 011

             1010 divides by 2 = 101

        110011 divides by  2 = 11001

You simply delete the rightmost number



Multiplication of two
unsigned binary numbers



Decimal Multiplication By Hand

[http://www.ducksters.com/kidsmath/long_multiplication.php]



Binary Multiplication By Hand

[Figure 3.34a from the textbook]



Binary Multiplication By Hand

[Figure 3.34b from the textbook]



Binary Multiplication By Hand

[Figure 3.34c from the textbook]



Figure 3.35.   A 4x4 multiplier circuit.



Figure 3.35.   A 4x4 multiplier circuit.



Sign Extension



Sign extension for positive numbers
• If we want to represent the same positive number with 

more bits, we simply pad it on the left with zeros.

• For example: 

     0110 (+6 with 4-bits)
   00110          (+6 with 5-bits)
 000110          (+6 with 6-bits)



Sign extension for negative numbers
• If we want to represent the same negative number 

with more bits, we simply pad it on the left with ones.

• For example: 

     1011 (-5 with 4-bits)
   11011          (-5 with 5-bits)
 111011          (-5 with 6-bits)



Multiplication of two
signed binary numbers



Positive Multiplicand  Example

[Figure 3.36a in the textbook]



Positive Multiplicand  Example

[Figure 3.36a in the textbook]

add an extra bit 
to avoid overflow



Negative Multiplicand  Example

[Figure 3.36b in the textbook]



Negative Multiplicand  Example

[Figure 3.36b in the textbook]

add an extra bit 
to avoid overflow
but now it is 1



What if the Multiplier is Negative?
• Negate both numbers.

• This will make the multiplier positive.

• Then proceed as normal.

• This will not affect the result.

• Example:  5*(- 4) = (- 5)*(4)= - 20



Arithmetic Comparison Circuits



Truth table for a one-bit digital comparator

[http://en.wikipedia.org/wiki/Digital_comparator]



[http://www.personal.psu.edu/users///c/w/cwb5096/Old%20Site/index_files/cmpenlab4.htm]

A one-bit digital comparator circuit



Truth table for a two-bit digital comparator

[http://en.wikipedia.org/wiki/Digital_comparator]



[http://forum.allaboutcircuits.com/showthread.php?t=10561]

A two-bit digital comparator circuit



[ Figure 4.22 from the textbook ]

A four-bit comparator circuit



[ Figure 3.45 from the textbook ]

Another four-bit comparator circuit



[ Figure 3.45 from the textbook ]

Another four-bit comparator circuit



Another four-bit comparator circuit

0 0 1 1 1 0 0 1

Compare 6 with 5 by subtraction (6-5).



Another four-bit comparator circuit

0 0 1 1 1 0 0 1

0 1 1 0 1 1 0 0



Another four-bit comparator circuit

0 0 1 1 1 0 0 1

0 1 1 0 1 1 0 0

0 0 0 1

1
  0 1 1 0
  1 0 1 0
1 0 0 0 1

+

1



Another four-bit comparator circuit

0 0 1 1 1 0 0 1

0 1 1 0 1 1 0 0

0 0 0 1

1
  0 1 1 0
  1 0 1 0
1 0 0 0 1

+

1

Ignore



Another four-bit comparator circuit

0 0 1 1 1 0 0 1

0 1 1 0 1 1 0 0

0 0 0 1
1 1 1 0 1

.  .  .     1
  0 1 1 0
  1 0 1 0
1 0 0 0 1

+



Another four-bit comparator circuit

0 0 1 1 1 0 0 1

0 1 1 0 1 1 0 0

0 0 0 1
1 1 1 0

0 0 0

1

.  .  .     1
  0 1 1 0
  1 0 1 0
1 0 0 0 1

+



Binary Coded Decimal (BCD)



Table of Binary-Coded Decimal Digits



Addition of BCD digits

[Figure 3.38a in the textbook]



Addition of BCD digits

[Figure 3.38a in the textbook]

The result is greater than 9, which is not a valid BCD number



Addition of BCD digits

[Figure 3.38a in the textbook]

add 6



Addition of BCD digits

[Figure 3.38b in the textbook]



Addition of BCD digits

[Figure 3.38b in the textbook]

The result is 1, but it should be 7



Addition of BCD digits

[Figure 3.38b in the textbook]

add 6



Why add 6?

• Think of BCD addition as a mod 16 operation

• Decimal addition is mod 10 operation



BCD Arithmetic Rules

Z = X + Y

If Z <= 9, then S=Z and carry-out = 0

If Z > 9, then S=Z+6 and carry-out =1



Block diagram for a one-digit BCD adder

[Figure 3.39 in the textbook]



How to check if the number is > 9?

7    -   0111
8    -   1000
9    -   1001
10  -   1010
11  -   1011
12  -   1100
13  -   1101
14  -   1110
15  -   1111



x 
1 

x 
2 

x 
3 

x 
4 00 01 11 10

00

01

11

10

x 2 

x 4 

x 1 

x 3 

m 0 

m 1 m 5 

m 4 m 12

m 13

m 8 

m 9 

m 3 

m 2 m 6 

m 7 m 15

m 14

m 11

m 10

x1 x2 x3 x4
0 0 0 0 m0
0 0 0 1 m1
0 0 1 0 m2
0 0 1 1 m3
0 1 0 0 m4
0 1 0 1 m5
0 1 1 0 m6
0 1 1 1 m7
1 0 0 0 m8
1 0 0 1 m9
1 0 1 0 m10
1 0 1 1 m11
1 1 0 0 m12
1 1 0 1 m13
1 1 1 0 m14
1 1 1 1 m15

A four-variable Karnaugh map

0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1



z3 z2 z1 z0
0 0 0 0 m0
0 0 0 1 m1
0 0 1 0 m2
0 0 1 1 m3
0 1 0 0 m4
0 1 0 1 m5
0 1 1 0 m6
0 1 1 1 m7
1 0 0 0 m8
1 0 0 1 m9
1 0 1 0 m10
1 0 1 1 m11
1 1 0 0 m12
1 1 0 1 m13
1 1 1 0 m14
1 1 1 1 m15

How to check if the number is > 9?

z 3 z 2 z 1 z 0 

0 

00 01 11 10

0 1 0

0 0 1 0 

0 0 1 1 

0 0 1 1 

00

01

11

10

0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1



z3 z2 z1 z0
0 0 0 0 m0
0 0 0 1 m1
0 0 1 0 m2
0 0 1 1 m3
0 1 0 0 m4
0 1 0 1 m5
0 1 1 0 m6
0 1 1 1 m7
1 0 0 0 m8
1 0 0 1 m9
1 0 1 0 m10
1 0 1 1 m11
1 1 0 0 m12
1 1 0 1 m13
1 1 1 0 m14
1 1 1 1 m15

How to check if the number is > 9?

z 3 z 2 z 1 z 0 

0 

00 01 11 10

0 1 0

0 0 1 0 

0 0 1 1 

0 0 1 1 

00

01

11

10

f = z3z2 + z3z1

0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1



z3 z2 z1 z0
0 0 0 0 m0
0 0 0 1 m1
0 0 1 0 m2
0 0 1 1 m3
0 1 0 0 m4
0 1 0 1 m5
0 1 1 0 m6
0 1 1 1 m7
1 0 0 0 m8
1 0 0 1 m9
1 0 1 0 m10
1 0 1 1 m11
1 1 0 0 m12
1 1 0 1 m13
1 1 1 0 m14
1 1 1 1 m15

How to check if the number is > 9?

z 3 z 2 z 1 z 0 

0 

00 01 11 10

0 1 0

0 0 1 0 

0 0 1 1 

0 0 1 1 

00

01

11

10

f = z3z2 + z3z1

In addition, also check if there was a carry

f = carry-out + z3z2 + z3z1

0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1



modulebcdadd(Cin, X, Y, S, Cout);
input Cin;
input [3:0] X, Y;
output reg [3:0] S; 
output reg Cout; 
reg [4:0] Z; 

always@ (X, Y, Cin)
begin

Z = X + Y + Cin;
if (Z < 10) 

{Cout, S} = Z;
else

{Cout, S} = Z + 6;
end 

endmodule

Verilog code for a one-digit BCD adder

[Figure 3.40 in the textbook]



[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder



[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

carry-out + z3z2 + z3z1



[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

1



[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

1

1

1 1



[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

1

1

1 1 0



[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

1

1

1 1 0 add 6

implicit 0



[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

1

1

1 1 0
?



c i 

x i 
y i 

c i 1 + 

s i 

Simplification of the Full-Adder
circuit when xi=0

[ Figure 3.4b from the textbook ]



c i 

y i 

c i 1 + 

s i 

Simplification of the Full-Adder
circuit when xi=0

0



c i 

y i 

c i 1 + 

s i 

Simplification of the Full-Adder
circuit when xi=0

0

0 0



Simplification of the Full-Adder
circuit when xi=0

c i 

y i 
c i 1 + 

s i 
0



Simplification of the Full-Adder
circuit when xi=0

c i 

y i 
c i 1 + 

s i 
0

y i 



Simplification of the Full-Adder
circuit when xi=0

c i 

y i 

c i 1 + 

s i 



Simplification of the Full-Adder
circuit when xi=0

c i 
y i 

c i 1 + 

s i 

It reduces to a half-adder.



Simplification of the Full-Adder
circuit when xi=0

c i 
y i 

c i 1 + 

s i 

But if we only need the sum bit …



Simplification of the Full-Adder
circuit when xi=0

c i 
y i 

s i 

… it reduces to an XOR.



[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

1

1

1 1 0
?

z3             z2     z1     z0 



[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

1

1

1 1 0
?

1  1   0
z3  z2  z1  z0

+
z3             z2     z1     z0 



[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

1

1

1 1 0
?

1  1   0
z3  z2  z1  z0

+

implicit 0

z3             z2     z1     z0 



[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

1

1

1 1 0
?

1  1   0
z3  z2  z1  z0

+

carry 3

z3

c3

z3             z2     z1     z0 



Questions?



THE END


